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Abstract 
 
While investigators typically use one regression model to ascertain information regarding a 
theory, this presentation gives six equivalent regression models (for a 2-predictor model) with 
predictors and/or their mutual residuals as predictors that can lead to richer theory building. 
While each model is equivalent in significance and variance accounted for, the mix of raw and 
residual score predictors provide for testing different aspects of a theory. We have named the 
approach Total Information Regression Analysis (TIRA). We demonstrate the approach with 
data from the 2001 edition of Baccalaureate and Beyond. Undergraduate GPA is the criterion. 
For simplicity we use only two predictors, SATM and  SATV (and their errors), but the approach 
is readily adaptable to more predictors (which will increase the number of potential equivalent 
models). We also give a geometric rationale for our procedure. The geometric rationale is 
especially helpful as half of the models presented are not obviously equivalent. 
 
Keywords: Regression, Geometry, Models, Theory-Building 
 

1. Introduction 
 
This paper utilizes notation and ideas from Schey (1993) to present a geometric representation of 
regression analysis that demonstrates a counter-intuitive finding relative to prediction from error 
terms. We can use this finding to develop additional regression models that provide for better 
understanding of a phenomenon. Below we first present three well understood regression models, 
then the rationale for a counter-intuitive model. This rationale will be extended to include other 
counter-intuitive models. We next provide an example using these models to do a “Total 
Information Regression Analysis”. The paper ends with extensions of the procedure and 
comments relative to theory building.  
 
It is well known that the following three models are equivalent. 
 Y = β0 + β1X1 + β2X2 + ε  (Model 1) 
 Y = β0 + β1X1 + β2U2 + ε  (Model 2) 
 Y = β0 + β1U1 + β2X2 + ε  (Model 3) 
Where U2 represents the unique portion of X2 above and beyond that which can be predicted 
from X1 and U1 represents the unique portion of X1 above and beyond that which can be 
predicted from X2. The last two components just provide the incremental prediction of the 
second variable given that the first is already in the model; essentially the Type 3 Sums of 
Squares (Maxwell and Delaney, 1990). Note also that U1 is orthogonal to X2 as these two 
variables are unrelated and U2 is orthogonal to X1 as these two variables are also unrelated.  
 
What is not as intuitive is that 
 Y = β0 + β1U1 + β2U2 + ε  (Model 4) 
is also equivalent to the other three models.  The reason for this seeming dilemma is that the 
predictors in Model 4 contain only residual terms which are the unique portions of the predictors 
above and beyond that of the other predictor.  U1 can be interpreted as all that is in X1 that is not 
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related to X2. Similarly, U2 can be interpreted as all that is in X2 that is not related to X1. 
Therefore, it would appear that the common part of X1 and X2 is missing as a part of the 
prediction equation from Model 4. 
 
The geometric approach that we are promoting allows investigators to "see" regression.  It 
provides a mechanism by which one can view the vectors and projections which underlie 
regression analysis.  If a picture is worth a thousand words, this approach should be useful in 
conveying a breadth of information in a concise manner. Thus, in addition to merely calculating 
regression coefficients, one can also have a geometrical picture of the effect of regressing each 
predictor, alone and/or simultaneously. As stated above, each of the models (1 - 4) are equivalent 
and Schey's (1993) geometric approach provides an easy technique to see the equivalence.  It also 
provides an easy method to prove various relationships between the independent variables, the 
unique portions of the independent variables, and the dependent variable. 
 

2. Specifics on the Models 
 
For the four models given above, Y is the dependent variable.  β0 is the constant term in the 
regression equation.  β1 and β2 are the regression coefficients applied to the first and second 
predictors in each model, respectively.  Note that the estimates for β0, β1, and β2 differ for each 
model since the predictors are different for each model.  Still, each model is equivalent with 
respect to amount of variance accounted for and each leads to the same predicted value, Y*, for 
each observation.  Thus, these models have the same SSE, Σ(Y - Y*)2, same significance, same 
degrees of freedom, and same R2. 
 
