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Abstract

How many historic seasonally adjusted values should we revise with each release of new
time series estimates? We can revise the entire span, we can revise a minimum number of
recent values, or we can choose an intermediate approach. To answer the question, we
investigate how much the seasonal adjustment changes as we add new series values. We
seasonally adjust using X-13ARIMA-SEATS with the X-11 seasonal adjustment method
and regARIMA (regression plus ARIMA) model forecasts, using real U. S. Census
Bureau series and simulated ARIMA model series. We assess the fluctuation of the
seasonally adjusted estimates and how quickly they stabilize to a final value, particularly
with respect to properties like ARIMA model coefficients and seasonal filter length.
These results provide the foundation for determining the preferred number of revisions.
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1. Background

The U.S. Census Bureau uses X-13ARIMA-SEATS for seasonal adjustment (U. S.
Census Bureau 2015b). We select regARIMA models for forecasting and estimating
regression effects like outliers and calendar effects and X-11 seasonal filters for seasonal
adjustment. The software is the most recent in the line of development that has included
X-11, X-11-ARIMA and updates (Dagum 1988), and X-12-ARIMA. Once a year, after
reviews of the time series and seasonal adjustment settings, subject matter expert
reviewers implement new seasonal adjustment specifications that stay in place until the
next review. These changes to the specifications generally coincide with historic
corrections and benchmarking that revise a year or more of the values of the original time
series. With the annual revisions to the original series, the Census Bureau revises
multiple years of the seasonal factors as well. For typical ongoing releases, however, the
number of seasonal factors to revise has been a recurring question.

In the early days of seasonal adjustment, the Census Bureau’s standard approach was to
run the software once a year and project seasonal factors for the next year. Here we use
the term “seasonal factor” in a broad sense, meaning a combined adjustment factor that
might include adjustments for calendar effects like trading day or moving holidays.
Following research by McKenzie (1984), most programs in the Census Bureau’s
economic directorate switched to some form of concurrent seasonal adjustment,
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incorporating the new series values when calculating seasonal factors each month (or
quarter).

For a monthly survey, during a typical month, the Census Bureau collects new series
values to add to the end of the series and revises some prior values to incorporate updated
or additional response. For instance, for the Value of Construction Put in Place Survey
(www.census.gov/construction/c30/c30index.html), we release a preliminary estimate for
month t, first revised estimate for month t-1, and second revised estimate for month t-2.
Similarly, for the Advance Monthly Sales for Retail and Food Services Survey (MARTS)
and its companion the Monthly Sales for Retail Trade and Food Services Survey (MRTS)
(www.census.gov/retail/index.html), the first estimate is an advance estimate for month t,
approximately nine business days after the end of that month. In the same release, we
provide a preliminary estimate for month t-1 and a revised estimate for month t-2.
Compared to the later preliminary release, the advance values are early estimates from a
smaller respondent sample, and the series are more aggregated across industries so there
are fewer advance series. By the time we release the preliminary estimates, more detailed
industry categories are available. After an additional month, we release revised estimates
for these detailed categories. These are revisions to the original (unadjusted) series.

During a production concurrent seasonal adjustment run, the model form and X-11
seasonal filters stay the same, although we calculate new model coefficients. Just the
addition of one new month at the end of the original series can change seasonal factors
for the entire series, regardless of whether we have revised any prior months.

Ultimately, each statistical area decides how many seasonally adjusted values to update
with each new series value. Some revise the entire seasonally adjusted series, and some
revise only as far back as the revisions to the original series. Each new or revised month
of the original series (as described above) is accompanied by a new or revised seasonally
adjusted value. In addition, the retail trade (MARTS and MRTS) program revises the
seasonally adjusted values for the current month a year ago (t-12) and prior month a year
ago (t-13). This approach ensures that comparisons of month-to-month change for the
current month and for the current month a year ago employ seasonal factors from the
same seasonal adjustment vintage using all currently available information. At the Census
Bureau, the retail trade program is one of two programs that target the year-ago factors
for revision; wholesale trade is the other. Only the retail trade program also revises the
prior month a year ago because of the importance of using the same seasonal adjustment
settings and the same estimate of the seasonal pattern for these critical comparisons.

