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Abstract
PRIMsrc is a novel implementation of a non-parametric bump hunting procedure, based on the Patient Rule

Induction Method (PRIM), offering a unified treatment of outcome variables, including censored time-to-event
(Survival), continuous (Regression) and discrete (Classification) responses. To fit the model, it uses a recursive
peeling procedure with specific peeling criteria and stopping rules depending on the response. To validate the
model, it provides an objective function based on prediction-error or other specific statistic, as well as two alter-
native cross-validation techniques, adapted to the task of decision-rule making and estimation in the three types
of settings. PRIMsrc comes as an open source R package, including at this point: (i) a main function for fitting
a Survival Bump Hunting model with various options allowing cross-validated model selection to control model
size (#covariates) and model complexity (#peeling steps) and generation of cross-validated end-point estimates;
(ii) parallel computing; (iii) various S3-generic and specific plotting functions for data visualization, diagnostic,
prediction, summary and display of results. It is available on CRAN and GitHub.

Key Words: Bump Hunting, Non-Parametric Methods, Rule-Induction Methods, Cross-Validation,
Parallel Programming, R Package

1. Introduction
Non-Parametric Methods for Bump Hunting
The search for structures in datasets in the form of bumps, modes, components, clusters or classes are
important as they often reveal underlying phenomena leading to scientific discoveries. Exploratory bump
hunting seeks bump supports (possibly disjoint regions) of the input space of multi variables where a
target function (e.g. a regression or density function) is on average larger (or lower) than it’s average
over the entire input space. Exploratory bump hunting covers tasks such as: (i) Mode(s) Hunting, (ii)
Local/Global Extremum(a) Finding, (iii) Subgroup(s) Identification, (iv) Outlier(s) Detection.

Supervised bump hunting procedures are among the few non-parametric methods that have been
proposed to address this problem. One known as the Patient Rule Induction Method (PRIM) was initially
introduced by Friedman & Fisher [15] and later formalized by Polonik [23]. Essentially, the method
is a recursive peeling algorithm that explores the input space solution region, where the response is
expected to be larger on average. Some interesting features common and distinct to decision trees such as
Classification and Regression Trees (CART) [3] help describe PRIM. For instance, often times, interest
focuses only on estimating extreme response groups. In this respect, bump hunting is a better approach
than decision trees because it aims at searching regions where the response function is larger (or smaller)
than its average over the entire space. Other basic differences between decision-tree and decision-box
methods lie in their approach and goal (reviewed in [5]).

To date, only a few extensions of the original PRIM work have been done. This includes a Bayesian
model-assisted formulation of PRIM [29], a boosted version of PRIM based on Adaboost [28], an ex-
tension of PRIM to censored responses [19, 20] and to discrete variables [18]. Although PRIM is intrin-
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sically multivariate, it was uncertain from the original work how the algorithm would perform in ultra
high-dimension where collinearity [14, 15] and sparsity abound. So, recently, an interesting body of work
studied when and why the Principal Component space can be used effectively to optimize the response-
predictor relationship in bump hunting. This was first addressed in [8], where the computational details
of such an approach were laid out for high-dimensional settings, then in [9, 10], where authors showed
how the PC rotation of the predictor space alone can generate “improved” bump estimates.

Package Overview
Our PRIMsrc package is an implementation in the R-language of procedures derived from the Patient
Rule Induction Method (PRIM) for fitting and validating a bump hunting model. PRIMsrc is intended
to offer a unified treatment of various types of outcome variables including censored time-to-event (Sur-
vival), continuous (Regression) and discrete (Classification) responses. To fit the model, PRIMsrc uses
a recursive peeling procedure with specific peeling criteria and stopping rules depending on the response.

One of the critiques made in the original PRIM work was the lack of validation procedure and mea-
sures of significance of solution regions. To optimize model parameters tuning and validate the model,
PRIMsrc provides an objective function based on prediction-error or other specific statistic depending
on the response, as well as a resampling technique amenable to the joint task of decision rule making by
recursive peeling (i.e. decision-box) and estimation in the three types of settings. Specifically, PRIMsrc
offers two alternative, possibly repeated, K-fold cross-validation techniques adapted to the task, namely
the “Replicated Combined CV” (RCCV) and “Replicated Averaged CV” (RACV).

So far, the current version (0.6.0) is a development release that only implements the case of a survival
response. Other features will be added soon. To build our survival/risk bump hunting model, PRIMsrc
implements our “Patient Recursive Survival Peeling” (PRSP) method, a non-parametric recursive peeling
procedure, derived from the Patient Rule Induction Method (PRIM), which we have extended to allow
for survival/risk response, possibly censored. Specifically, PRIMsrc offers three appropriate peeling
criteria derived from non/semi-parametric survival statistics such as the hazards-ratio, the log-rank test or
the Nelson–Aalen estimator, that can be used alternatively to fit our survival/risk bump hunting model.

PRIMsrc is also intended to handle continuous and discrete input variables in low- and high-
dimensional settings, including the situation where the number of variables exceeds that of samples
(p ą n or p " n paradigm). As such, the package includes cross-validation procedures to control
model size (# covariates) in addition to model complexity (# peeling steps). It has been tested in multiple
(ą 20) low and high-dimensional situations where n ď p and even n ! p (see abstract of application
article [6] and the example datasets in our R package).

2. Bump Hunting Framework
2.1 Notation - Goal
The formal setup of bump hunting is as follows (see also [5, 15, 23]). Let us consider a supervised
problem with a univariate output (response) random variable, denoted y P R. Further, let us consider
a p-dimensional random vector X P Rp of support S, also called input space, in an Euclidean space.
Let us denote the p input variables by X “ rxjs

p
j“1, of joint probability density function ppXq and by

fpxq “ Epy|X “ xq the target function to be optimized (e.g. any regression function or e.g. the p.m.f
or p.d.f fXpxq).