X1 represents the first predictor (i.e. independent variable) and X2 represents the second.  These 
are the original variables.  U1 and U2 are related to the original variables.  U1 is the unique 
portion of X1 orthogonal to X2.  It is derived by obtaining the errors in predicting X1 from X2.  U1 
= X1 – *

1X   where *
1X   is the predicted value of X1 if you use X2 as the predictor, 

.210
*
1 XbbX   Correspondingly, U2 is the unique portion of X2 orthogonal to X1.  It is derived 

by obtaining the errors in predicting X2 from X1.  U2 = X2 – *
2X   where *

2X  is the predicted 
value of X2 if you use X1 as the predictor (e.g. 110

*
2 XbbX  ).  Finally, ε is the error term for 

each model.  Note that the εi values (error for observation i) will be the same for each model. 
 
It is fairly well established that the first three models are equivalent.  Model 1 uses X1 and X2 to 
predict Y.  Model 2 uses X1 and the unique part of X2 which is orthogonal to X1 to predict Y.  
Finally, Model 3 uses X2 and the unique part of X1 which is orthogonal to X2 to predict Y.  Given 
that the common part of X1 and X2 that is related to Y occurs in both X1 and X2, it is intuitive that 
adding U2 to predict above and beyond X1 (Model 2) and adding U1 to predict above and beyond 
X2 (Model 3) should produce models equivalent to Model 1. 
 
In contrast, the equivalence of the fourth model to the other three is not as intuitive.  Model 4 
takes only the unique portions of X1 and X2 to predict Y which seems to ignore the prediction 
capability inherent in the common portion of these variables. Thus, only in the rare case where 
X1 and X2 are orthogonal would one believe this model to be equivalent to the others. The fallacy 
in this logic is easily exposed by simple geometric principles.  From geometry we know that any 
two vectors in a two-dimensional plane will span the plane. Moreover, we know that U1 is 
orthogonal to X2 and that its orthogonal projection is still in the plane spanned by X1 and X2. 
Likewise, U2 is orthogonal to X1, but is also remains in the plane spanned by X1 and X2. These 
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revelations lead to the possibility of two new equivalent models that are even more counter-
intuitive: 
 Y = β0 + β1X1 + β2U1 + ε  (Model 5) 
 Y = β0 + β1X2 + β2U2 + ε  (Model 6) 
Note that Model 5 seems to be a result of X1 alone. It is devoid of X2. Remember that U1 is 
orthogonal to X2. It is the error remaining in X1 after predicting X1 with X2. Thus, by definition 
U1 is unrelated to X2. Model 6 appears to be devoid of X1. It is composed of X2 and U2; where by 
definition U2 is unrelated to X1. 
 

3. Example 
 
The data for our example come from the 2001 edition of Baccalaureate and Beyond1  (B&B). 
B&B is one of the national surveys from the National Center for Education Statistics (NCES) to 
provide information on education in the U.S. This particular set of data examines students’ 
education and work experiences after they complete a bachelor’s degree, with special emphasis 
on the experiences of new elementary and secondary teachers. Note that we only took students 
with majors in the STEM disciplines of physical science, mathematics, computer information 
science, and engineering. Note, too, that we only took students with SAT2 scores as our 
predictors are SATM (the quantitative part of the test) and SATV (the critical reading part of the 
test). Note that the student’s overall grade point average (GPA) is the criterion. Students in 
STEM disciplines with complete data for the SAT and GPA led to a sample of approximately 
525 students. All of our analyses were appropriately weighted and we use a design effect of two 
to adjust our significance tests (essentially cutting the degrees of freedom for error in half before 
obtaining the MSE used in the significance tests) for any lack of independence of the survey 
participants.. 
 