To gain perspective on prevailing practices, we contacted colleagues at other official
statistics agencies and found that they vary. Some agencies revise no previous values
with each release and some allow all of them to change. For example, in practice, the
Instituto Nacional de Estadistica y Geografia (INEGI) allows the full seasonally adjusted
series to change. For most surveys, Statistics Canada revises one more period of the
seasonally adjusted series than of the original series (that is, if the original series has
revisions to t-1, the seasonally adjusted series has revisions back to t-2). For the Canadian
Labour Force Survey, they do not revise the prior months of the seasonally adjusted
series but just add the new concurrent estimate of time t.

Choosing a revisions policy can be challenging. It is a balancing act between providing

the best estimates using all currently available information and adding uncertainty to the
estimates. One compromise could be to revise only some of the seasonal factors at key
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time points in the estimation cycle, as the MRTS does by revising seasonal factors 12 and
13 months ago.

Some issues related to revisions are of a practical nature. First, when using a shortened
model span and estimating calendar effects, we might avoid revising the seasonally
adjusted series before the start of the model span. Second, if revising the seasonally
adjusted series introduces too much noise, we might avoid revising, although “too much”
requires definition. When combining or comparing series from different programs on a
regular basis, we might align the number of revisions even if individually, the programs
would have chosen different revision policies. Furthermore, when choosing X-11
seasonal filters, we expect changes to be small beyond half the filter length when
tabulated data replace the forecasts, and we can take into account the most usual filter
choices when determining a revision policy. Table 1 below shows the weights of typical
seasonal filters that the Census Bureau uses.

Table 1. X-11 seasonal filters and their weights
Year-5 Year-4 Year-3 Year-2 Year-1 Center Year+1 Year+2 Year+3 Year+4 Year+5

3x3
1/9 2/9 3/9 2/9 1/9
3x5
/15 2/15 3/15 3/15 3/15 2/15 1/15
3x9

127 2727 3/27  3/27  3/27  3/27  3/27  3/27  3/27 2727  1/27

Elliott, McLaren, and Zhang (2007) listed several causes of revisions to published
estimates. Here we concentrate on revisions that occur from added series values with no
other changes to the original series.

2. Simulation Study

2.1 Methods

First, we wanted to examine the revisions to the seasonally adjusted estimates under
somewhat "sterile" conditions. Namely, we wanted to look at seasonal time series without
outliers, calendar effects or other confounding influences, other than white noise, that
would interfere with the estimation of the seasonal pattern. We simulated three sets of
500 series from the airline (0 1 1)(0 1 1) model (Box and Jenkins 1970) with seasonal
moving average parameter set to 0.3, 0.5 and 0.8, respectively. We set the nonseasonal
moving average parameter to 0.3 for all series.

2.1.1 Seasonal Adjustment Options

We used Win X-13 (U. S. Census Bureau 2015a) to create spec files with the following
settings:

Span ending in 2001.1, with a start date of 1991.Jan

Log transformation

No regression variables and no automatic outlier identification

Airline model

Number of forecasts equal to half the filter length

A seasonal filter of 3x3 for seasonal theta=0.3, 3x5 for 0.5 and 3x9 for 0.8.
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2.1.2 Revisions Calculations

We seasonally adjusted each of these series 96 times with X-13ARIMA-SEATS Version
1.1 Build 17, adding a new month of data each time. We saved the seasonally adjusted
series (Table D11 of the output) and the month-to-month changes (Table E6 of the
output) for each run. To examine the change in the seasonally adjusted estimates between
runs, we calculated the percent change in the estimate between two successive runs as:

<SAt|t k_SAt|t+k—1>
100 — (1)
SAt|t+k—1
Since the month-to-month changes are already in percentages, we simply compute the
difference as:
100« (MM ¢y )0 — MMy 1) 2)

We refer to these differences as the lag K incremental revisions to the seasonally adjusted
series and month-to-month changes, respectively. These revisions differ from those
offered by the history spec in X-13ARIMA-SEATS in that they are calculated between
successive runs rather than between the lagged period in question and the target period,
either concurrent (t=0) or final (t=T). For each series, we calculated the average absolute
revision for lags 1-60 and then ranked them from largest to smallest. We then compiled
the ranks for all series within a seasonal filter category and examined the frequency of
each ranking at each lag.