Briefly, the goal in bump hunting is to find a sub-space or region pR Ď Sq of the input space within
which the average value f̄R of fpxq is expected to be significantly larger (or smaller) than its average
value f̄S over the entire input space S (see figures in [5]). In addition, one wishes that the corresponding
support (mass) of R, say βR, be not too small, that is, greater than a minimal support threshold, say
0 ă β0 ă 1.
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Formally, in the continuous case of X:

f̄R “

ş

xPR fpxqppxqdx
ş

xPR ppxqdx
" f̄S βR “

ż

xPR
ppxqdx " β0

In supervised problems with an output variable (response) y, one would seek to characterize the
conditional expectation Epy|X “ xq and infer the properties of the unknown joint probability density
function ppXq, whereas in the case of unsupervised learning, one would have to directly infer the prop-
erties of ppXq, e.g. from some density estimate, without the help of a response.

Let Sj be the support of the jth variable xj , such that the input space can be written as the (Cartesian)
outer product space S “

Śp
j“1 Sj . Let sj Ď Sj denotes the unknown subset of values of variable xj

corresponding to the unknown support of the solution region R. Let J Ď t1, . . . , pu be the subset of
indices of selected variables in the process. The goal in bump hunting amounts to finding the value-
subsets tsjujPJ of the corresponding variables txjujPJ such that

R “

#

x P
č

jPJ

pxj P sjq : pf̄R " f̄SqpβR " β0q

+

2.2 Estimates
Since the underlying distribution is not known, the estimates of f̄R and βR must be used. Assume a
supervised setting, where the outcome response variable is y “ py1 . . . ynqT and the explanatory/input
variables are X “ px1 . . .xnqT , where each observation is the p-dimensional vector of covariates xi “

rxi,1 . . . xi,ps
T , for i P t1, . . . , nu. Plug-in estimates of the average value f̄R of the target function fpxq

and of the support βR of the region R are respectively derived as:
ˆ̄fR “

1

nβ̂R

ÿ

xiPR̂

yi “
1

nβ̂R

n
ÿ

i“1

yiIpxi P R̂q β̂R “
1

n

ÿ

xiPR̂

Ipxi P R̂q “
1

n

n
ÿ

i“1

Ipxi P R̂q

2.3 Remarks
1. The goal amounts to comparing the conditional expectation of the response over the solution region

R: f̄R “ Erfpxq|x P Rs with the unconditional one f̄S “ Erfpxqs.
2. Larger target function average f̄R is associated with smaller support βR of the region R (Figure 1).

So, in practice, there is a trade-off between maximizing f̄R and maximizing βR.
3. If the target function to be optimized is for instance the p.m.f or p.d.f fXpxq, then PrpX P Rq is

the probability mass/density of a local maximum and the task is equivalent to a mode(s) hunting.
4. In the case of real-valued inputs, the entire input space is the p-dimensional outer product space

S Ď Rp; the support Sj of each individual input variable (and of each corresponding value-subset

sj) is the usual interval of the form Sj “

”

t´
j , t

`
j

ı

Ă R for j “ 1, . . . , p; the solution region R has

the shape of a |J |-dimensional hyper-rectangle in R|J |, called a box, which can be written as the
outer product of |J | intervals of the form B “

Ś

jPJ rt´
j , t

`
j s.

5. In general, region R could be any smooth shape (e.g. a convex hull) possibly disjoint.

2.4 Estimation by the Patient Rule Induction Method (PRIM)
The Patient Rule Induction Method (PRIM) is used to get the region estimate R̂ with corresponding
support estimate β̂R and conditional output response mean estimate ˆ̄fR. Essentially, the method is one
of recursive peeling/pasting algorithm (a discrete version of the steepest ascent method) that explores the
input space solution region, where the response is expected to be larger on average. The method generates
a sequence of boxes that collectively cover the region estimate R̂. The way the box peeling/induction is
done and the space is covered, as well as how the patience is controlled and the stopping rule is used
are detailed in the companion article (see [5]) and the original article of Friedman & Fisher [15], later
formalized by Polonik & Wang [23].
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3. Survival Bump Hunting by Recursive Peeling

Assume a univariate survival/risk response variable (possibly censored) in a multivariate setting of real-
valued (continuous or discrete) input variables/covariates X “ rxjs

p
j“1. The goal is to characterize

an extreme-survival-response support in the predictor space and identify the corresponding box-defined
group of samples using a recursive peeling method derived from PRIM.

3.1 Survival Notation and Definitions
The response variable being subject to censoring, we use the general random censoring model. We focus
on a univariate right-censored survival outcome under the assumptions of independent observations, non-
competitive risks and random (type-I or -II) non-informative censoring. Denote the true survival time (or
lifetime/failure time) by the random variable T and the observed censoring time by the random variable
C, then the observed survival time is the random variable Y “ minpT,Cq. Also, under our assumptions,
C is assumed to be independent of T conditionally on covariates X. Let the observed event indicator
random variable be ∆ “ IpT ď Cq.

Using subscripts m P t1, . . . ,Mu and l P t1, . . . , Lu for the covering and box induction/peeling
loops, respectively, a peeling at step pm, lq of the box induction/peeling sequence produces a partition of
the survival data from the parent box Bm,l´1 into two partitions for a given set of covariates: the child
box Bm,l and its complement (for detailed notation, see companion article [5] and Algorithm 1 below).
Let’s refer to the child box and its complement described above by the “in-box” and the “out-of-box”,
respectively.

