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Abstract
The Pearson and likelihood ratio statistics are commonly used to test goodness of fit for models

applied to data from a multinomial distribution. When data are from a table formed by the cross
classification of a large number of variables, these statistics may have low power and inaccurate Type
I error rate due to sparseness. Pearson’s statistic can be decomposed into orthogonal components
associated with the marginal distributions of observed variables, and an omnibus fit statistic can be
obtained as a sum of these components. When the statistic is a sum of components for lower-order
marginals, it has good performance for Type I error rate and statistical power even when applied
to a sparse table. In this study the individual components are examined as lack-of-fit diagnostics
for models fit to binary cross-classified variables. Monte Carlo simulations are used to study the
statistical power of individual orthogonal components to detect the source of the model lack-of-fit.
The performance of orthogonal components as diagnostics is also compared to adjusted standardized
residuals

Key Words: Item response model, Statistical power, Orthogonal components, Monte Carlo
simulation, Standardized residuals

1. Introduction

Testing fit for a multinomial model commonly involves the null hypothesis Ho : πππ = πππ(βββ),
where πππ is a vector of multinomial probabilities, and πππ(βββ) is a vector of the multinomial
probabilities as a function of parameters in the vector βββ . When the model parameters βββ
are unknown and estimated, the null hypothesis Ho : πππ = πππ(βββ) is often tested with the
Pearson-Fisher statistic:

X2
PF =

∑
s

z2s ,

where
zs =

√
n(πs(β̂ββ))

− 1
2
(
p̂s − πs(β̂ββ)

)
.
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and where

p̂s =
ns
n

is element s of p̂, the vector of multinomial proportions,

ns = element s of n, the vector of observed frequencies,

n = total sample size =
T∑
s=1

ns,

β̂ββ = parameter estimator vector,

πs(βββ) = the expected proportion for cell s

πs(β̂ββ) = estimated expected proportion for cell s .

The goodness-of-fit test based on Pearson’s chi-squared statistic is sometimes considered
to be an omnibus test that gives little information about the source of poor fit when the
null hypothesis is rejected. It has also been recognized that the omnibus test can often be
outperformed by focused or directional tests of lower order. When data are from a table
formed by the cross-classification of a large number of variables, the Pearson’s chi-square
and the likelihood ratio statistics may have low power and inaccurate Type I error level due
to sparseness. Statistics based on marginal distributions rather than the full joint distribution
of the cross-classified variables can be used to remedy this issue. They have very good
performance for Type I error rate and power (Reiser, 2008).

In this paper the orthogonal components related to second order marginals are examined
as lack-of-fit diagnostics for models fit to binary cross-classified variables. Monte Carlo
simulations will be used to study the statistical power of individual orthogonal components
to detect the source of the model lack-of-fit. The performance of orthogonal components
as diagnostics is also compared to adjusted standardized residual. Finally the model will be
tested on the real world data.

2. Marginal Proportions

A traditional statistic such as Pearson’s chi-square uses joint frequencies to calculate
goodness of fit for a model that has been fit to a cross-classified table. This section presents
a transformation from joint proportions or frequencies to marginal proportions. Marginal
proportions are used to develop test statistics presented in Section 3.2.

2.1 First- and Second-Order Marginals

The relationship between joint proportions and marginals can be shown by using zeros
and 1’s to code the levels of dichotomous response random variables, Yi, i = 1, 2, . . . , q,
where Yi follow the Bernoulli distribution with parameter Pi . Then, a q-dimensional
vector of zeros and 1’s, sometimes called a response pattern, will indicate a specific cell
from the contingency table formed by the cross-classification of q response variables. For
dichotomous response variables, a response pattern is a sequence of zeros and 1’s with
length q. The T = 2q-dimensional set of response patterns can be generated by varying the
levels of the qth variable most rapidly, the qth − 1 variable next, etc. Define VVV as the T by
q matrix with response patterns as rows.
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For instance when q = 3,

VVV =



0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1


.

Let vis represent element i of response pattern s, s = 1, 2, . . . , T. Then, under the
model πππ = πππ(βββ), the first-order marginal proportion for variable Yi can be defined as

Pi(βββ) = Prob(Yi = 1|βββ) =
∑
s

visπs(βββ),

and the true first-order marginal proportion is given by

Pi = Prob(Yi = 1) =
∑
s

visπs .

Under the model, the second-order marginal proportion for variables Yi and Yj can be
defined as

Pij(βββ) = Prob(Yi = 1, Yj = 1|βββ) =
∑
s

visvjsπs(βββ),

where j = 1, 2, . . . , q − 1; i = j + 1, . . . q, and the true second-order marginal proportion
is given by

Pij = Prob(Yi = 1, Yj = 1) =
∑
s

visvjsπs .

