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Abstract
Traditional cluster analysis methods used in ordinal data, e.g. k-means, are mostly heuristic and

lack statistical inference tools to compare among competing models. To address this, we have
developed cluster models based on finite mixtures and applied them for the first time to the case of
repeated ordinal data. We estimate them within a Bayesian setting using Markov chain Monte Carlo
scheme and Metropolis-Hastings sampling. In particular, we present a hierarchical model with data
at 3 levels: clusters, individuals and occasions; where only the latter two are observed.

We illustrate the model using 2001-2011 self-reported health status (SRHS) from the House-
hold, Income and Labour Dynamics in Australia (HILDA). SRHS is an ordinal variable with cate-
gories: poor, fair, good, very good and excellent. Overall, we found evidence for five latent groups:
two where SRHS remains stable, two where it improves overtime and one where it worsens.The
data along with these estimated groups are visualized using heatmaps.

Key Words: Ordinal data, repeated measurements, cluster analysis, Bayesian hierarchical models,
WAIC, health status.

1. Introduction

A variable with an ordered categorical scale is called ordinal (Agresti, 2010). That is, ordi-
nal data is categorical data where the outcome categories have a logical order and thus the
order of the categories matters. Examples of ordinal responses are: socio-economic status
(low, medium, high), disease severity (not infected, initial, medium, advanced), agreement
with a given statement (strongly disagree, disagree, neutral, agree, strongly agree) and in
general any other variable that use the Likert scale.

Analyses of ordinal data are very common but often don’t fully exploit their ordinal
nature. First, ordinal outcomes are treated as continuous by assigning numerical scores to
ordinal categories. Doing this equates to assuming that the categories are equally spaced in
the ordinal scale which might be an unnecessary and restrictive assumption. Secondly, tra-
ditional cluster approaches such as hierarchical clustering (Kaufman & Rousseeuw, 1990) ,
association analysis (Manly, 2005), and partition optimization methods like k-means clus-
tering (Lewis et al., 2003); are not based on likelihoods and thus statistical inference tools
are not available and model selection criteria can’t be used to evaluate and compare dif-
ferent models. Thirdly, another common approach is to ignore the order of the categories
altogether and thus treat the data as nominal. By ignoring the ranked nature of the cate-
gories this approach reduces its statistical power for inference.

Ordinal data are often analysed by modelling the cumulative probabilities of the ordinal
response and using a link function, usually logit or probit. The Proportional Odds Model
(POM) by McCullagh (1980) is a cumulative logit model and is the most popular model to
analyse ordinal data. The Proportional Odds property gives the model its name and implies
that the odds ratios for describing effects of explanatory variables on the ordinal response
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are the same for each of the possible ways of collapsing the q ordinal categories to a binary
variable.

Further challenges are posed when repeated measurements of an ordinal response are
made for each unit, such as in longitudinal studies. For these two-way data (unit by time
period), the correlation structure among repeated measures needs also to be accounted for.
Agresti (2010); Vermunt and Hagenaars (2004) discussed three main approaches to analyse
such data: marginal models, subject-specific models and transitional models. Here we
develop a model based on the last approach only. Tansitional models include past responses
as predictors. That is, they model the ordinal response Yt conditional on past responses
Yt−1, Yt−2, . . . and other explanatory variables xt. A very popular transitional model is the
first-order Markov model in which Yt is assumed to depend only on Yt−1 and covariates
at time t. For example, Kedem and Fokianos (2002) used a cumulative logit transitional
model in the context of a longitudinal medical study.

Model-based clustering methods using finite mixtures have been proposed by several
authors (McLachlan & Peel, 2000; Everitt, Landau, & Leese, 2001), see literature re-
views by Fraley and Raftery (2002); Marin, Mengersen, and Robert (2005); Melnykov
and Maitra (2010). Models are often fitted using the Expected-Maximisation algorithm
(EM) (Dempster, Laird, & Rubin, 1977) and focus on either continuous, discrete or nom-
inal responses. A major advantage of this approach is the availability of likelihoods, for
the probability models, and therefore access to various model selection criteria to evaluate
and compare different models. Model-based cluster models for binary, count and categor-
ical data have been proposed by Biernacki, Celeux, and Govaert (2000); Pledger (2000);
Govaert and Nadif (2008); Arnold, Hayakawa, and Yip (2010); Labiod and Nadif (2011);
Pledger and Arnold (2014). More recently, Fernández, Arnold, and Pledger (2014), and
Biernacki and Jacques (2015) have also modelled ordinal responses. Our purpose is to ex-
tent these models to the case of repeated ordinal data and estimate them withing a Bayesian
approach.