Dropping further step subscripts pm, lq for simplicity, assume that there are n individuals in parent
box Bm,l´1. For each observation i P t1, . . . , nu in parent box Bm,l´1, the true survival time, observed
censoring time, observed survival time and observed indicator event are the realizations denoted by Ti,
Ci, Yi “ minpTi, Ciq and δi “ IpTi ď Ciq, respectively. Finally, the observed data in parent box Bm,l´1

consists of pYi, δi,xiq, where xi “ rxi,1 . . . xi,ps
T , for i P t1, . . . , nu.

3.2 Survival-Specific Peeling Rule
We describe in [5] the use of several candidate survival-specific peeling criteria and discuss their merits
or strengths. Survival-specific peeling criteria are used to decide which covariate will be selected to give
the best peel between two boxes from two consecutive generations (parent-child descendance) of the box
induction/peeling loop in a recursive peeling algorithm (see section 3.5).

Briefly, to account for censoring, we simply supervise by proxy for extreme time-to-event outcome,
turning the censored outcome y into an uncensored “surrogate” outcome z. The focus is on selecting a
sub-box bm,l at step pm, lq of the box induction/peeling sequence that is to be peeled off from the parent
box Bm,l´1 along one of its faces (i.e. direction of peeling := axis of dimension j) to induce the next
child box Bm,l and its complement. This is done by maximizing the “surrogate” outcome rate of increase
between two consecutive generations of boxes Bm,l´1 and Bm,l of the box induction/peeling sequence.
Denote by zpm, lq the box “surrogate” outcome at step or generation pm, lq of the box induction/peel-
ing sequence (Algorithm 1). The rate of increase in zpm, lq at step or generation pm, lq between two
consecutive generations of boxes Bm,l´1 and Bm,l is defined as:

rpm, lq “
zpm, lq ´ zpm, l ´ 1q

βm,l´1 ´ βm,l
(1)

Finally, the particular sub-box b˚
m,l that is chosen to yield the largest box increase rate rpm, lq between

box Bm,l´1 and the next one Bm,l is such that

Bm,l “ Bm,l´1zb˚
m,l , where

b˚
m,l “ argmax

bm,lPCpbm,lq

rrpm, lqs , (2)

where Cpbm,lq represents the class of potential sub-boxes bm,l eligible for removal at step pm, lq.
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3.3 Non-Parametric Survival Peeling Criteria
Currently, our Survival Bump Hunting implementation in our R package PRIMsrc [7] offers three statis-
tics as surrogate of outcome zpm, lq, at step pm, lq (eq: 1): (i) the Log-Rank Test statistic, denoted
χ̂LRT pm, lq, (ii) the Nelson–Aalen Summary statistic, denoted Λ̂CHSpm, lq and (iii) the CPH-derived
Log Hazard Ratio statistic (assuming proportional hazards), denoted λ̂LHRpm, lq. Further discussion of
the use of the above estimators as well as a few more alternative survival peeling criteria can be found in
our companion article, although none of these is preferred nor implemented in our R package (see [5]).

All three peeling criteria statistics can be used to maximize the differences in survival outcomes
between two consecutive boxes B̂m,l´1 and B̂m,l of the box induction/peeling sequence. This leads to
the derivation of the corresponding box rate of increase estimate r̂pm, lq, at step pm, lq, according to
equation 1:

r̂LRT pm, lq “
χ̂LRT pm, lq ´ χ̂LRT pm, l ´ 1q

β̂m,l´1 ´ β̂m,l

(3)

r̂CHSpm, lq “
Λ̂CHSpm, lq ´ Λ̂CHSpm, l ´ 1q

β̂m,l´1 ´ β̂m,l

(4)

r̂LHRpm, lq “
λ̂LHRpm, lq ´ λ̂LHRpm, l ´ 1q

β̂m,l´1 ´ β̂m,l

(5)

3.4 Box End-Point Statistics
One important application of survival/risk modeling is to identify and segregate samples for predictive
diagnostic and/or prognosis purposes. Direct applications include the stratification of patients by diagnos-
tic and/or prognostic groups and/or responsiveness to treatment. Therefore, survival modeling is usually
performed to predict/classify patients into risk or responder groups from which one usually derives sur-
vival/risk functions estimates. Below is a summary of box end-point statistics of interest one can derive
in our Survival Bump Hunting method. Each is defined and cross-validated (see section 4) for each step
or generation pm, lq. They are all implemented in our R package PRIMsrc [7] (see figures in [5]):

1. Log Hazards Ratios (LHR), denoted λpm, lq between the highest-risk group/box and lower-risk
groups/boxes of the same generation.

2. Log-Rank Test statistic (LRT), denoted χpm, lq between the highest-risk group/box and lower-risk
groups/boxes of the same generation.

3. Concordance Error Rate (CER), denoted θpm, lq in the highest-risk group/box, that is a prediction
performance metric taking censoring into account. For each step pm, lq, θpm, lq “ 1 ´ Cpm, lq,
where C is Harrel’s Concordance Index for censored data [16], a rank correlation U-statistic, to
estimate the probability of concordance between predicted and observed survival times.

4. Event-Free Probability (EFP), denoted P0pm, lq or probability of non-event until a certain time
T pm, lq in the highest-risk group/box. If P0pm, lq is not reached for a specified time T pm, lq,
we determine the limit end-point P 1

0pm, lq or Minimal Event-Free Probability (MEFP) and corre-
sponding maximal time T 1pm, lq, which are always observable.

5. Event-Free Time (EFT), denoted T0pm, lq or time to reach a certain end-point probability P pm, lq
in the highest-risk group/box. If T0pm, lq is not reached for a certain probability P pm, lq, we
determine the limit end-point T 1

0pm, lq or Maximal Event-Free Time (MEFT) and corresponding
minimal probability P 1pm, lq, which are always observable.