2.2 Higher-Order Marginals

A general matrix H[t:u] to obtain marginals of any order can be defined in a similar fashion
by using Hadamard products among the columns of VVV . The symbol H[t:u] , t ≤ u ≤ q,
denotes the transformation matrix that would produce marginals from order t up to and
including order u. Furthermore, H[t] ≡ H[t:t] . H[1:q] gives a one-to-one mapping from
joint proportions to the set of (2q − 1) marginal proportions:

PPP = H[1:q]πππ ,

where

PPP = (P1, P2, P3, . . . Pq, P12, P13, . . . Pq−1,q, P1,1,2 . . . Pq−2,q−1,q . . . P1,2,3...q)
′

is the vector of marginal proportions (Bartholomew, 1987).

For instance,
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H[3] =



(vvv1 ◦ vvv2 ◦ vvv3)′
(vvv1 ◦ vvv2 ◦ vvv4)′

...
(vvv1 ◦ vvv2 ◦ vvvq)′
(vvv2 ◦ vvv3 ◦ vvv4)′

...
(vvv2 ◦ vvv3 ◦ vvvq)′

...
(vvvq−2 ◦ vvvq−1 ◦ vvvq)′


,

where vvvf represents column f of matrix VVV , and vvvf ◦vvvg◦vvvh represents the Hadamard product
of columns f , g and h. Thus when q=3,

H[1:3] =



0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

· · ·
0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1

· · ·
0 0 0 0 0 0 0 1


.

2.3 Residuals

Define the unstandardized residual rs = p̂s−πs(β̂ββ), and denote the vector of unstandardized
residuals as rrr with element rs .

A vector of simple residuals for marginals of any order may be defined such that

eee = H(p̂− πππ(β̂ββ)) = Hrrr,

.

3. Testing Fit on Marginal Distributions

3.1 Linear Combinations of Joint Frequencies

A traditional composite null hypothesis for a test of fit on a multinomial model is
Ho : πππ = πππ(βββ). Linear combinations of πππ may be tested under the null hypothesis
Ho : Hπππ = Hπππ(βββ). H may specify linear combinations that form marginal proportions
as defined in the previous section.

3.2 Test Statistic

The use of components of Pearson’s chi-square statistic has a long history dating back
at least to Lancaster (1969). The motivation for components has been the possibility that a
directional test would have higher power for certain alternative hypotheses than the omnibus
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goodness-of-fit test (Rayner & Best, 1989). Reiser(1996, 2008) and Reiser and Lin (1999)
proposed statistics that can be obtained from orthogonal components defined on marginal
proportions. These statistics have higher power under some circumstances, and they usually
perform well when applied to sparse frequency tables.√

n rrr has asymptotic covariance matrix ΩΩΩrrr , where

ΩΩΩrrr = (D(πππ(βββ))− πππ(βββ)πππ(βββ)′ −G(A′A)−1G′),

and where

D(πππ(βββ)) = diagonal matrix with (s, s) element equal to πs(βββ),

A = D(πππ(βββ))−1/2
∂πππ(βββ)

∂βββ
,

and G =
∂πππ(βββ)

∂βββ
.

See Haberman (1973). Then consider the linear combination eee = Hrrr. If H contains 2q −
g − 1 linearly independent rows corresponding to marginals from order 1 to q, then define
the statistic

X2
[1:q] = nrrr′H′ΩΩΩ−1eee Hrrr.

Here the statistic is evaluated at βββ = β̂ββ , where β̂ββ is now consistent and efficient for βββ , such
as the maximum likelihood estimator, and where ΩΩΩeee = HΩΩΩrrrH

′. With the added condition

that the rows of H are linearly independent of the columns of G, i.e., rank(H′
...G) = T +g,

X2
[1:q] can be shown to be equivalent to X2

PF due to the one-to-one correspondence of the
joint and marginal proportions. See also Reiser (2008). To obtain orthogonal components,
define the upper triangular matrix FFF such that FFF ′ΩΩΩeeeFFF = III . FFF = (CCC ′)−1, where CCC is the
Cholesky factor of ΩΩΩeee . Then writing ΩΩΩeee as CCCCCC ′,

X2
PF = nrrr′H′(ĈCC

′
)−1ĈCC

′
(ĈCC ĈCC

′
)−1ĈCC(ĈCC)

−1
Hrrr

= nrrr′H′F̂FF F̂FF
′
Hrrr

where F̂FF and ĈCC are the matrices FFF and CCC evaluated at βββ = β̂ββ .
Premultiplication by (CCC ′)−1 orthonormalizes the matrix H[1:q] relative to the matrix