The structure of this document is as follows. Section 2 details data to be used to ilus-
trate the model. Next, section 3 shows the methodology in detail, including the likelihoods,
Bayesian estimation and model comparison. Section 4 presents the results and the esti-
mated transition matrices. Finally, discussions and conclusions are presented in section 5.

2. Data

2.1 Health Status over 2001-2011 in Australia

To motivate the model we use self-reported health status (SRHS) from the Household, In-
come and Labour Dynamics in Australia (HILDA) Survey 1. HILDA is a household-based
panel study which began in 2001 that collects information about economic and subjective
well-being, labour market dynamics and family dynamics. The wave 1 panel consisted of
7,682 households and 19,914 individuals.

SRHS is an ordinal variable with 5 categories: poor, fair, good, very good and excellent.
We use individuals with complete records over 2001 to 2011, that is we have 11 occasions
of SHRS from the same individuals.

Figure 1 shows the distribution of SRHS in 2001 and 2011. In 2001, most individuals
reported ‘Very Good’ and ‘Good’ health. About an eight reported their health as ‘Excellent’

1The work presented here uses unit record data from the Household, Income and Labour Dynamics in
Australia (HILDA) Survey. The HILDA Project was initiated and is funded by the Australian Government
Department of Social Services (DSS) and is managed by the Melbourne Institute of Applied Economic and
Social Research (Melbourne Institute). The findings and views reported here, however, are those of the author
and should not be attributed to either DSS or the Melbourne Institute.
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and about a tenth as ‘Fair’. A very low number of individuals said their health was ‘Poor’.
In contrast to that, in 2011 the same individuals reported lower health levels. ‘Excellent’
and ‘Very Good’ answers decreased and ‘Poor’ and ‘Fair’ increased. The distribution of
SRHS shifted to the left and there are fewer responses in the extremes and more in the
middle 2011 than in 2001.

2001 2011

Figure 1: Self-Reported Health Status (SRHS) in 2001 and 2011 in HILDA

For each individual SRHS is highly correlated across time . Table 1 presents the 2001-
2011 transitions between ordinal categories for all individuals. Diagonal proportions are
very high, about 40%, and the same is true for the cells close to the diagonal. In words,
even after 11 years individuals are very likely to report the same health status or the one
next to their starting status.

Table 1: 2001-2011 transitions in SRHS

2011
Poor Fair Good Very good Excellent Total

2001

Poor 0.42 0.40 0.14 0.04 0.00 1.00
Fair 0.13 0.44 0.34 0.07 0.01 1.00

Good 0.02 0.21 0.54 0.20 0.02 1.00
Very good 0.01 0.09 0.38 0.46 0.07 1.00
Excellent 0.01 0.04 0.21 0.47 0.27 1.00

3. Model

Let Y be an ordinal outcome with q levels measured over n subjects on p occasions. Sub-
jects come from one of R latent clusters. The indexes i, r, j are used for subjects, clusters,
and occasions; and ordinal levels are denoted k. Extending the POM (McCullagh, 1980),
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we model the cumulative probabilities of each ordinal outcome as

Logit[P (Yij ≤ k|i ∈ r, Yi(j−1))] = µk − αr −
q∑

k′=1

βk′I(Yi(j−1) = k′)

i = 1 . . . n; r = 1, . . . , R; j = 2, . . . , p; k, k′ = 1 . . . q (1)

Where:

• I(.) is an indicator function equal to 1 if the argument is true, and 0 otherwise. Here
Yi(j−1) = k′ is the value of the response category of the previous ocassion.

• µ1 ≤ µ2 ≤ · · · ≤ µq−1 ≤ µq = ∞; k = 1, . . . , q

• α1 = 0 ; r = 1, . . . , R and

• βq = 0; k′ = 1 . . . q

Note that we do not model the first response (Yi1) and instead condition on its value.
The µk are the cutoff points (POM’s latent variable representation), αr the cluster effects
and βk the effect of having outcome k at the previous ocassion. Finally, πr represent the
mixing probabilities of the finite mixture model (πr > 0;

∑R
r=1 πr = 1).

3.1 Likelihood

Given the dependence on the previous outcome, we can factorize the likelihood to separate

the contribution of the first occasion (Y = (Yi1,
∼
Y )). Let πr be the proportion of subjects

from cluster r and P (Yij = k|i ∈ r, Yi(j−1)=k′) = θrk′k. The model’s likelihood for the
transitions (j ≥ 2) then becomes

L(
∼
Y |µ, α, β, π, Yi(j−1)) =

n∏
i=1

R∑
r=1

πr

p∏
j=2

q∏
k′=1

q∏
k=1

θ
I(Yij=k,Yi(j−1)=k′)

rk′k (2)