6. Box characteristics: 2p box edges
”

t´
j pm, lq, t`

j pm, lq
ıp

j“1
, box support (mass) βpm, lq and box

membership indicator γpm, lq.
7. Traces of Covariate Usage V Upm, lq and Covariate Importance V Ipm, lq

8. Kaplan–Meir curves of survival probability values with log-rank test permutation p-values ppm, lq
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3.5 Estimation by Patient Recursive Survival Peeling
The strategy employed here is a recursive peeling algorithm for survival bump hunting. Our “Patient
Recursive Survival Peeling” method proceeds similarly as to which is done in PRIM except for the box
induction peeling/pasting criteria and the induction stopping rule (see section 2.4):

Algorithm 1 Patient Recursive Survival Peeling (annotated below w.l.o.g for a maximization problem).
See detailed notation in companion article [5].

• Start with the training data Lp1q and a maximal box B̂1 containing it
• For m P t1, . . . ,Mu:

1: Generate a box B̂m using the remaining training data Lpmq

2: For l P t1, . . . , Lu:

– Top-down peeling: Generate a box B̂m,l by conducting a stepwise covariate selec-
tion/usage: shrink the box by compressing one face (peeling), so as to peel off a quantile
α0 of observations of a covariate xj for j P t1, . . . , pu. Choose the direction of peeling
j that yields the largest box increase rate r̂pm, lq of the statistic used as peeling crite-
rion between box B̂m,l´1 and Bm,l in the next generation: Log-Rank Test χ̂LRT pm, lq,
Cumulative Hazard Summary Λ̂CHSpm, lq, Log Hazards Ratio λ̂LHRpm, lq. The current
box B̂m,l´1 is then updated: B̂m,l “ B̂m,l´1zb̂˚

m,l, where b̂˚
m,l “ argmax

b̂m,lPCpbm,lq

rr̂pm, lqs

– Bottom-up pasting: Expand the box along any face (pasting) as long as the resulting box
increase rate r̂pm, lq ą 0

– Stop the peeling loop until a minimal box support β̂m,L of B̂m,L is such that it reached a
minimal box support 0 ď β0 ď 1, expressed as a fraction of the data: β̂m,L ď β0

– l Ð l ` 1

3: Step #2 give a sequence of nested boxes tB̂m,lu
L
l“1, where L is the estimated number of

peeling/pasting steps with different numbers of observations in each box. Call the next box
B̂m`1 “ B̂m,L. Remove the data in box B̂m from the training data: Lpm`1q “ LpmqzB̂m

4: Stop the covering loop when running out of data or when a minimal number of observations
remains within the last box B̂M , say β̂M ď β0

5: m Ð m ` 1

• Steps #1 – #5 produce a sequence of (not necessarily nested) boxes tB̂muMm“1, where M is the
estimated total number of boxes covering Lp1q

• Collect the decision rules of all boxes tB̂muMm“1 into a simple final decision rule R̂ of the solution
region R̂ of the form: R̂ “

ŤM
m“1 R̂m, where R̂m “

Ş

jPJpxj P rt´
j,m, t`

j,msq giving a full
description of the estimated bumps in the entire input space

4. Cross-Validation for Recursive Peeling Methods and a Survival/Risk Outcome
4.1 Setup
Cross-validation of box estimates should include all steps of the box generation sequence tBmuMm“1 i.e.
for the (outer) coverage loop of our “Patient Recursive Survival Peeling” method (Algorithm 1), each
step of which involves a peeling sequence tBm,lu

L
l“1 of the (inner) box peeling/induction loop. However,

for simplicity, cross-validation designs of box estimates and resulting decision rule R̂m are described for
fixed m P t1, . . . ,Mu of the complete box sequence ttB̂m,lu

L
l“1uMm“1.

Although using a fully independent test set for evaluating a predictive bump hunting model is always
advisable, the sample size in discovery-based studies is often too small to effectively split the data into
training and testing sets (Split-Sample-Validation) and provide accurate estimates [2, 11, 24]. In such
cases, resampling techniques such as K-fold Cross-Validation (CV) are required [1, 22].
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4.2 K-fold Cross-Validation
4.2.1 Resampling Design - Notation
In resampling based on full K-fold cross-validation, the whole data L is randomly partitioned into K
approximately equal parts of test samples or test-sets pL1, . . . ,Lk, . . . ,LKq. For each test-set Lk, for
k P t1, . . . ,Ku, a training set Lpkq is formed from the union of the remaining K ´ 1 subsets: Lpkq “

L r Lk. The process is repeated K times, so that K test-sets Lk are formed of about equal size and
K corresponding training subsets Lpkq, for k P t1, . . . ,Ku. Typically, K P t3, . . . , 10u. The training
samples are approximately of size « npK ´ 1q{K and the test samples are of size nt « n{K.

4.2.2 Cross-Validation Techniques
Although resampling methods are useful in assessing the prediction accuracy of classifiers, they are not
directly applicable for predictive survival modeling applications [12, 22, 26, 27]. There are remaining
issues to deal with K-fold CV: first, how to cross-validate a simple peeling trajectory tB̂lu

L
l“1 and related

statistics is not straightforward; second, how to cross-validate survival curve estimates and related statis-
tics is also not intuitive (see also [25]). So, regular K-fold cross-validation is not directly applicable to
the joint task of box decision rules making by recursive peeling and survival estimation. One must design
a specific cross-validation technique(s) of survival bump hunting that is amenable to this joint task. Re-
cently, we described a cross-validation technique for recursive peeling methods in a survival/risk setting
[4, 5].

Briefly, we proposed two techniques by which K-fold cross-validation estimates can be computed
(see details in companion article [5]):

• Averaging Technique: Estimations are first computed for each “in-box” test subset samples, then
averaged over the cross-validation loops of random splitting to give the “Averaged Cross-Validation”
estimates.