D(πππ)− ππππππ ′ −G(A′A)−1G′. Let H∗ = FFF ′H[1:q] , then

X2
PF = nrrr′(Ĥ∗)′Ĥ∗rrr

where Ĥ∗ = H∗(β̂ββ).
Define

γ̂γγ = n
1
2 F̂FF
′
Hrrr = n

1
2 Ĥ∗rrr

Then

X2
PF = γ̂γγ ′ γ̂γγ =

j=T−g−1∑
j=1

γ̂2j ,

and the elements γ̂2j are orthogonal components of X2
PF . Since Ĥ∗rrr has asymptotic

covariance matrix FFF ′ΩΩΩeeeFFF = IIIT−g−1, the elements γ̂2j are asymptotically independent χ2
1

random variables.
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3.3 Standardized Residuals

There are number of ways to define a residual for the first-, or second-order marginal. Some
possibilities are

e = P̂ij(1, 1)− Pij(1, 1|β̂̂β̂β), e =
P̂ij − Pij(1, 1|β̂̂β̂β)

Pij(1, 1|β̂̂β̂β)
1
2

and e =
P̂ij − Pij(1, 1|β̂̂β̂β)

Pij(1, 1|β̂̂β̂β)
,

where Pij(1, 1|β̂ββ) = P (Yi = 1, Yj = 1|β̂ββ) = h′`πππ(β̂ββ),

P̂ij(1, 1) = P̂ (Yi = 1, Yj = 1) = h′`p̂,

and h′` is row ` of matrix H defined earlier. The definition given above in the middle has a
similar form to the traditional standardized residuals.

Recall,

eee = H(p̂− πππ(β̂ββ)) = Hrrr, n
1
2 eee

L−→N(000,ΩΩΩeee), and ΩΩΩeee = HΩΩΩrrrH
′

Then Σ̂ΣΣeee will be a consistent estimator for the ΩΩΩeee where

Σ̂ΣΣeee = n−1H(D(πππ)− ππππππ ′ −G(A′A)−1G′)H′
∣∣∣∣
π=π(β̂ββ), βββ=β̂ββ

This follows from the results in section 3.2 and the results from (Reiser, 1996). Estimated
standard error for the residual is obtained by taking the square root of the diagonal element
of Σ̂ΣΣeee . The adjusted residual is obtained by n1/2e

σ̂e
.

3.4 Application to Factor Analysis

When categorical manifest variables are hypothesized to be associated with a continuous
latent variable, the model is known as categorical variable factor analysis and sometimes as
the item response theory model. In order to investigate the source of the model lack-of-fit,
a comparison of the statistics reviewed in the previous sections will be presented using this
model with one factor.

According to the categorical factor model, the probability of the response to a manifest
variable, sometimes also referred to as an item, can be given by a logistic item response
function:

P (Yi = 1 | βββ ′i, X = x) = (1 + exp(−βi0 − βi1x))−1 (3.1)

where Yi represents the response to item i,

βi0 = intercept parameter for item i

βi1 = slope parameter for item i

βββ ′i = (β0i, β1i)

x = value taken on by latent random variable X

Since
P (Yi = 0 | βββ ′i, X = x) = 1.0− π(Yi = 1 | βββ ′i, X = x),
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it follows that

P (Yi = yi | βββ ′i, x) = P (Yi = 1 | βββ ′i, x)yi [1.0− P (Yi = 1 | βββ ′i, x)]1−yi

It is assumed that, conditional upon the latent variable, responses to the manifest
variables are independent. Let YYY represent a random vector of responses to the items,
with element Yi, and let y represent a realized value of YYY . Then

P (YYY = y | βββ, x) =

k∏
i=1

π(Yi = 1 | βββ, x)yi [1− π(Yi = 1 | βββ, x)]1−yi (3.2)

where βββ =


β01 βi1
β02 β12
β03 β13

...
...

β0q β1q

 .

Finally, the probability of response pattern s, say, is obtained by taking the expected
value of the conditional probability over the distribution of X in the population, and is
sometimes called the marginal probability:

πs(βββ) = π(YYY = ys | βββ) =

∫ ∞
−∞

π(YYY = ys | βββ, x)f(x)dx (3.3)

where f(x) is the density function of X in the population of respondents.
If UUU represents a T -dimensional multinomial random vector of frequencies associated

with the response patterns, the distribution of UUU is given by

π(UUU = n) = n!
T∏
s=1

[πs(βββ)]

ns!

ns

(3.4)

where n =vector of observed frequencies

ns =element s of n

n =total sample size =
T∑
s=1

ns .