Preliminary and summary information are shown in Tables 1 – 3. Table 1 shows that separately 
SATM and SATV are highly significant predictors of GPA (P < 0.001); indicating that the 
probability of the relationship being a chance event is essentially zero. Thus, we conclude that 
SATM and SATV are both significantly related to the GPA of students with college majors in 
STEM disciplines. Given that these are students with STEM majors, it is not surprising that 
SATM accounts for more variance in GPA than SATV. Table 2 is the Analysis of Variance table 
for the regression of the two-predictor models (1-6) predicting GPA. Given that we have said that 
Models 1 – 6 are equivalent, the overall results for each of the models will be the same (see 
Table 2). The two-predictor regression model is significant suggesting that the predictors add 
significantly to the prediction of the criterion. Therefore, SATM and SATV simultaneously are 
significantly related to GPA for students with STEM majors. Note that the adjusted degrees of 
freedom for error has essentially been cut in half to account for possible dependencies in the 
data. Finally, note that the proportion of variance accounted for by the two-predictor model, 
0.1178, is not much different than the amount of variance accounted for by SATM alone (see 
Table 1). This suggests little additional predictability for adding SATV to the model over and 
beyond that of SATM. 
 

Table 1 - Correlation of SAT Scores with GPA 
    Corr    T Pvalue    R2 

SATM 0.340 5.878 0.000 0.115 
SATV 0.230 3.839 0.000 0.053 

                     
1 https://nces.ed.gov/surveys/b&b/ 
2 https://sat.collegeboard.org/scores 
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Table 2 – Analysis of Variance for Models 1 - 6 

 Sums of Squares Df  Mean Square F  P_Value 
Model 18131282 2  9065641 17.685  0 
Error 135842929 265  512614.8    
Total 153974212       

R2 0.1178  
 

     

Table 3 – Correlations and Angular Separation of Variables 
 GPA SATM SATV P_GPA E_SATM E_SATV 

GPA 1.000 0.340 0.230 0.343 0.255 0.049 
 0.0 70.1 76.7 69.9 75.2 87.2 

SATM 0.340 1.000 0.555 0.990 0.832 0.000 
 70.1 0.0 56.3 8.3 33.7 90.0 

SATV 0.230 0.555 1.000 0.669 0.000 0.832 
 76.7 56.3 0.0 48.0 90.0 33.7 

P_GPA 0.343 0.990 0.669 1.000 0.743 0.144 
 69.9 8.3 48.0 0.0 42.0 81.7 

E_SATM 0.255 0.832 0.000 0.743 1.000 -0.555 
 75.2 33.7 90.0 42.0 0.0 123.7 

E_SATV 0.049 0.000 0.832 0.144 -0.555 1.000 
 87.2 90.0 33.7 81.7 123.7 0.0 

1st line correlation / 2nd line is the angular separation    
All correlations are significant (P <  0.001) except GPA and E_SATV (n.s.) 
and SATM versus E_SATV and SATV and E_SATM which are known orthogonal 

 
Table 3 shows the inter-correlations of all of the variables we use in the analyses. GPA, SATM, 
and SATV were from the data and discussed above. P_GPA is the predicted value of GPA for 
any of the two predictor models (1 – 6). Given the equivalence of the models the predicted value 
of each will be the same. From Table 3 we know that SATV and SATM are correlated (0.555). 
This is as expected given that although the scores represent different skill sets, positive manifold 
in intelligence suggests that in general students with high SATM scores will be the same students 
with high SATV scores (Hakstian and Cattell, 1978). E_SATM is the error with using SATV to 
predict SATM. The common part that SATV shares with SATM as shown by their correlation 
has been partialled out of SATM resulting in E_SATM. In practical terms E_SATM is the 
portion of SATM that is unrelated to SATV. It is the mathematics portion that is devoid of any 
relationship to the critical reading (Verbal) portion. Mathematically, E_SATM is orthogonal to 
SATV. Similarly, E_SATV is the error using SATM to predict SATV and thus it is the verbal 
portion devoid of the relationship to mathematics. Notice that all of the correlations are 
significant at P < 0.001 with the exception of GPA and E_SATV where there is a non-significant 
relationship and the variables that are known to be orthogonal (SATM versus E_SATV and 
SATV versus E_SATM). Thus, while SATV is significantly correlated with GPA, when the 
common portion of SATV that is shared by SATM is removed, the remaining part of SATV 
(E_SATV) is no longer predictive of GPA for STEM majors. The last notable feature of Table 3 
is that the results are given in line pairs. The first line of a pair holds the correlations of the 
variables while the second line of each pair contains the angular separation of the variables 
(vectors) of interest. For example, the correlation of SATV and SATM is 0.555 and the vectors 
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represented by the scores of SATV and SATM have an angular separation of 56.3 degrees. This 
result is due to the correlation between two variables being equal to the cosine of the angle 
between their vectors (Schey, 1993). Thus,   .289.56555.01 COS  
 