• Combining Technique: All “in-box” test subset samples are first collected from all the cross-
validation loops of random splitting to build a combined test “in-box” and corresponding combined
test “in-box” samples to compute once the final “Combined Cross-Validation” estimates.

To account for the high variability of cross-validated estimates [11, 13, 21], we iterate each cross-
validation procedure several times over some replicates B (typically, B ě 10) to average the estimates
and reduce their variance and generate “Replicated Cross-Validated” estimates. Note that, unlike in the
averaging technique, cross-validated combined estimates are computed on test samples of size n instead
of nt « n{K, which could be an advantage in the case of tiny sample size n.

4.2.3 Model Peeling Length Optimization Criterion
In model tuning/selection, there is a trade-off between under-fitting and over-fitting that is achieved by
optimizing an empirical function, taking censoring into account, or objective criterion that we call “opti-
mization criterion”. The one that we derive is adapted to the task of cross-validation of a survival bump
hunting model fit by a recursive peeling method with a survival outcome [5]. Specifically, we train a
peeling model by optimizing its complexity, that is here, the length or number of peeling steps of the
peeling sequence (or peeling trajectory profiles).

Cross-validated estimates of box end-points statistics (described in 3.4) are computed using the left-
out test-set Lk. Three of these are the Log Hazard Ratio (LHR), Log-Rank Test (LRT) and the cross-
validated estimate of prediction performance, namely the Concordance Error Rate (CER) that is obtained
by calculating the test-set error rate using the left-out test-set Lk. For details on how the three optimization
criteria are derived and used, see companion article [5].
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5. Features

5.1 Description and Current Scope

PRIMsrc comes as a user-friendly open source software with a complete documentation. The current
stable version is available as an R package (0.6.0) on the CRAN repository at
https://cran.r-project.org/web/packages/PRIMsrc/index.html. PRIMsrc allows open
source development via GitHub at https://github.com/jedazard/PRIMsrc and testing via TravisCI
at https://travis-ci.org/. The current version of the software is a development release that only
implements the case of a survival response. Survival Bump Hunting (SBH) in PRIMsrc is also restricted
to a directed peeling search of the first box covered by the recursive coverage (outer) loop of our Patient
Recursive Survival Peeling (PRSP) algorithm (see Algorithm 1). Finally, the main function relies on an
optional variable pre-selection procedure that is done in this version by a cross-validated penalization of
the partial likelihood using the R package glmnet.

5.2 Development Branches:

Implementations of complete Survival Regression Classification or SRC features are being implemented
and will be added soon. The development release is available on GitHub. It is organized in three branches
under development:

1. Branch #0 (master - default) containing the most up-to-date version 0.6.1 to eventually merge with
branch #1 then #2;

2. Branch #1 (devel) containing version 0.7.0. The specific treatment of dimension-reduction or
variable selection in high-dimensional settings is implemented differently in the previous GitHub
branch (0.6.1) or CRAN version (0.6.0) than in this branch (0.7.0). In the former, the main function
relies on an optional variable pre-selection procedure that is run before the PRSP algorithm. At this
point, this is done by a cross-validated penalization of the partial likelihood using the R package
glmnet. In the latter, we implemented an integrated cross-validation procedure that involves a
univariate Survival Bump Hunting (SBH) variable selection strategy. Ultimately, this will provide
a more rigorous treatment of model validation, a better control on the user-end and an improvement
of the maintenance on the back-end.

3. Branch #2 (unified) containing version 1.0.0. The latter branch will host the future complete version
of the code, including undirected peeling search by Patient Rule Induction Method (PRIM) that will
allow the unified treatment of bump hunting for every type of continuous, discrete and censored
responses.

5.3 Package Main Features

The following describes the end-user functions that are needed to run a complete procedure. The other
internal subroutines are not documented in the manual and are not to be called by the end-user at any
time. For computational efficiency, PRIMsrc offers a parallelization option that is done by passing a
few parameters needed to configure a cluster. This is indicated by an asterisk (˚). At this point, the
end-user R features are categorized as follows (see documentation in our R package for details [7]):

1. SURVIVAL BUMP HUNTING FUNCTION
sbh() (˚) : Main end-user function for fitting a cross-validated Survival Bump Hunting (SBH)
model and returning cross-validated estimates of end-points statistics of interest (see 3.4). It has
various options to allow cross-validation procedures to control model size (# covariates) and model
complexity (# peeling steps). There is also an option for efficient statistical computing by parallel
computation, is also available to allow: (i) user-defined choice of type of process communica-
tion mechanisms (MPI, SOCKET and PVM), (ii) parallel random number generation and (iii) seed
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management for reproducible results / research

2. S3-GENERIC FUNCTIONS FOR SUMMARY, DISPLAY, PLOT AND PREDICTION
summary() : S3-generic summary function to summarize the main parameters used to generate
the PRSP object.
print() : S3-generic print function to display the cross-validated estimated values of the PRSP
object.
plot() : S3-generic plotting function for two-dimensional visualization of original or predicted
data scatter as well as cross-validated box vertices of a PRSP object.
predict(): S3-generic predict function to predict the box membership and box vertices on an
independent set.

3. PLOTTING FUNCTIONS FOR MODEL VALIDATION AND VISUALIZATION OF RESULTS
plot profile() : Function for plotting the cross-validated tuning profiles of a PRSP object.
plot boxtraj() : Function for plotting the cross-validated peeling trajectories/profiles of a
PRSP object.
plot boxtrace() : Function for plotting the cross-validated covariates traces of covariate im-
portance and covariate usage of a PRSP object.
plot boxkm() : Function for plotting the cross-validated survival distributions of a PRSP object.