4. Simulation Study

A Monte Carlo simulation study to assess components and standardized residuals was
performed under following conditions : q=8 manifest variables, and β′0 = (-2.0, -1.5, -1,
-0.5 , 0.5 ,1, 1.5, 2). The first simulation study was done to check the Type I error rate of
the model. 1000 data sets were generated using Monte-Carlo methods related to one factor
model where β′1 = (0.1, 0.1, 0.1, 1.2 , 1.2 , 1.2 , 0.2 , 0.2). Then a two parameter IRT
model was built for each of these datasets and Type I error rate was calculated. Since each
orthogonal component is distributed as chi-square with one degree of freedom, to calculate
the Type I error for each component, the sum of the number of cases that exceed the chi-
square critical value (at 5% significance level) with one degree of freedom was divided by

JSM2015 - Social Statistics Section

620



the number of datasets. A similar process was used for the standardized residuals, but for
the critical value the standard normal distribution was used. This process was repeated for
sample sizes 300, 500 and 1000.

Some of the simulation results for the Type I error rate are shown in Table 1 to Table
4. To check the distributional assumption, Chi-square Q-Q plots were calculated for the
values of each orthogonal component and some results are shown in Figures 1, 3, 5.
Similarly, Normal probability plots were calculated for the values of each standardized
residuals. Results are shown in Figures 2,4,6. KolmogorovSmirnov test result for normality
assumption are shown in Table 5.

As the next approach, 1000 data sets were generated using Monte-Carlo simulations
related to a two factor (two latent variables) model. Loadings for the first factor were
(1,1,1,0,0,0,1,1) and loadings for the second factor were (0.1, 0.1, 0.1, 1.2 , 1.2 , 1.2 , 0.2
, 0.2). Then a two parameter IRT model was built for each of these datasets and power
was calculated. In the simulation, the model under H0 is misspecified with a one factor
model. Since each orthogonal component is distributed as chi-square with one degree of
freedom, to calculate the power for each component, sum of the number of cases that exceed
the chi-square critical value (at 5% significance level) with one degree of freedom was
divided by the number of datasets. A similar process was used for the standardized residuals
except the critical value from standard normal distribution was used. This process was
repeated for sample size 300, 500 and 1000. It is interesting to see how the power of
the orthogonal components and standardized residuals change for small factor loadings.
Thus, above process was repeated with factor loadings 0.6 for item 4,5 and 6. When the
sample size and/or the factor loadings are too small, estimate of the standard deviations
tends to become negative or very close to zero. To fix this issue shrinkage estimator was
incorporated. Mixing parameter of the Shrinkage estimator was calculated based on the
largest negative eigen value in magnitude.

5. Simulation Results

As shown earlier, the Pearson-Fisher statistic for a composite null hypothesis can be
partitioned into orthogonal components defined on marginal distributions. When the
manifest variables are binary, each of these components, γ2j , is distributed as an independent
χ2
(1) random variate. These components can be used as item diagnostics for models fit to

binary cross-classified variables when the result of an omnibus test indicates that a model
should be rejected.

To demonstrate this aspect simulation study was developed as described in the previous
section. Table 6, in the Appendix shows the power of each second-order marginal
component. Since there were 8 items there will be (8*7)/2= 28 second order marginal
components. During the Monte-Carlo simulations higher weights were given to item 4,5
and 6. Thus components related to item 4,5 and 6 should indicate a higher lack of fit,
hence higher power. By examining the highlighted values in Table 6, it is clear that the
power of second order marginal components (4,5), (4,6) and (5,6) were significantly higher
compared to other components. Thus these second order components were successful in
detecting poorly fit model. This process was repeated for n=300, n=500 and n=1000 and
when the sample size increases power increases and components were more successful in
predicting the poor fit. However, due to page limitations, only the results related to n=500
is included in the Appendix. When misspecification is larger, or in other words, weights
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given to the misspecified items are lager (weights of the items 4,5 and 6 were increased from
0.6 to 1.2), the power tends to increase. Table 8 illustrate this information. Standardized
residuals can also be calculated on the univariate and bivariate distributions of the manifest
variables (Reiser, 1996). By examining the values in the Tables 7 and 9, it is clear that the
power of second order marginal components (4,5), (4,6) and (5,6) were significantly higher
compared to other components. Thus these second order residual components were also
successful in detecting lack of fit.