2.2 Results

For the seasonally adjusted series, we found, as expected, the largest average absolute
revisions often occurred at either lag 1 or lag 12 (see Table 2). However, for the series
adjusted with a 3x3 or 3x5 filter (seasonal theta equal to 0.3 or 0.5, respectively), a
number of series had their largest average absolute revision at lag 6 or lag 7. We did not
find this same behavior for the series adjusted with the 3x9 filter. Upon inspection of the
spec files, we found that — as expected — the 3x3 series had 30 forecasts and the 3x5
series had 42 forecasts, or half the filter length for the selected filter. However, the 3x9
series had 60 forecasts, not the expected 66 forecasts (half of the length of a 3x9 filter)
because previous releases of X-13ARIMA-SEATS allowed a maximum of 60 forecasts,
and Win X-13 was programmed accordingly. We changed the number of forecasts for the
series adjusted with a 3x9 filter to 66 forecasts and ran everything again. With these new
seasonally adjusted series with the 3x9 filter, we found a number of series with the largest
average absolute revisions at lag 6 and a few at lag 7, compared to the results with only
60 forecasts where not a single series had a lag 6 or lag 7 average absolute revision
amonyg its top 10 largest revisions.

We ran the series that utilized 3x3 and 3x5 filters again, now with 24 and 36 months of
forecasts, respectively, to compare revisions from whole-year forecasts (a popular choice)
to those from half-filter-length forecasts. With these forecast lengths, the large revisions
at lags 6 and 7 were gone.

It is interesting to note that, for the seasonally adjusted estimates, with whole-year
forecasts, the largest revisions often occur at lag 1. However, with half-filter-length
forecasts, the largest revisions most often occur at lag 12. Also, note that for the series
adjusted with 3x5 and 3x9 filters we see some series with lag 24 ranked in the top three
(for the 3x9 filter a number of series had lag 36 ranked third, 20.4% with 60 forecasts and
43.6% with 66 forecasts. Lag 36 is not shown to save space). We do not observe many
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series with large revisions at later seasonal lags for series adjusted with the 3x3 filter.
Recall the table of seasonal filters in Section 1. With a 3x9 seasonal filter, the highest
weights are applied to the nearest three years before tapering off. The 3x5 weights taper
off after one year and the 3x3 weights taper of immediately with the greatest weight only
applied to the month of concern.

Since the MRTS revises the prior month a year ago (t-13), we included lag 13 in our
analysis. With whole-year forecasts, lag 13 had the third largest average absolute revision
at least 30% of the time. When forecasts were equal to half the filter length, lag 13 was
ranked fourth (not shown) or higher over 30% of the time for series adjusted with a 3x3
filter or 3x5 filter. These results lend support to the MRTS policy to revise seasonally
adjusted estimates 13 months in the past.

Table 2 Frequency of average absolute revisions rankings by lag for seasonally adjusted
estimates for simulated data (in percentages)

3x3 Filter
Lag 1 Lag 2 Lag 6 Lag 7 Lag 12 Lag 13 Lag 24
Forecasts 24 30 24 30 24 30 24 30 24 30 24 30 24 30
Rank 1 91.6  28.6 0.0 00 00 11.8 00 7.0 84 526 0.0 0.0 0.0 0.0
Rank 2 84 500 352 06 00 11.8 00 134 506 232 56 0.0 0.0 0.0
Rank 3 0.0 136 374 540 00 13.0 0.0 8.6 284 9.0 308 038 0.6 1.0
3x5 Filter
Lag 1 Lag 2 Lag 6 Lag 7 Lag 12 Lag 13 Lag24
Forecasts 36 42 36 42 36 42 36 42 36 42 36 42 36 42
Rank 1 67.4 2.4 0.0 0.0 00 1.8 00 14 32,6 944 0.0 0.0 0.0 0.0
Rank 2 29.0 628 118 0.0 00 74 0.0 32 540 2.8 1.2 00 3.6 238
Rank 3 34 248 368 200 0.0 58 00 6.8 4.0 24 344 42 150 36.0
3x9 Filter
Lag 1 Lag 2 Lag 6 Lag 7 Lag 12 Lag 13 Lag 24
Forecasts 60 66 60 66 60 66 60 66 60 66 60 66 60 66
Rank 1 62.2 0.0 0.0 0.0 00 298 00 8.0 378 622 0.0 0.0 0.0 0.0
Rank 2 7.4 0.6 0.0 00 00 112 00 296 610 1.4 1.2 00 304 572
Rank 3 10.0 7.8 0.0 0.0 0.0 6.6 0.0 4.4 1.2 208 436 00 2438 1.4