4. DATASETS
Synthetic.1, Synthetic.1b, Synthetic.2, Synthetic.3, Synthetic.4 :
Five datasets from simulated regression survival models #1-4 as described in companion article
[5], representing low- and high-dimensional situations, and where regression parameters represent
various types of relationship between survival times and covariates including saturated and noisy
situations.
Real.1, Real.2 : Two publicly available datasets: one HIV clinical data from the Women’s
Interagency HIV cohort Study (WIHS), one lung cancer genomic data from the Chemores Cohort
Study, representing low-dimensional (p ă n), or high-dimensional (p " n) cases, respectively.

5. FUNCTION FOR PACKAGE NEWS
PRIMsrc.news()

5.4 Simulation Design

The p-dimensional covariates xi “ rxi,1 . . . xi,ps
T , for i P t1, . . . , nu, were drawn identically and inde-

pendently (i.i.d) from a p-multivariate normal distribution with mean vector µ and variance-covariance
matrix Σ: xi „ Nppµ,Σq. Simulated realizations of true survival times Ti were were i.i.d. sampled from
an exponential distribution with rate parameter λ (and mean 1

λ ): Ti „ Exppλq. Simulated realizations Ci

of true censoring times were i.i.d. sampled from a uniform distribution: Ci „ Up0, vq with v ą 0, so that
approximately 100ˆπp%q of the simulated realizations of observed survival times Yi “ minpTi, Ciq were
censored, where π P t0.3, 0.5, 0.7u. Finally, the simulated realizations of observed event (non-censoring)
random variable indicator were as follows: δi “ IpTi ď Ciq.

In summary, our simulation was done using the following parameters: n “ 250 and p “ 2 (bivariate
normal distribution), without inter-covariate correlation: Σ “ σ2I, with µ “ r5, 5sT ; by characterization
of the first coverage box B1 (i.e. for m “ 1), using constrained/directed peeling, without pasting and
with default meta-parameter values pα0, β0q “ p0.10, 0.05q; with censoring rate π = 0.5, in a single
regression survival model with regression parameter η “ r2, ´4sT , representing a low-dimensional
saturated model; using K “ 5-fold cross-validation, A “ 1024 for the permutation p-values and B “ 128
independent replications.
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5.5 Summary of Plot Outputs

We explain and illustrate below how to use the S3-generic plotting function (plot) and the four specific
plotting functions (plot profile, plot boxtraj, plot boxtrace, plot boxkm) from our R
package PRIMsrc (see also [5, 7] for more details).

5.5.1 Data Scatter Plots
plot is an S3-generic plotting
function that provides a two-
dimensional visualization of data
scatter of the original or predicted
data as well as cross-validated
box vertices of a PRSP object.
The scatter plot is for a given
peeling step of the peeling se-
quence and a given plane, both
specified by the user. A peel-
ing step includes step #0 corre-
sponding to the situation where
the starting box covers the en-
tire test-set data Lk before peel-
ing (Algorithm 1). Figure 1 illus-
trates this for the original dataset
(n “ 250) described in our simu-
lation design (above section 5.4)
and predictions made on a new
dataset of n “ 100 observations
assumed from the same popula-
tion, that is, drawn i.i.d. from the
same distribution.

3 4 5 6 7 8

3
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5
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7
8

X1

X
2

Step: 15 New Data
Predicted

Figure 1: Scatter plot of original and predicted points from simulated data (section
5.4). The original data points are shown (n “ 250, filled dots) along with the new
data points (n “ 100, empty dots). Note how all predicted data points (empty
red dots) fall within the boundaries of the “in-box” found by the PRSP algorithm.
Results are for the optimal peeling length L̄rcv “ 14 of the cross-validated peeling
trajectory (i.e. #peeling steps = 15, counting step #0), for the “Replicated Combined
CV” (RCCV) technique and the Cumulative Hazard Summary (CHS) and Log-Rank
Test (LRT) statistics used as peeling and optimization criterion, respectively.

5.5.2 Cross-Validated Tuning Profiles
plot profile provides cross-
validated tuning profiles of the
box end-points statistics (section
3.4) Log Hazard Ratio (LHR),
Log-Rank Test (LRT) or Con-
cordance Error Rate (CER), de-
pending on the optimization cri-
terion chosen, as a function of
peeling length or peeling steps
of the peeling trajectory (model
complexity). A peeling step
includes step #0 corresponding
to the situation where the start-
ing box covers the entire test-
set data Lk before peeling (Al-
gorithm 1). These statistics are
internally or interactively used to
get the “Replicated CV” optimal
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Figure 2: Typical successful cross-validated tuning profile for the simulated data.
Peeling stops at a “Replicated CV” optimal peeling length L̄rcv “ 14, (i.e. #peeling
steps = 15, counting step #0) that is reached within the boundaries of possible peeling
lengths (i.e. between 1 and the maximal peeling length L̄rcv

m 1 “ 27). Results are for
the “Replicated Combined CV” (RCCV) technique and for the Cumulative Hazard
Summary (CHS) and the Log-Rank Test (LRT) statistics used as peeling and opti-
mization criterion, respectively. L̄rcv is shown with the vertical black dashed line.
Each colored profile corresponds to one of the replications (B “ 128). The cross-
validated mean profile of the statistic used in the optimization criterion is shown by
the dotted black line with standard error of the sample mean.

length of the peeling trajectory: L̄rcv (Figure 2). In order to successfully determine the profiles minimizer
or maximizer (section 4.2.3), the cross-validated tuning profile should be approximately non-monotone
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up to sampling variability (see figures in [5]). In addition, one expects an inflation of variance of cross-
validated point estimates towards the right-end of the cross-validated tuning profile corresponding to an
increase in overfitting and model uncertainty for more complex models (Figure 2).