However if the Type I error is not small compare to power then these result does not have
much meaning in terms of practical applications. Thus Type I error rate were calculated for
the same settings. Results (Table 1 to 4) shows that the Type I error rates are within 0.05
for all the simulations. Thus our power calculation indeed have meaningful results. As
explained in previous sections each orthogonal component is distributed with chi-square
one degree of freedom. To check this assumption, chi-square Q-Q plots were built for
the simulation values related to each component. Some of the results are shown in the
Appendix. None of the plots had significant deviations from the straight line indicating
an adequate fit for the chi-square distribution. A similar process was done to check the
normality assumption of the standardized residual and some of the results are shown in the
Appendix.

Initially there were some Q-Q plots showing deviations from the straight line. Further
investigation was done and found that the estimates produced by the PROC IRT method
in the SAS were not stable for the small factor loadings. Mplus (Muthén & Muthén,
1998) parameter estimates were more stable compared to SAS. Thus for the Type I error
calculation Mplus estimates were incorporated. After using Mplus estimates none of the Q-
Q plots showed deviations from straight line. For further validation KolmogorovSmirnov
test for normality was incorporated. Results related to n=300 are given in the table 5.
Almost all the results were not significant at 0.01, which indicates the validity of the
Normality assumption. For larger samples sizes (n=1000) all p-values were larger than
0.02, hence the validity of the Normality assumption.

When the sample size and/or the factor loadings are too small, the estimate of the
standard error for the residuals tends to become negative or very close to zero. Thus out
of 1000 simulation only around 750-850 simulations were successful. To fix this issue
a shrinkage estimator was incorporated for the standard error. After incorporating the
shrinkage estimator number of successful iterations increased to 970-1000.

6. Real World Application

The Epidemiologic Catchment Area (ECA) program of research was initiated in response
to the 1977 report of the President’s Commission on Mental Health. The purpose was to
collect data on the prevalence and incidence of mental disorders and on the use of and
need for services by the mentally ill. Independent research teams at five universities (Yale,
Johns Hopkins, Washington University, Duke University, and University of California at
Los Angeles), in collaboration with National Institute of Mental Health (NIMH), conducted
the studies with a core of common questions and sample characteristics. The ECA study
was mainly focused on mental disorders related to manic episode, major depressive episode,
dysthymia, bipolar disorder, alcohol abuse or dependence, drug abuse or dependence,
schizophrenia, schizophreniform, obsessive compulsive disorder, phobia, somatization,
panic, antisocial personality, and anorexia nervosa.
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For this study chosen 8 items related to the mental disorder phobia were chosen from
the ECA to analyze as a real world application. The data set was limited to Johns Hopkins
(Baltimore, MD ) area. There were 3316 observations related to these specifications. The
selected items are given below.

DIS068A - fear of heights
DIS068F - closed places
DIS068I - fear of speaking in front of close friends
DIS068J - fear of speaking to strangers
DIS068K - storms
DIS068L - water
DIS068M - spiders
DIS068N - fear of harmless animals

Results related to real world application is shown in the table 10 and table 11. According
to the table 10 and 11, components (1,8) (3,4) (3,7) (3,8) related to Catchment Area Study
has larger values indicating that these pairs of variables have associations not explain by the
IRT model. Further, variable 3, fear of speaking in front of close friends appears in three of
these large components.

7. Conclusion

In this study, second order marginals related to Orthogonal components and Standardized
residual were examined as lack-of-fit diagnostics. Simulations were based on two parameter
IRT model for a two latent variable model and were successful in indicating pair of variables
for which the model does not fit well. When the sample size increases, ability to indicate
pair of variables for which the model does not fit well increases significantly. For instance
when n=300 (with lager factor loadings) power was around 0.5 and when n=1000 power was
around 0.9. Even for the small sample sizes (n=300) and small factor loadings, second order
marginals related to Orthogonal components and Standardized residuals were successful in
detecting the variables for which the model does not fit well. However when the sample
size and/or the factor loadings are too small, estimates of the standard errors tends to
become negative or very close to zero. Thus out of 1000 simulation only around 750-
850 simulations were successful. Shrinkage estimator was successful in fixing this error.
After incorporating the shrinkage estimator number of successful iterations increased to
970-1000. Further, the estimates produced by the PROC IRT method in the SAS were not
stable for the small factor loadings. Mplus parameter estimates were more stable compared
to SAS.
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8. Appendix