Table 4 shows the results for the T tests of the estimators in Model 1. Note that SATM is 
significant and SATV is not. This T test is a Type 3 test that tests the significance of the 
predictor in question as to whether it makes a unique contribution given that the other variable is 
already in the model. Thus, SATM is still a significant predictor above and beyond SATV. 
However, SATV adds little to the predictability if SATM is already in the model. Note that this 
is not surprising given that our sample is comprised of students from STEM majors which may 
relate more to the skill set measured by SATM. 
 

Table 4 - Model 1: GPA = β0 + β1SATM + β2SATV + ε R2 = 0.1178 
Stand_Est Df_adj SSM T df P Unique R2

SATM 0.3067 265 10020962 4.421 265 0.000 0.065
SATV 0.0593 265 374193 0.854 265 0.394 0.002  

 
Figure 1 shows the geometric representation for the space spanned by the predictors in Model 1. 
This and subsequent figures are included to show the equivalence of each of the models in their 
prediction of GPA. Note that the Y vector (GPA) also starts at point (0,0) on this figure but is in 
a higher dimensional space and projects down into the space of the predictors (represented by 
Figure 1) at three points. The first is at the endpoint of the vector labeled SATV. SATV is the 
prediction vector for GPA in the space spanned by SATV and SATM if only SATV is used as a 
predictor. It equals the square root of the sums of squares for the model when only SATV is used 
as the predictor ( 7.611374193  ). The vector that projects down from the criterion vector is 
the error vector for this model. Given that we are using Least Squares regression, we know that 
this error is minimized and thus the projection is orthogonal to the SATV / SATM plane at 
SATV (an orthogonal projection makes the error vector for this prediction as short as possible). 
Moreover, the length of this error vector is just the square root of the sums of squares error for 
this model with only SATV as the predictor.  
 
We get a similar error vector when we use SATM as the sole predictor. Then SATM becomes the 
predicted vector for the criterion in the SATV / SATM plane. The length of this vector is the 
square root of the sums of squares model when SATM is the only predictor. The new error will 
be the orthogonal projection from the criterion vector to SATM. Finally, when both predictors 
are used simultaneously (SATV and SATM), the criterion vector projects into the spaced 
spanned by SATV / SATM at Y* with the subsequent error for the 2-predictor model being an 
orthogonal projection from the GPA vector to this point. What we will show in the subsequent 
figures is that regardless of the predictors used for Models 1 – 6, Y* will always be in the same 
place and thus its predicted values (Y*), Sums of Squares for the Model, and Sums of Squares 
for Error will always be the same. 
 
There are two vectors in Figure 1 that have yet to be explained, M|V and V|M. M|V is the 
additional sums of squares necessary to go from just having SATV as the predictor to having 
both SATV and SATM as predictors. It can be found by obtaining the Type 3 Sums of Squares 
for adding SATM to a model that has SATV in it. The length of M|V is just the square root of 
these sums of squares. It is the additional predictability that is obtained by adding SATM to a 
model with SATV. Note too that this vector is orthogonal to SATV. Thus, by Pythagorean’s 
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theorem the Sums of Squares for SATV and the unique sums of squares for SATM given SATV 
is already in the model equals the Sums of Squares for Y* (the squared length of Y*) given, the 
2-predictor model. Note that V|M can be described similarly. It is the amount necessary to add to 
SATM to get to Y*. We already know that this is a small quantity as SATV did not add much 
given that SATM was already in the model. 
 