5.5.3 Peeling Trajectories
plot boxtraj provides cross-validated
box peeling trajectories, estimated by step
functions of the covariates box cuts as a
function of box support/mass (Figures 3).
They are read from right to left as they track
the top-down peeling of the box induction
process (peeling loop) of our “Patient Recur-
sive Survival Peeling” method (Algorithm
1). These trajectories are, up to sampling
variability:

• Monotone (increasing or decreasing)
functions for each input covariate xj ,
for j P t1, . . . , pu.

• Non-monotone (increasing then de-
creasing) functions for LHR λ̄rcvplq.

• Non-monotone (increasing then de-
creasing) functions for LRT χ̄rcvplq.

• Non-monotone (decreasing then in-
creasing) functions of CER θ̄rcvplq.

• Monotone decreasing functions for
MEFP ĎP 1

0
rcv

plq.
• Monotone decreasing functions for

MEFT ĎT 1
0
rcv

plq.
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Figure 3: Cross-validated peeling trajectories for the simulated
data described in section 5.4. Results are for the “Replicated Com-
bined CV” (RCCV) technique and for the Cumulative Hazard Sum-
mary (CHS) and the Log-Rank Test (LRT) statistics used as peeling
and optimization criterion, respectively.

5.5.4 Trace Curves
plot boxtrace provides cross-validated
trace curves of covariate importance and co-
variate usage, estimated by piece-wise lin-
ear and step functions, respectively, as a
function of box support/mass (Figures 4).
Similarly to peeling trajectories, they are
read from right to left. Trace curves of co-
variate importance show on a single plot:
(i) the amplitude of used covariates, (ii) the
order (prioritization) with which these co-
variates are used, and (iii) the extent of the
number of peeling steps by which each co-
variate is used. Covariate traces are remi-
niscent of the concept of variable selection
from the fields of decision tree and regular-
ization (see [5] for more details and refer-
ences).
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Figure 4: Cross-validated trace plots of Covariate Importance ĎV Iplq
(top) and Covariate Usage ĚV Uplq (bottom) for the simulated data de-
scribed in section 5.4. Results are for the “Replicated Combined CV”
(RCCV) technique and for the Cumulative Hazard Summary (CHS) and
the Log-Rank Test (LRT) statistics used as peeling and optimization cri-
terion, respectively.

5.5.5 Survival Curves
plot boxkm provides a series of subplots corresponding to the cross-validated number of peeling steps
of our Patient Recursive Survival Peeling method. Each subplot shows the cross-validated Kaplan–Meir
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estimates of the survival functions, as a function of survival time, of both “in-box” (red) and “out-of-box”
(black) samples, corresponding respectively to the high-risk and low-risk groups (Figure 5). Each subplot
also displays the corresponding step number along with cross-validated Log Hazard Ratio (LHR), Log-
Rank Test (LRT) and log-rank permutation p-value p̃cvplq of survival distribution separation (see details
in companion article [5]). A single survival curve always exists at Step #0 corresponding to the situation
where the starting box covers the entire test-set data Lk before peeling (5).

Figure 5: Cross-validated Kaplan–Meir survival probability curves of the high-risk (red curve “in-box”) and low-risk (black
curve “out-of-box”) groups for the simulated data described in section 5.4. Results are for the “Replicated Combined CV”
(RCCV) technique and for the Cumulative Hazard Summary (CHS) and the Log-Rank Test (LRT) statistics used as peeling and
optimization criterion, respectively. For conciseness, only the first four and last four steps are shown. Cross-validated LRT,
LHR and permutation p-values p̃cvplq of “in-box” samples are shown at the bottom of the plot with the corresponding peeling
step. P-values are bounded by the precision limit. Notice that the single survival curve at Step #0 corresponding to the situation
before peeling (5) and how the survival curves of “in-box” and “out-of-box” samples separates as the peeling progresses.

6. Implementation Design

6.1 Computational Complexity Considerations

The “Patient Recursive Survival Peeling” (PRSP) algorithm, being based on PRIM (see section 3.5) is
by design a less “greedy” recursive (peeling) algorithm as compared to a similar recursive (partitioning)
algorithm as CART. The reason is that, in CART, the data splits at an exponential rate as the space undergo
partitioning (typically by binary splits) as opposed to a more patient rate in decision boxes (typically by
controlled quantile). In this sense, bump hunting by recursive peeling may be a more efficient way to
learn from the data.

Specifically, using previous notations, CART takes LCART pnq “ log2pnq ´ 1 split steps with splits
of equal size, whereas PRIM takes at most LPRIM pα0, β0q “

Q

logpβ0q

logp1´α0q

U

peeling steps for peeling meta-
parameters α0 and β0 (see section 2.4 and [15] for details). In fact, the maximal number of peeling steps
is achieved when one observation is peeled at each step, i.e. when α0 “ 1

n and when the box support

reduces to a single data point, i.e. when β0 “ 1
n ; in which case, LPRIM pnq “

Q

logp 1
n

q

logp1´ 1
n

q

U

. For example,

with n “ 128, LCART pnq “ 6 ! LPRIM pnq “ 619.
Considering the trained box B̂m,lpkq at step pm, lq of the box covering/induction sequence that is con-

structed from training set Lpkq of sample size, denoted here n (see sections 4.2.1), where M,L are the
number of covering and peeling/pasting steps of the backfitting algorithm, respectively (see section 3.5),
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it can be shown that the computational complexity of finding the complete box sequence ttB̂m,lu
L
l“1uMm“1

by PRIM is of the order OpMLpn logpnqq [8, 15, 17]. So, the overall complexity of a B-replicated Sur-
vival Bump Hunting by our PRSP algorithm is of the order OpBMLpn logpnqq, which can be prohibitive
for large B.