3.2 Bayesian Estimation

Following Robert and Casella (2005); Arnold et al. (2010); Gelman et al. (2014); McKinley,
Morters, Wood, et al. (2015) we use the following weakly informative priors:

yij | θrk′. , i ∈ r ∼ Discreteq(θrk′.),

i = 1 . . . n; j = 2, . . . , p; r = 1, . . . , R; k′ = 1 . . . q

θrk′k | µ, α, β =
1

1 + e−(µk−αr−βk′ )
− 1

1 + e−(µk−1−αr−βk′ )
,

r = 1, . . . , R; k = 2 . . . q; k′ = 1 . . . q; θrk′1 =
1

1 + e−(µ1−αr−βk′ )

µ | σ2
µ

iid∼ OS[Normal(0, σ2
µ)], µk > µk−1; k = 1 . . . q; µq = ∞

αr | σ2
α

iid∼ Normal(0, σ2
α), r = 1, . . . , R; α1 = 0

βk′ | σ2
β

iid∼ Normal(0, σ2
β), k

′ = 1 . . . q; βq = 0

σ2
µ ∼ Inverse Gamma(aµ, bµ)

σ2
α ∼ Inverse Gamma(aα, bα)

σ2
β ∼ Inverse Gamma(aβ, bβ)

π ∼ Dirichlet(φ), r = 1 . . . R
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Where OS=Order Statistics and the hyperparameters are set to: aµ = aα = aβ = 3,
bµ = bα, bβ = 40 , and φ = 1.5. I is the identity matrix.

In words, we assign Truncated Normal priors for the cutoff points µ, Normal priors
centered on zero and with an unknown variance for α and β, a Dirichlet prior for the
mixing probabilities π, and Inverse Gamma priors for the unknown variances σ2

µ, σ2
α and

σ2
β . Figure 2 shows a graphical representation of the model.

φ

πr ri

θrk′k

σ2
α

aα bα

αr

µk

σ2
µ

aµ bµ

yij yij−1

yi1

βk′σ2
β

aβ

bβ

i = 1 . . . n
j = 2 . . . pk, k′ = 1 . . . q r = 1 . . . R

Figure 2: Graphical representation of the model

Given the likehood, equation 2, the posterior distributions for the model parameters are
not available in close form. To perform the posterior computation, we use a Markov chain
Monte Carlo (MCMC) sampling scheme. In particular, we use a Randon-Walk Metropolis-
Hastings algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953; Hastings,
1970) to sample block of parameters separately (µ, α, β and π and the parameters of the
priors). For instance, to sample from the posterior of µ = (µ1, . . . , µq−1) we followed
McKinley et al. (2015) and used the a truncated uniform with a fixed stepsize τ as a pro-
posal. Specifically, we used the following algorithm

1. Set starting values for all the model parameters’:
(µ, α, β, π, σµ, σα, σβ) = (µ0, α0, β0, π0, σµ0, σα0, σβ0)

2. Set the stepsize of the proposal (τ )

3. Choose a µk for k = 1, . . . , q − 1 at random and generate a new µ′
k candidate from

its proposal

µ′
k | µk, µk−1, µk+1∼U [ max(µk−τ, µk−1), min(µk+τ, µk+1)] k = 1, . . . , q−1

4. Accept µ′
k with probability

min

[
1,

P (Y |µ′, α, β, π)P (µ′|σ2
µ)

P (Y |µ, α, β, π)P (µ|σ2
µ)

× min(µk + τ, µk+1)− max(µk − τ, µk−1)

min(µ′
k + τ, µk+1)− max(µ′

k − τ, µk−1)

]
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5. Repeat steps 3 and 4 until convergence.

Here P (Y |µ, α, β, π) is the likelihood (equation 2) and P (µ|σ2
µ) is the prior for param-

eters: µ | σ2
µ

iid∼ OS[Normal(0, σ2
µ)] µk > µk−1, k = 1 . . . (q − 1). Detailed proposals for

all the model parameters are given in Appendix C.

3.3 Model Comparison

There are several ways to compare between models in a Bayesian framework: Bayes Fac-
tors (Kass & Raftery, 1995)), estimating the joint posterior distribution of all of the com-
peting models using RJMCMC and others (Green, 1995; Richardson & Green, 1997) and
using information criteria. We will use the latter approch here.

Importantly, (frequentist-like) information criteria that use a loss function evaluated at
a point estimate can’t be directly applied in a Bayesian setting. For example, this is the
case for AIC and BIC that compare model (mis)fit by evaluating the log-likelihood at the
maximum likelihood estimate. This is specially relevant for mixture models where the
likelihood is invariant to the labelling of the individual mixture components, also known as
the label switching problem (Richardson & Green, 1997; Marin et al., 2005).