 
Figure 1: Geometrical Representation of Model 1 
 
Table 5 shows the results of Model 2. Note that the predictors in this model are SATM and 
E_SATV (the unique part of SATV above and beyond SATM). Again, the T tests are the test of 
significance given that the other predictor is in the model. The difference in the model this time 
is that SATM and E_SATV are unrelated as E_SATV is what remains of SATV after it has been 
cleansed of its relationship with SATM. Thus, the unique predictability for SATM for this model 
is the same as the original correlation in Table 1, 0.115 (the significance is different because of 
the influence of E_SATV on the full model here). On the other hand given that E_SATV is 
cleansed of SATM, it represents the unique contribution of SATV given SATM is already in the 
model. Thus, E_SATV accounts for the same sums of squares (and significance) as the Type 3 
test for SATV above (see Table 4). Again, we see that SATM is predictive, but the unique 
contribution of SATV (E_SATV) above and beyond SATM is not. 
 

Table 5:  Model 2: Y = β0 + β1SATM + β2E_SATV + ε  R2 = 0.1178 
Stand_Est Df_adj SSM T df P Unique R2

SATM 0.3396 265 17757089 5.886 265 0.000 0.115
E_SATV 0.0493 265 374193 0.854 265 0.394 0.002  

 
From Figure 2 we see that SATM and Y* are still in the same place as in Figure 1. Note, again, 
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that SATM is the vector predicting the criterion in the plane spanned by SATM / E_SATV that is 
the orthogonal projection of the criterion vector onto that vector solely. Again, Y* is the 
projection of the criterion vector into the space spanned by SATM / E_SATV when using both 
vectors as predictors. E_SATV is the projection of the criterion vector onto the single predictor 
vector, E_SATV. Note that the vector E_SATV is perpendicular to the vector represented by 
SATM, demonstrating the effect of SATM being partialled out of SATV. Also note that given 
Pythagorean’s theorem that the sums of squares of the predictors separately are additive to that 
for the predictors simultaneously. Thus, what is needed to go from predicting solely with SATM 
to the results (Y*) when predicting with both SATM and E_SATV, EV|M, simply equals 
E_SATV. Likewise what is needed to go from predicting with E_SATV to predicting with both 
E_SATV and MATH, M|EV, simply equals SATM. This picture clearly shows that length of 
E_SATV equals EV|M. Note that this model is just as expected – we take the first predictor and 
then the second cleansed of the effect of the first and we get an additive model whose 
predictability equals that of the two original variables. 

 

 
Figure 2: Geometrical Representation of Model 2 
 
Table 6 holds the results for Model 3. Note that Model 3 is just the other side of the coin from 
Model 2. In this case we maintain the second predictor, SATV, and take the first, SATM, 
cleansed of the relationship of the second to result in E_SATM. This model is also fairly 
intuitive. The predictability of SATV should be the same as represented in its original correlation 
and E_SATM should have the same predictability as its unique portion from Model 1. Again, we 
expect our predictors to be orthogonal and our sums of squares for the 1-predictor models to be 
additive to that for the 2-predictor model. Note here that SATV is significant. This result tells us 
that there is still a verbal component that is predictive of GPA even for STEM majors. However, 
this verbal component is confounded with the quantitative test. There is a verbal component to 
the quantitative test that is assigned to the quantitative test when it is in the model. Only when 
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the model is cleansed of this influence can this part of the test make itself known separately. 
 
Figure 3 is as expected. The prediction vector of E_SATM is perpendicular to that of SATV. The 
vectors SATV and Y* are still in the same place as in Figure 1 and still represent the same 
projections. The squared lengths of the vectors that correspond to their sums of squares is 
additive. Finally, S_SATM equals EM|V which is the additional amount needed to get from the 
prediction vector based of SATV to that based on both predictors. Again, this model is fairly 
intuitive and one should be able to easily see that it is equivalent to the first two models. 
 

Table 6:  Model 3: Y = β0 + β1E_SATM + β2SATV + ε  R2 = 0.1178 
Stand_Est Df_adj SSM T df P Unique R2

E_SATM 0.25511 265 10020962 4.421 265 0.000 0.065
SATV 0.22951 265 8110321 3.978 265 0.000 0.053  

 