For the month-to-month changes, the lag 1 revisions were not as prominent, especially
with forecasts equal to half the filter length. For the 3x3 filter with 30 forecasts and the
3x9 filter with 66 forecasts, the largest revisions were split between lag 6 and lag 12.
Otherwise, the largest revisions most frequently occurred at lag 12, with some at lag 1 for
the 3x3 filter with 24 forecasts. The next largest revisions were spread over many lags,
including lag 5, lag 11, and lag 24. We saw some of the larger revisions to the seasonally
adjusted estimates at lag 24, so naturally this followed in the month-to-month changes.
That lags 5 and 11 should also have some of the larger revisions is not surprising. The
largest revisions to the seasonally adjusted series often occur at lag 12. Recall that the
month-to-month change for a given month is the percent change between that month and
the month prior. So, the lag 11 estimate of the month-to-month change is the percent
change between the lag 11 seasonally adjusted estimate of one month and the lag 12
seasonally adjusted estimate of the prior month. Likewise, the lag 5 estimate of the
month-to-month change is the percent change between the lag 5 seasonally adjusted
estimate of one month and the lag 6 seasonally adjusted estimate of the prior month, and
we already saw that there were large lag 6 revisions to the seasonally adjusted estimates
with certain forecast lengths.
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Table 3 Frequency of average absolute revisions rankings by lag for month-to-month
change estimates for simulated data (in percentages)

3x3 Filter

Lag 1 Lag 5 Lag 6 Lag 11 Lag 12 Lag 18 Lag 24
Forecasts 24 30 24 30 24 30 24 30 24 30 24 30 24 30
Rank 1 142 00 00 00 00 310 00 00 8.8 690 00 00 00 00
Rank 2 632 00 00 22 00 332 20 22 142 280 00 0.0 206 336

Rank 3 76 06 00 308 0.0 6.6 562 284 0.0 0.6 0.0 06 198 25.6
3x5 Filter
Lag 1 Lag 5 Lag 6 Lag 11 Lag 12 Lag 18 Lag 24
Forecasts 36 42 36 42 36 42 36 42 36 42 36 42 36 42
Rank 1 06 00 0.0 0.0 0.0 8.6 0.0 0.2 99.4 914 0.0 0.0 0.0 0.0

Rank 2 31.0 0.0 0.0 00 00 196 02 386 0.6 8.6 0.0 0.0 682 71.6
Rank 3 146 00 0.0 14 00 154 426 350 00 00 0.0 0.0 19.8 268

3x9 Filter
Lag 1 Lag 5 Lag 6 Lag 11 Lag 12 Lag 18 Lag 24
Forecasts 60 66 60 66 60 66 60 66 60 66 60 66 60 66
Rank 1 00 00 00 00 00 464 00 00 1000 536 0.0 0.0 0.0 00
Rank 2 38 00 00 00 00 58 00 00 00 216 0.0 240 962 4738

Rank 3 358 00 0.0 144 0.0 6.2 0.8 0.0 0.0 4.8 0.0 6.0 3.8 241

Win X-13’s coding only 60 forecasts instead of 66 for a 3x9 filter turned out to be a
happy accident that helped demonstrate the effect of the number of forecasts on the
timing of the largest revisions, to both the seasonally adjusted estimates and the estimated
month-to-month changes.

3. Revisions With Retail Sales Data

3.1 Data and Methods

For our real-world investigation, we looked at 63 monthly retail sales series from the
Monthly Retail Trade Survey as published on the U. S. Census Bureau’s website. Some
of these series are composites of published and unpublished series. We used data from
January 1992 to December 2008 and examined revisions from January 2001 to December
2008. The series estimates are subject to sampling error; more information on the survey
design and estimation methods are available at the website www.census.gov/
retail/how _surveys are collected.html. We followed a similar procedure as with the
simulation study. First, we created spec files with Win X-13, and then we seasonally
adjusted the series 96 times, adding one month of data with each run. We created the spec
files with Win X-13 using the following settings:

e Span ending in 2001.1

e Log transformation

Tested for outliers, trading day (6 coefficient or 1 coefficient), Easter (1, 8 or 15),
constant

Automatic model selection, mixed=no

Forced seasonal (0 1 1) component

Number of forecasts equal to half the filter length

Filter length automatically selected

Saved d11 and e6 tables

We calculated the average absolute incremental revisions defined by (1) and (2), ranked
the average revisions, and computed the frequencies of each ranking at each lag. The
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typical patterns of incremental revisions to the seasonally adjusted estimates and the
month-to-month change estimates are illustrated in Figure 1 by the revisions to women’s
clothing stores sales seasonally adjusted and month-to-month change estimates.