6.2 Code Profiling

Code profiling can be used to identify bottlenecks in R code that could benefit e.g. from being replaced
by compiled code. The command utils::Rprof() is used to control R code profiling (including
compiled code) on Windows, OSX and most Unix-alike platforms. Below, serial computation times of
the main function sbh() are shown for a mid-size (n “ 200, p “ 100) synthetic dataset (similarly to the
simulation design 5.4) without replications and computation of permutation p-values (Table 1).

Table 1: Code profiling results for a serial computation (on a single CPU core) of the main function sbh() on a single
(n “ 200, p “ 100) simulated dataset, for B “ 1, without computation of permutation p-values. Results are broken down by
total CPU times of internal subroutines, including R and Fortran codes, ordered by decreasing CPU times and reduced to the
top 12 for conciseness. Tested under version 0.6.0 of PRIMsrc.

PRIMsrc Subroutine Internal Dependencies total time (s) total time (%)
sbh() 15.639 99.54
cv.presel() 10.933 69.58

.Fortran 10.877 69.23
cv.glmnet 10.865 69.15
glmnet 10.855 69.09
coxnet 10.851 69.06

cv.comb.box() 4.571 29.09
cv.box.rep() 4.571 29.09
cv.comb.fold() 4.239 26.98
cv.comb.peel() 4.239 26.98
peel.box() 4.234 26.95

survdiff() 3.457 22.00

Clearly, code profiling reveals that, when dealing with the dimensionality of the data, the most expen-
sive computation step (ą 69%) comes from our R function cv.presel() for covariates pre-selection,
done, at this point, by calling the internal dependency subroutine cv.glmnet() of the glmnet R
package (see section 5.3 and documentation of PRIMsrc for details [7]).

6.3 Computational Parallelization

R is single threaded, but if one has access to a cluster and/or a computer with multiple cores, one can
parallelize the code execution by running several replicated R session simultaneously on more than one
core, simply by distributing the tasks to multiple cores on a local or remote machine. Our unique end-user
function sbh() uses the R package parallel, which is designed to build real and virtual clusters and
allow users to create a parallel backend, enabling parallel execution and scaling up with the number of
available cores (denoted C).

R package parallel also allows our R package PRIMsrc to include a user-defined choice of type
of job communication mechanisms (MPI, SOCKET and PVM) and to implement parallel Random Num-
ber Generation (RNG) with seed management, which requires the creation of separate streams of parallel
RNG per core, that is done internally by distributing the stream states to the cores (see documentation in
[7] for details and examples).

Parallel computing is ideal for embarrassingly parallel tasks such as resampling loops. Computational
considerations indicate that the number of replications B can easily be parallelized by distributing one
(or more) replication by core. In case replications and permutation p-values are desired (e.g. A=1024
and pval=TRUE in the sbh() function), the use of the cluster is definitely recommended. Note that the
parallelization is not nested at this point, that is, only the replications are, not the permutations.
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6.4 Computational Scalability

The easiest way to quantify the performance of an R function on Windows, OSX and most Unix-alike
platforms is to use the command base::system.time(). Here, we compared computation times of
parallel and serial calculations of the main function sbh() on various sizes (n P t200, 300, 400, 500u, p P

t10, 102, 103, 104u) of synthetic datasets (similarly to the simulation design 5.4) for varying numbers of
replications (B P t8, 16, 32, 64, 128u) and numbers of spawned cores (C P t1, 8, 16, 32, 64, 128u), with-
out computation of permutation p-values.

From the computation times output, we get the amount of scalability while keeping balanced loads.
Generally, using configuration with larger number of CPU cores does not necessarily result in better
parallel computing performance due to threshold effects and computation/memory overhead issues.

The threshold effect is encountered as an effect of distributing processes (parallelization of a number
of tasks) relatively to the number of cores. See the observed scaling threshold due to the requested
number B of replications relative to the number C of spawned cores in Figure 6 (left). Here, with the
parallelization done on the number of replications B and for a given number of sample n and covariates
p, the total elapsed time is divided proportionally to the number of spawned CPU cores (C). However,
once the number of spawned cores C exceeds the number of replications (one per core), adding more
cores will not reduce the computation time any further. For instance, given a large number of spawned
cores C “ 128, suppose the number of replications B “ 64, that is, less than the number of spawned
cores C, one sees that the computation time decreases from C “ 1 to C “ 64, but not any further from
C “ 64 to C “ 128.
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Figure 6: The total computation time is plotted as function of: (i) the number of replications B, for fixed sample size n “ 200
and dimensionality p “ 10 (left), or (ii) the sample size n for fixed replications B “ 32 and dimensionality p “ 10 (center),
or the dimensionality p for fixed sample size n “ 200 and replications B “ 32 (right), for various configuration of cluster size
(number C of spawned cores). “vs” stands for variable selection. All axes are on a log scale. Tested under version 0.6.0 of
PRIMsrc.

The overhead issues are generally encountered when the individual task does not take a significant
amount of time and memory (RAM) in the first place. With individual tasks requiring little computation
and memory, the overhead of: (i) scheduling and distributing the tasks to processing units, (ii) commu-
nicating between processes, and (iii) gathering and returning the results, can be greater than the time to
execute the tasks in a serial manner. This is illustrated in the scalability performance plots of Figure 6:
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given a fixed number of replications (e.g. B “ 32), scaling up from C “ 32 to C “ 64 or even C “ 128
degrades the gains in performance if the individual task size is relatively small, e.g. n “ 100 and p “ 10
(Figure 6, center), or e.g. n “ 200 and p “ 10 ´ 100 (Figure 6, right).

Dimension reduction by variable selection significantly improves the computation time: compare for
instance the solid versus dashed lines of the same color in Figure 6 (right). But the implemented variable
selection procedure seems to plateau at p « 100 selected variables for unknown reasons.
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