Table 1: Type I error of the Orthogonal components for n=500

ortho(1,2) ortho(1,3) ortho(1,4) ortho(1,5) ortho(1,6) ortho(1,7) ortho(1,8)
0.053 0.056 0.048 0.049 0.042 0.044 0.049

ortho(2,3) ortho(2,4) ortho(2,5) ortho(2,6) ortho(2,7) ortho(2,8) ortho(3,4)
0.05 0.051 0.047 0.045 0.052 0.056 0.044

ortho(3,5) ortho(3,6) ortho(3,7) ortho(3,8) ortho(4,5) ortho(4,6) ortho(4,7)
0.061 0.05 0.052 0.06 0.048 0.051 0.049

ortho(4,8) ortho(5,6) ortho(5,7) ortho(5,8) ortho(6,7) ortho(6,8) ortho(7,8)
0.045 0.042 0.046 0.042 0.052 0.051 0.047

Table 2: Type I error of the Standardized residuals for n=500

res(1,2) res(1,3) res(1,4) res(1,5) res(1,6) res(1,7) res(1,8)
0.044 0.039 0.046 0.056 0.057 0.05 0.04

res(2,3) res(2,4) res(2,5) res(2,6) res(2,7) res(2,8) res(3,4)
0.045 0.051 0.055 0.045 0.04 0.05 0.041

res(3,5) res(3,6) res(3,7) res(3,8) res(4,5) res(4,6) res(4,7)
0.053 0.049 0.051 0.046 0.056 0.048 0.053

res(4,8) res(5,6) res(5,7) res(5,8) res(6,7) res(6,8) res(7,8)
0.041 0.065 0.046 0.04 0.062 0.053 0.041

Table 3: Type I error of the Orthogonal components for n=1000

ortho(1,2) ortho(1,3) ortho(1,4) ortho(1,5) ortho(1,6) ortho(1,7) ortho(1,8)
0.053 0.065 0.062 0.053 0.05 0.058 0.041

ortho(2,3) ortho(2,4) ortho(2,5) ortho(2,6) ortho(2,7) ortho(2,8) ortho(3,4)
0.053 0.035 0.048 0.049 0.055 0.054 0.048

ortho(3,5) ortho(3,6) ortho(3,7) ortho(3,8) ortho(4,5) ortho(4,6) ortho(4,7)
0.053 0.038 0.047 0.046 0.047 0.05 0.043

ortho(4,8) ortho(5,6) ortho(5,7) ortho(5,8) ortho(6,7) ortho(6,8) ortho(7,8)
0.062 0.053 0.055 0.05 0.044 0.058 0.047

Table 4: Type I error of the Standardized residuals for n=1000

res(1,2) res(1,3) res(1,4) res(1,5) res(1,6) res(1,7) res(1,8)
0.054 0.065 0.06 0.054 0.04 0.053 0.049

res(2,3) res(2,4) res(2,5) res(2,6) res(2,7) res(2,8) res(3,4)
0.053 0.035 0.049 0.04 0.058 0.051 0.047

res(3,5) res(3,6) res(3,7) res(3,8) res(4,5) res(4,6) res(4,7)
0.043 0.043 0.052 0.047 0.056 0.045 0.058

res(4,8) res(5,6) res(5,7) res(5,8) res(6,7) res(6,8) res(7,8)
0.045 0.038 0.053 0.054 0.043 0.047 0.038
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Table 5: KolmogorovSmirnov test result for Normality of the Standardized residuals, n=300

res(1,2) res(1,3) res(1,4) res(1,5) res(1,6) res(1,7) res(1,8)
0.013 >0.15 >0.15 >0.15 >0.15 0.0945 <0.01

res(2,3) res(2,4) res(2,5) res(2,6) res(2,7) res(2,8) res(3,4)
>0.15 >0.15 >0.15 >0.15 >0.11 >0.15 >0.15

res(3,5) res(3,6) res(3,7) res(3,8) res(4,5) res(4,6) res(4,7)
>0.15 0.023 >0.15 >0.15 >0.15 >0.15 >0.15

res(4,8) res(5,6) res(5,7) res(5,8) res(6,7) res(6,8) res(7,8)
>0.15 0.0568 >0.15 >0.15 0.0357 >0.15 0.1185

Table 6: Power of the Orthogonal components for n=500

ortho(1,2) ortho(1,3) ortho(1,4) ortho(1,5) ortho(1,6) ortho(1,7) ortho(1,8)
0.044534 0.042510 0.049595 0.051619 0.058704 0.039474 0.062753
ortho(2,3) ortho(2,4) ortho(2,5) ortho(2,6) ortho(2,7) ortho(2,8) ortho(3,4)
0.048583 0.052632 0.058704 0.054656 0.044534 0.052632 0.054656
ortho(3,5) ortho(3,6) ortho(3,7) ortho(3,8) ortho(4,5) ortho(4,6) ortho(4,7)
0.063765 0.060729 0.055668 0.045547 0.33300 0.30567 0.048583
ortho(4,8) ortho(5,6) ortho(5,7) ortho(5,8) ortho(6,7) ortho(6,8) ortho(7,8)
0.046559 0.29352 0.047571 0.049595 0.050607 0.041498 0.052632