Womens Clothing Stores Incremental isi to Adjusted Esti Womens Clothing Stores Incremental Revisions to Month-to-Month Change Estimates

Average Absolute Revisions
Average Absolute Revisions

Mt \__/

T T T T
0 12 24 36 48 60 0 12 24 36 48 60
Lag Lag

Figure 1 Incremental revisions to the seasonally adjusted and month-to-month change
estimates for women’s clothing retail sales. Source: Monthly Retail Trade and Food
Service Survey, 2001-2008.

We repeated this with 24 months of forecasts for series adjusted with a 3x3 filter and 36
months of forecasts for series adjusted with a 3x5 filter. Only one series was adjusted
with a 3x9 filter, so we omit that series from this comparison.

Table 4 Frequency of average absolute revisions rankings by lag for seasonally adjusted
estimates for retail data (in percentages)

3x3 Filter

Lag 1 Lag 2 Lag 6 Lag 7 Lag 12 Lag 13 Lag 24
Forecasts 24 30 24 30 24 30 24 30 24 30 24 30 24 30
Rank 1 227 227 0.0 00 00 00 00 00 773 773 0.0 0.0 0.0 0.0
Rank 2 682 682 136 182 00 00 00 0.0 9.1 4.5 0.0 0.0 9.1 9.1

Rank 3 9.1 91 727 591 00 00 00 00 136 182 0.0 00 45 136
3x5 Filter
Lag 1 Lag 2 Lag 6 Lag 7 Lag 12 Lag 13 Lag 24

Forecasts 36 42 36 42 36 42 36 42 36 42 36 42 36 42
Rank 1 30.0 35.0 0.0 00 00 00 00 00 700 650 0.0 0.0 0.0 0.0
Rank 2 275 250 125 125 00 00 00 0.0 125 175 5.0 50 350 325
Rank 3 325 300 125 150 00 00 0.0 0.0 125 125 150 125 225 250

Source: Monthly Retail Trade and Food Service Survey, 2001-2008.

Table 5 Frequency of average absolute revisions rankings by lag for month-to-month
change estimates for retail data (in percentages)

3x3 Filter
Lag 1 Lag 5 Lag 6 Lag 11 Lag 12 Lag 18 Lag 24
Forecasts 24 30 24 30 24 30 24 30 24 30 24 30 24 30
Rank 1 00 00 00 00 00 00 00 00 1000 1000 00 00 00 0.0
Rank 2 45 45 00 00 00 00 273 273 0.0 0.0 00 00 682 682
Rank 3 136 9.1 00 00 00 0.0 545 59.1 0.0 00 00 00 273 273
3x5 Filter
Lag 1 Lag 5 Lag 6 Lag 11 Lag 12 Lag 18 Lag 24
Forecasts 36 42 36 42 36 42 36 42 36 42 36 42 36 42
Rank 1 00 00 00 00 00 00 00 00 1000 1000 00 00 0.0 0.0
Rank 2 00 00 00 00 00 0.0 100 100 0.0 0.0 0.0 0.0 900 90.0
Rank 3 00 00 00 00 00 0.0 400 400 0.0 0.0 00 0.0 100 10.0

Source: Monthly Retail Trade and Food Service Survey, 2001-2008.
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As we can see in Table 4 and Table 5, the large revisions at lag 6 observed in the
simulated series are not present in the retail series. Moreover, there is very little if any
difference in the frequency of revisions rankings between the different forecast lengths,
as we observed in the simulated data.

Why do the retail series exhibit such a different pattern of revision ranking frequencies
from the simulated series? There are several differences between the two types of series.
For one, the retail series are subject to outliers and calendar effects, whereas our
simulated series were not. We did adjust for outliers and calendar effects in the retail
series when they were identified, but other effects could have gone undetected.

Another difference lies in the ARIMA model identification. We generated the simulated
series with the airline model, so there is no possibility of series model misspecification.
In contrast, we do not know the best ARIMA model for each retail series; those models
were estimated from the data at hand. We utilized the automatic model selection
procedure to choose a model for each series. Furthermore, there may not be an ARIMA
model that describes each of the retail series well. Thus, the quality of the model fit (or
even the appropriateness of the utilized model) is one obvious difference between the
retail and simulated series. X-13ARIMA-SEATS uses the regARIMA model to extend
the series with forecasts, which it then treats as “real” data while decomposing the series
into the trend, seasonal, and irregular components. This allows X-13 to use symmetric
filters for more data points and to minimize the use of X-11 asymmetric filters. In reality,
even the “symmetric” filters are asymmetric when forecasted values are used because the
forecasts are functions of past values. Large revisions to seasonally adjusted estimates
can occur when the difference between a previously forecasted value and the actual value
that replaces it are large. A poor model fit can result in large forecast errors if the model
continues to be poor going forward. But even with a great model fit, large forecast errors
can still occur when there are unanticipated changes to the series, such as a change in the
seasonal pattern.