 
Figure 3: Geometrical Representation of Model 3 
 
Model 4 (see Table 7) is the beginning of our less intuitive models and is not as easily seen as 
equivalent to the other three (Models 1-3). The predictors here are E_SATM and E_SATV. The 
relationship of SATV is partialled from the first, E_SATM and the relationship of SATM is 
partialled from the second, E_SATV. Whatever the predictors share in common seems to be lost 
from Model 4. Given that E_SATM is orthogonal to SATV, it then is whatever is spanned by the 
space that is not SATV. Thus, it is analogous in prediction power to SATM. Likewise, E_SATV 
is whatever is in the space unrelated to SATM which is SATV. Note that E_SATV and E_SATM 
create a suppressor effect (sum of unique contributions above and beyond the other exceed the 
sum of their sole contributions). Our results for this model tell us that everything in the spaced 
spanned by our predictors that is not SATM and everything that is not SATV are both 
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significant. Given the significance of SATM, we already know that there is a lot left over after 
using SATV that is significant. Moreover, from Model 3 we found that what is in SATV that is 
not in SATM is also significant. 
 
Figure 4 shows that we are still in the same space and that Y* is still in the same place in that 
space. We can also see that E_SATV is orthogonal to SATM (see Figures 1 and 4) and the 
E_SATM is orthogonal to SATV (see Figures 1 and 4). Figure 4 also allows us to see a pictorial 
representation of a suppressor effect. What it takes to get from E_SATV to Y*, EM|EV (the 
incremental length) is larger than the length of E_SATM initially. Likewise, what it takes to get 
from E_SATM to Y*, EV|EM is larger than E_SATV initially. 
 

Table 7:  Model 4: Y = β0 + β1E_Math + β2E_SATV + ε  R2 = 0.1178 
Stand_Est Df_adj SSM T df P Unique R2

E_SATM 0.40827 265 17757089 5.886 265 0.000 0.115
E_SATV 0.27592 265 8110321 3.978 265 0.000 0.053  

 

 
Figure 4: Geometrical Representation of Model 4 
 
Table 8 shows the results of Model 5. While Model 4 began our presentation of less intuitive 
models, Model 5 takes lack of intuitiveness to a new level. The predictors in Model 5 are SATM 
and the error of SATM remaining after the relationship of SATV has been partialled out. Thus, 
E_SATM is orthogonal to SATV. On the face of it there appears to be no influence of SATV left 
in this model. The model consists of SATM and whatever is not SATV. Once gain SATM is a 
significant predictor and once SATM is in the model everything remaining in the space that is 
not SATV is not significant. 
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Figure 5 shows the corresponding geometric representation of Model 5. We have seen each of 
the main vectors before, SATM, E_SATM, and Y* and they are still in their same places. A 
basic law of geometry now becomes more apparent. Any two vectors in a 2-dimensional plane 
will define that plane. We have already shown that all of these vectors are coplanar (SATV, 
SATM, E_SATM, E_SATV, and Y*). Thus, any two of the four vectors can be used to predict 
Y* equally as well. The only difference will be as we have seen above; the configuration of the 
length of the vectors of the predictors and the additional lengths necessary to end at Y*. 

 
Table 8:  Model 5: Y = β0 + β1SATM + β2E_SATM + ε  R2 = 0.1178 

Stand_Est Df_adj SSM T df P Unique R2

SATM 0.41347 265 8110321 3.978 265 0.000 0.053
E_SATM -0.08881 265 374193 -0.854 265 0.394 0.002  

 

 
Figure 5: Geometrical Representation of Model 5 
 
Results for the final model are shown in Table 9. This model has SATV and everything that is 
not SATM as predictors. Given the relationship between SATV and GPA for STEM majors, 
there appears to be a significant amount of variance that is not SATV and not SATM that is still 
useful in predicting GPA. Hence, E_SATV is significant. This final model is also a suppressor 
model where the additional sums of squares (Type 3) are larger than the original sums of squares. 
 

Table 9:  Model 6: Y = β0 + β1SATV2 + β2E_SATV + ε  R2 = 0.1178 
Stand_Est Df_adj SSM T df P Unique R2

SATV 0.6118 265 17757089 5.886 265 0.000 0.115
E_SATV -0.4596 265 10020962 -4.421 265 0.000 0.065  
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Figure 6 shows the geometric representation of Model 6. We have seen all of the predictors 
previously and note that they are coplanar and that all of the vectors are still in their same 
positions. Given that this is a suppressor model we also note that V|EV is greater than SATV and 
EV|V is greater than E_SATV. Finally, Figure 7 shows all of the vectors and their relationship to 
Y*. The last plot clearly shows the vectors to be coplanar and gives insight on what it means to 
span a plane. Implications of this insight will be discussed in the conclusions. 