Table 7: Power of the Standardized residuals for n=500

res(1,2) res(1,3) res(1,4) res(1,5) res(1,6) res(1,7) res(1,8)
0.046559 0.051619 0.053644 0.048583 0.059717 0.044534 0.038462
res(2,3) res(2,4) res(2,5) res(2,6) res(2,7) res(2,8) res(3,4)

0.053644 0.052632 0.061741 0.050607 0.052632 0.046559 0.042510
res(3,5) res(3,6) res(3,7) res(3,8) res(4,5) res(4,6) res(4,7)

0.053644 0.048583 0.042510 0.053644 0.36640 0.31680 0.044534
res(4,8) res(5,6) res(5,7) res(5,8) res(6,7) res(6,8) res(7,8)

0.060729 0.29858 0.047571 0.044534 0.050607 0.052632 0.050607

Table 8: Power of the Orthogonal components with higher factor loadings for n=500

ortho(1,2) ortho(1,3) ortho(1,4) ortho(1,5) ortho(1,6) ortho(1,7) ortho(1,8)
0.27199 0.29424 0.078868 0.083923 0.27806 0.082912 0.099090

ortho(2,3) ortho(2,4) ortho(2,5) ortho(2,6) ortho(2,7) ortho(2,8) ortho(3,4)
0.39333 0.11223 0.13953 0.34681 0.093023 0.093023 0.16886

ortho(3,5) ortho(3,6) ortho(3,7) ortho(3,8) ortho(4,5) ortho(4,6) ortho(4,7)
0.22952 0.48534 0.12437 0.096057 0.58544 0.59151 0.043478

ortho(4,8) ortho(5,6) ortho(5,7) ortho(5,8) ortho(6,7) ortho(6,8) ortho(7,8)
0.063701 0.79778 0.039434 0.12336 0.068756 0.066734 0.075834
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Table 9: Power of the Standardized residuals with higher factor loadings for n=500

res(1,2) res(1,3) res(1,4) res(1,5) res(1,6) res(1,7) res(1,8)
0.26997 0.29019 0.11830 0.10313 0.11628 0.23256 0.16785
res(2,3) res(2,4) res(2,5) res(2,6) res(2,7) res(2,8) res(3,4)
0.36906 0.14661 0.14661 0.12639 0.24975 0.20627 0.13953
res(3,5) res(3,6) res(3,7) res(3,8) res(4,5) res(4,6) res(4,7)
0.16178 0.14459 0.29626 0.25379 0.72396 0.67442 0.11122
res(4,8) res(5,6) res(5,7) res(5,8) res(6,7) res(6,8) res(7,8)

0.075834 0.68857 0.11426 0.10111 0.092012 0.077856 0.27503

Table 10: Standardized residuals for Catchment Area study

Obs V ar1 V ar2 Residual Obs V ar1 V ar2 Residual
1 1 2 1.1541 15 3 5 -2.3842
2 1 3 -1.3479 16 3 6 -1.499
3 1 4 -2.2894 17 3 7 -3.5368
4 1 5 0.6607 18 3 8 -1.8414
5 1 6 0.6195 19 4 5 -3.2363
6 1 7 -1.2162 20 4 6 -1.5218
7 1 8 -3.3259 21 4 7 -2.5327
8 2 3 -0.5642 22 4 8 -1.7878
9 2 4 -1.9678 23 5 6 -1.4999

10 2 5 -0.9038 24 5 7 0.6942
11 2 6 -0.1089 25 5 8 0.2255
12 2 7 -2.7486 26 6 7 -2.8479
13 2 8 -1.3766 27 6 8 -2.0981
14 3 4 4.7561 28 7 8 2.3423

Table 11: Orthogonal Components for Catchment Area study

Obs Mar1 Mar2 Component Obs Mar1 Mar2 Component
1 3 4 32.1183 15 3 5 1.4616
2 1 8 11.8271 16 4 6 1.2813
3 3 7 10.9885 17 1 7 1.2056
4 3 8 10.0787 18 7 8 1.1582
5 6 7 9.0142 19 1 6 0.7681
6 5 8 4.4339 20 2 7 0.5693
7 5 6 3.9102 21 2 4 0.5086
8 1 4 3.7032 22 6 8 0.4736
9 2 6 3.6350 23 2 8 0.4451