Another difference is the composition of the respective sets of time series. We know the
simulated time series are composed of a moving average component (in the form of the
airline model) and a white noise component. Because this is a simple process, it is easier
for X-13ARIMA-SEATS to decompose this into its seasonal, trend and irregular
components. This means that the decomposition is more consistent when new months are
added, resulting in the largest revisions where we would expect them. In contrast, the
retail series are affected by unpredictable events and multiple sources of noise (for
instance, sampling and nonsampling errors) that can interfere with the estimation of the
seasonal pattern. If we have a slightly different estimated seasonal pattern when adding
new months of data, we could get unexpected large revisions because the forecast models
do not anticipate changes in seasonal patterns. Moreover, the nature of the error processes
in the retail series is unknown. The errors in the retail data could follow different patterns
than the errors in the simulated data, resulting in a different pattern of revisions.

3.2 Revision Magnitude

We now have a good understanding of the timing of the largest revisions to the
seasonally adjusted estimates and month-to-month change estimates. But what about the
size of the revisions? Is the largest average absolute revision that much greater than the
second largest? How do the sizes of the revisions compare across series?
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We know that some of the retail series have larger revisions than others just due to the
nature of the series. For example, the average absolute revisions to the seasonally
adjusted estimates from the shoe stores series range from 0.039% to 0.816%, whereas the
range for grocery stores is 0.004% to 0.120%. A revision of 0.1% would seem trivial in
the shoe stores series but would be quite sizeable in the grocery stores series. Even
though the average absolute revisions for each series that we have computed are all in
percentage terms, it does little to aid us in forming a unified revisions policy.
Consequently, it is difficult to compare across series the size of revisions at a given lag
for one series relative to other revisions for that series by looking at revisions in
percentage terms alone. Our goal in comparing revisions across series was to look for
patterns in the relative magnitude of revisions.

Therefore, we normalized our revisions calculations by dividing the average absolute
revision at each lag by the overall average absolute revision for the series. Normalized
revisions allowed us to compare the relative magnitude of revisions for one series to
those of other series at a given lag.

3.2.1 Relative Revisions by Seasonal Filter

In Figure 2, normalized lag 1 revisions of the seasonally adjusted estimates for each of
the 63 retail sales series are stratified by filter length. There is a clear cluster of large
average absolute revisions adjusted with a 3x3 filter. An analysis of variance indicates
that there is a significant difference in the mean revision among filters at lag 1 and lag 36
at the 0.05 level. With lags 12 and 24, there is little difference in the size of relative
revisions between the 3x3 and 3x5 series. By lag 36, the 3x9 series has the largest
average relative revision followed by a cluster of 3x5 series. This is not unexpected when
we consider the filter weights provided in Table 1. For the 3x3 filter, the weight for the
value three years removed is zero. Whereas with the 3x9 filter, the value three years
removed receives the same weight as the current month. The 3x5 series has a small but
nonzero weight here. The greater weight corresponds to a greater revision.

Also, note the scale on these graphs. Recall that we divided the average absolute revision
at each lag by the overall average for the series. With most of the lag 1 and lag 12
revisions exceeding two times the average revision for the series, and some as large as
four or six times the average, it is clear that not only do these lags most often have the
largest revisions, but also the magnitude of revisions at these lags are quite large relative
to other revisions in the series. In Figures 2 and 3, it is apparent that many of the lag 12
revisions are larger than the lag 1 revisions. Controlling for the series itself, the difference
between the lag 1 and lag 12 revision is significant. Even though the models might be
adequate, the information added at t+12 affects the estimation of the seasonal pattern at
time t. The new value replaces the forecasted value in the seasonal filter, causing a larger
re-estimation than occurs for lags 1 through 11.