 

 
Figure 6: Geometrical Representation of Model 6 
 
What do we know from our analyses? 1) SATV and SATM are correlated. 2) Both SATV and 
SATM are significantly related to the criterion, GPA for students in STEM majors. 3) SATM is 
more predictive of GPA for STEM majors than SATV. 4) While the incremental part of SATM 
(above and beyond SATV) is still a significant predictor of GPA for STEM majors, the 
incremental part of SATV above SATM is not. 5) There appears to be a significant verbal 
component that helps to predict GPA for STEM majors which is why the initial correlation of 
SATV and GPA is significant. However, this verbal component is also related to SATM which is 
the reason that SATV is no longer significantly related to GPA when SATM is also in the model. 
The final conclusion is more apparent as a result of the Total Information Regression Analysis. 
 

4. Methodological Conclusion and Extension 
 

We began this article referring to the regression approach as Total Information Regression 
Analysis. Note that the space spanned by the hyperplane of the predictors contains the total 
amount of information in the predictors and all combinations of residual vectors, solely and 
simultaneously. We have given a simple example using two predictors and their errors after 
predicting each variable with the other. Thus, we could interpret our predictors in terms of the 
original variables as well as in terms of residual vectors where each variable is cleansed of the 
relationship of the other. These predictors have different meanings and thus address different 
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aspects of a theory. In generalizing the results of the figures one can also see that there are an 
infinite number of vectors that can be used as predictors (any two vectors in the plane). All of 
these vectors will be in the space of the original predictors. The choice of a particular vector, 
however, would have immediate implications relative to theory. The vectors we used were the 
four easiest given our two-predictor original model (original variables and residual variables after 
predicting one of the variables from the other). 
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Figure 7: Geometrical Representation of all Predictors, SATV, SATM, E_SATV, and E_SATM 
with the Predicted Value for the 2-Predictor Model, Y* 
 
Generalizing the approach to more predictors would lead to a host of more predictors that are 
available. We can make a multitude of residual vectors where we partial from 1 to k-1 (for k 
predictors) of the other predictors from each predictor. For example with 3 predictors we would 
have each of the original predictors (3), 6 error vectors were we partial one of the other two 
variables from a target variable in turn, and 3 residual vectors where we partial both of the other 
variables from a target variable For a 2-predictor model we had 4 predictors as shown above. The 
number has grown to 12 different predictors for a 3 predictor model. For this 3-predictor model 
we can use any 3 of the 12 vectors to define an equivalent model. This will lead to the possibility 
of 220 different models, each testing different aspects of the original variables and residual 
vectors. Thus, while the overall models are equivalent, each set of predictors will lead to 
different interpretations of the predictors and their significance. While the original 3 variables 
span the entire space of the 12, one will need the separate vectors to provide for different 
interpretations of which pieces of the original and residual variables are significant solo, in 
combination, and/or with different variables partialled out. 
 
The implications of what it means to span a space are apparent from the figures. While most 
investigators make use of only the vectors defined by the original variables, we now see that an 
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infinite number of vectors are available for our use and that there is more information available 
in the space of the predictors than typically used. We can easily define a new set of variables 
contained in the same space via partialling out the effects of any combination of the original 
predictors from each of the original predictors in turn creating a host of residual vectors. Note 
that this will yield new variables that allow us to address different aspects of our theory as we 
can test the effects of having a given predictor with the effects of any and all of the variables 
partialled from it. Simply using the original variables will allow us to do a regression. The ability 
to use the original variables in conjunction with a host of residual vectors will allow us to 
perform a Total Information Regression analysis. From using merely the original variables that 
allow us information from only k vectors in our space, one can now make use of much more 
information. While there are an infinite number of vectors available to us, the original and 
residual variables we derive provide a finite set that allows us to interpret our results. 
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