10 4 7 2.7066 24 1 5 0.2769
11 4 8 2.5555 25 2 5 0.1728
12 4 5 1.8734 26 5 7 0.1708
13 1 2 1.6371 27 2 3 0.0562
14 1 3 1.5046 28 3 6 0.0005
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Figure 1: QQ plots for the simulation n=300 Figure 2: QQ plots for the simulation n=300

Figure 3: QQ plots for the simulation n=500 Figure 4: QQ plots for the simulation n=500

Figure 5: QQ plots for the simulation n=1000 Figure 6: QQ plots for the simulation n=1000

JSM2015 - Social Statistics Section

627



REFERENCES

Bartholomew, D. J., & Leung, S. O. (2002). A goodness of fit test for sparse 2P contingency tables. British
Journal of Mathematical and Statistical Psychology, 55, 1-15.

Bartholomew, D.J., Knott, M. & Moustaki (2011). Latent variable models and factor analysis: A unified
approach, 3rd Edition. New York: Wiley.

Birch, M. W. (1964). A new proof of the Pearson-Fisher Theorem. Annals of Mathematical Statistics, 35,
818-824.

Bock, R. D., & Lieberman, M. (1970). Fitting a response model for n dichotomously scored items.
Psychometrika, 35, 179-197.

Cagnone, S., & Mignani, S. (2007). Assessing the goodness of fit of a latent variable model for binary data.
Metron, LXV, 337-361.

Cai, L., Maydeu-Olivares, A., Coffman, D.L., & Thissen, D. (2006). Limited information goodness of fit
testing of item response theory models for sparse 2p tables. British Journal of Mathematical and Statistical
Psychology, 59, 173-194.

Goodnight, J. H. (1978). The sweep Operator: Its importance in Statistical Computing. SAS Technical Report
R-106, SAS Institute, Cary, NC.

Haberman, S. J. (1973). The analysis of residuals in cross-classified tables. Biometrics, 29, 205-220.
Joreskog & Moustaki (2001). Factor analysis of ordinal variables: A comparison of three approaches.

Multivariate Behavioral Research, 36, 347-387.
Maydeu-Olivares, A. (2001). Limited information estimation and testing of thurstonian models for paired

comparison data under multiple judgement sampling. Psychometrika, 66, 209-228.
Maydeu-Olivares, A., & Joe, H. (2005). Limited and full information estimation and goodness-of-fit testing

in 2n contingency tables: A unified framework. Journal of the American Statistical Association, 100,
1009-1020.

Maydeu-Olivares, A. & Joe, H. (2006). Limited information goodness-of-fit testing in multidimensional
contingency tables. Psychometrika, 71, 713-732.

Maydue-Olivares, A., Garcia-forero, c., Gallardo-Pujol, D., & Renom, J. (2009). Testing categorized bivariate
normality with two-stage polychoric correlation estimates. Methodology: European Journal of Research
Methods for the behavioral and social sciences, 5, 131-136.

Muthén, B. (1978). Contributions to factor analysis of dichotomous variables. Psychometrika, 43, 551-560.
Muthén, L.K & Muthén, B.O. (1998-2010). Mplus User’s Guide. Sixth edition. Los Angeles, CA.
Rayner, J. C. W., & Best, D. J. (1989). Smooth Tests of Goodness of Fit. Oxford: New York.
Reiser, M. (1996). Analysis of residuals for the multinomial item response model. Psychometrika, 61, 509-528.
Reiser, M. (2008). Goodness-of-fit testing using components based on marginal frequencies of multinomial

data. British Journal of Mathematical and Statistical Psychology, 61(2), 331-360.
Reiser, M., & Lin, G. (1999). A goodness-of-fit test for the latent class model when expected frequencies are

small. In M. Sobel & M. Becker (Eds), Sociological Methodology 1999, 81-111. Boston: Blackwell.
Takane, Y., and de Leeuw, J. (1987). On the relationship between item response theory and factor analysis of

discretized variables. Psychometrika, 52(3), 292-408.
Tollenaar, N., & Mooijaart, A. (2003). Type I errors and power of the parametric bootstrap goodness-of-fit test:

Full and limited information. British Journal of Mathematical and Statistical Psychology, 56, 271-288.
U.S. Dept. of Health and Human Services, National Institute of Mental Health. EPIDEMIOLOGIC

CATCHMENT AREA SURVEY OF MENTAL DISORDERS, WAVE I (HOUSEHOLD), 1980-1985
[Computer file]. Rockville, MD: National Institute of Mental Health [producer], 1985. Ann Arbor, MI:
inter-university Consortium for Political and Social Research [distributor], 1991.

JSM2015 - Social Statistics Section

628