3.2.2 Relative Revisions by Seasonal Theta Estimate

We also examined revisions grouped by the seasonal theta estimate. Large estimates for
the seasonal theta parameter typically indicate a more stable seasonal pattern. We
hypothesized that a large seasonal theta would correspond to smaller relative revisions.
This is most evident in the lag 2 revisions shown in Figure 4. The series with small
seasonal theta parameter estimates (shown in blue) had the largest relative revisions and
the series with large seasonal theta estimates (green) had the smallest relative revisions.
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The difference in mean revision across the three theta estimate categories is statistically
significant at the 0.05 level.

All Series Average Absolute Lag 1 Normalized Revisions to SA

T T T T
0 2 4 6 8

[filter W33 = 36 39|

Figure 2 Average absolute relative lag 1 revision to the seasonally adjusted estimates for
retail sales series. Source: Monthly Retail Trade and Food Service Survey, 2001-2008.

All Series Average Absolute Lag 12 Normalized Revisions to SA

=

T T T T
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Figure 3 Average absolute relative lag 12 revision to the seasonally adjusted estimates
for retail sales series stratified by filter. Source: Monthly Retail Trade and Food Service
Survey, 2001-2008.
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Distribution of Lag 2 Normalized Revisions by Seasonal Theta Estimate

Average Absolute Lag 2 Normalized Revisions

Fiter Bs Bm B3|

Figure 4 Average absolute relative lag 2 revision to the seasonally adjusted estimates for
retail sales series by seasonal theta estimate:
S=small, ® < 0.4; M=medium, 0.4 <® <0.7; L=large, ® > (.7. Source: Monthly Retail
Trade and Food Service Survey, 2001-2008.

The normalized revisions of the month-to-month change estimates exhibited similar
patterns to the seasonally adjusted estimates and we will not discuss them here.

3.3 Path to a Final Value

The goal when revising any published estimate is to provide a better estimate of the true
unobserved value than the previously published estimate, given the most recent
information available. When revising any estimate multiple times, we run the risk of
revising in either direction, with each revision potentially oscillating around what will
ultimately be the final estimate. This type of random up and down, yo-yo like revision
pattern could undermine the confidence data users have in the estimates. Therefore, it
would be desirable if revisions to seasonally adjusted estimates and month-to-month
changes were not completely random. The ideal case would be if revisions were
monotonically decreasing (or increasing) as the adjustments approach the final estimate,
but we know this is not the case.

To test the randomness of the revisions path, we conducted a Wald-Wolfowitz test (Wald
and Wolfowitz 1940), also called a runs test, on each of the seasonally adjusted and
month-to-month change estimates. We centered the estimates about a “final” seasonal
adjustment or month-to-month change estimate. These estimates are subject to small
revisions after real series estimates replace forecasts in the calculation of the seasonal
factors. This occurs after two years for series adjusted with a 3x3 filter, three years for a
3xS5 filter and five years for a 3x9 filter. For simplicity, we will take the “final” value to
be the estimate three years after the concurrent estimate. This centering resulted in 60
tests per estimate type (seasonally adjusted or month-to-month change) for each series,
one for each estimate that we had at least three years of data afterwards. For all 63 series,
every test indicated that the revisions were not random. However, the path to a final value
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is not a monotonic one. We repeated the Wald-Wolfowitz test, this time centering about
the concurrent estimate. Again, every test indicated the revisions were not random and
not monotonic.

This result was an important one to confirm. It validates the practice of revising
seasonally adjusted estimates at all and gives us confidence that revisions to our estimates
are beneficial.

3.4 Mean Squared Revision of the Estimates

Our goal when studying revisions to seasonally adjusted data is to understand how we get
from the concurrent estimate to the final estimate by studying the timing and magnitude
of revisions to the estimates. We are also interested in identifying factors that can help us
predict both the timing and the magnitude of those revisions. So far, we have focused on
factors that the practitioner controls, namely the choice of seasonal filter and forecast
extension length. However, another factor that could aid in the prediction of revisions lies
outside of the control of the practitioner: the series itself.

We focused on just a few of many series characteristics that could affect revisions. For
example, we considered the distribution of the differences between intermediate
estimates and the “final” estimate. In particular, we wanted to look at how far away each
seasonally adjusted estimate for each month was from its “final” estimate and how those
differences between intermediate estimate and “final” estimate compared across months
within a series. Again, we defined the “final” seasonal adjustment estimate to be the
estimate three years after the concurrent estimate.

Since we wanted to compare the deviations of the intermediate estimates across each
month of the series, we constructed a time series of mean squared revisions, defining
each month as in (3).

1 2
=~ 35
Xt = £2i=0(xt|t+i - xt|t+36) (3)

This gave us a 60-month long time series of mean squared revisions for each of the 63
retail sales series. After graphing a couple of these series, as in Figure 5, it became clear
that for some series there was a pattern to the mean squared revisions that seemed
seasonal in nature.

Thus, we read the mean squared revision series into X-13ARIMA-SEATS to check
seasonality diagnostics and autocorrelations. We checked the QS statistic, the
autocorrelation function (ACF), and the spectrum of the series of mean squared errors, as
shown in Table 6. However, the spectrum and QS diagnostics may be of limited
effectiveness for five-year-long series.

Table 6: Number of mean squared error series with diagnostics indicating seasonality

Diagnostic Number of series
S1 peaks 14
S2 peak 5
S3 peak 7
S4 peak 6
Significant QS 28
Lag 12 ACF 36
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Automobile and Other Motor Vehicle Dealers Mean Squared Revision Series
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Figure 5: Time series of mean squared revisions for sales at automobile and other motor
vehicle dealers. Source: Monthly Retail Trade and Food Service Survey, 2001-2008.

With 51 out of 63 mean squared revision series displaying some evidence of seasonality,
it appears that, at least for some series, revisions are seasonal. In other words, the
magnitudes of revisions for some months (Januaries, Februaries, etc.) are consistently
greater than other months. Moreover, for some of these series, the magnitude of revisions
of one month is correlated with the magnitude of revisions 12 months in the past.

What does this mean for predicting revisions for these series? Well, for example, if we
observe large mean squared errors for Januaries in the past, we can expect that next
January’s seasonally adjusted estimate will also be subject to large revisions before it
reaches its final estimate. Understanding the seasonal pattern of revisions to the
seasonally adjusted series can help agencies prepare analysts and data users for larger
expected revisions to the seasonally adjusted estimates in months where large revisions
were observed in the past.

4. Summary

In this study, we examined the size and timing of revisions to estimates of seasonally
adjusted series and seasonally adjusted month-to-month changes. The results indicate that
the largest revisions to these estimates most often occur 12 months after the concurrent
estimate of both the seasonally adjusted series and month-to-month changes. Thus,
revisions to the year-ago estimate are a high priority, especially for year-to-year
comparisons but also to correct for the large change to the adjustment that occurs with an
additional year of data. For the retail series, the filter choice determined the largest
revisions at other lags. For example, the 3x3 series saw their next largest revisions at lags
1 and 2 for the seasonally adjusted series and lags 24 and 11 for the month-to-month
changes. Series adjusted with a 3x5 filter had their next largest revisions at lags 1 and 24
for the seasonally adjusted series and lags 24, 36, and 11 for the month-to-month
changes. Although we only had one series adjusted with a 3x9 filter for our retail study,

591



JSM 2015 - Business and Economic Statistics Section

the relative magnitude of its lag 36 revision suggests that it may be large enough to
warrant a revision as well. Further study of real-world series adjusted with a 3x9 filter
will help shed more light on later lag revisions and can help inform a revisions policy for
these series.

Our results validate the rationale behind the current MRTS policy of revising seasonally
adjusted estimates a year after their initial estimate. The overwhelming majority of large
revisions at lag 12 in both the retail series and the simulated series suggest that this result
is not unique to retail sales series alone. Thus, programs using the X-11 method of
seasonal adjustment that are not revising every month should consider revising their
seasonally adjusted estimates a year after their initial estimate and perhaps a year prior to
any other revised unadjusted estimate.

One takeaway from our simulation study was that under certain conditions, the number of
forecasts used to extend the series could affect the timing of the largest revisions. In our
study, we saw some large revisions around lag 6, lag 7 and lag 18 when the forecast
length was set to half the seasonal filter length (which is a multiple of 6 but not 12).
However, this finding did not extend to our retail sales series.

For future research, we would like to investigate the effect of certain regressors, like
outliers, trading day effects and moving holiday effects, on revisions. This could also
include analysis of how far back to revise when adding new regressors to the model.
Although we used these types of regressors in our retail sales series study, we did not
study their individual impact on revisions here.

We are also interested in extending this research to other types of series, including series
from other subject areas, stock series, and quarterly series. While it seems likely that the
pattern and timing of revisions will be similar across these different types of series, it is
important to verify. It would also be interesting to see if the seasonal pattern in the mean
squared revision series is present in other types of series.
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