To compare among competing models we thus use the Widely Aplicable Information
Criterion (WAIC) (Watanabe, 2009, 2010) that uses all the estimated posterior distribution.
For a model with parameters ω and data Y , WAIC is defined as

WAIC = −2
n∑

i=1

log
∫

p(Yi|ω)p(ω|Y )d(ω) + 2p

Where:

• p =
∑n

i=1{log
∫
p(Yi|ω)p(ω|Y )d(ω)−

∫
log p(Yi|ω)p(ω|Y )d(ω)} is the number of

effective parameters

Alternatively, the number of effective parameters could also be approximated by p2 =∑S
i=n Variance[log p(Yi|ω)]. Defined this way the WAIC is in the same scale as other

information criteria. Gelman et al. (2014) calls the observation i contribution to the likeli-
hood p(Yi|ω) ‘log pointwise predictive density’. We follow this terminology here and call
WAIC’s first component ‘log predictive density’ (LPD).

As a comparison, we also present the Deviance Information Criterion (DIC) (Spiegelhalter,
Best, Carlin, & Van Der Linde, 2002; Spiegelhalter, Best, Carlin, & Linde, 2014) calcu-
lated using the relabelled MCMC chains using the algorithm proposed by Stephens (2000).
We separate the two components of the DIC: Mean Deviance (D̄) and number of effective
parameters (pd) so that these could be adequately compared with the WAIC components.
The DIC is been used extensively in Bayesian applications, although it has the limitation
of needing a point estimate that adequately represents the estimated posterior. If this is not
the case, ie with multimodal posteriors, pd could be negative. Table 3 (Appendix B) shows
model comparison using unprocessed MCMC output and is a good example of this.

4. Results

We estimate the model using a random subsample of 442 individuals that had their SRHS
recorded in all waves (about 10% of the total). We used the R statistical language (R 3.02)
linked with C++ routines and fitted models where the number of latent groups (R) varying
from one (R=1, no-clustering) to six (R=6, six latent groups or row-clusters). The MCMC
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chain was ran for about a million iterations (3 parallel chains and around 200,000 burn-in)
and post-processed the output according to the the algorithm of Stephens (2000) to rectify
label switching. 2 For each fitted model, we present the following: number of clusters (R),
total number of parameters (Pars), DIC (D̄ and pd) and the two versions of the WAIC (LPD,
p, p2). Table 2 shows the results. All the information criteria suggest the same conclusion,
the model with five clusters seems to provide the best fit.

Table 2: Model Comparison relabelled chains

R Pars D̄ pd DIC LPD p WAIC p2 WAIC2
1 7 3564.8 6.8 3571.6 3555.9 8.9 3573.8 9.0 3573.9
2 10 3233.9 8.3 3242.1 3218.3 15.6 3249.4 15.7 3249.8
3 12 3073.5 9.9 3083.3 3061.6 11.8 3085.3 12.0 3085.5
4 14 3042.2 11.4 3053.6 3029.9 12.3 3054.5 12.5 3054.9
5 16 3035.2 12.9 3048.1 3022.5 12.8 3048.0 13.0 3048.4
6 18 3035.6 13.0 3048.6 3022.6 12.9 3048.5 13.2 3049.0

What do these estimated five row-clusters look like? Figure 3 shows estimated tran-
sition matrices for three groups (out of the five). The estimated probabilities of having
the same response in the current period are given by the diagonal of the matrix. Averaged
over 2001-2011, individuals tend to move towards the middle responses in their year to
year transition. That is, individuals that whose response was ”Poor” (”Excellent”) are more
likely to report ”Fair” (”Very Good”) the next period. The groups with negative cluster ef-
fect (α < 0) are more likely to have responses in the end of the scale (”Poor” and ”Fair”’)
and not move in the next year. The opposite is true for groups with a negative α. They are
more likely to have responded ”Very Good” or ”Excellent” and have a similar response in
the next period.

5. Discussion and Conclusions

Model-based cluster models provide a way to estimate latent groups and more generally
reduce the data dimensionality even for correlated data. In this paper, we have used finite
mixtures of cumulative logits that include the past response as a covariate to model repeated
ordinal data. We estimated the model in a Bayesian setting using MCMC with a block
Metropolis-Hastings sampler. To compare among models with different number of mixture
components we used WAIC and DIC. Relabelling strategies allowed us to identify the latent
groups itself, that is each mixture component.

As an ilustration, we applied the model to self-reported health status data (poor, fair,
good, very good and excellent) over 11 years in Australia and found evidence for five
latent groups with distinct transitions overtime: two where it remains stable, two where it
improves and one where it worsens.

The model has some limitations. Firstly, it is computer-intensive and estimation might
become impractical with big datasets (hundred of thousands). In general this is the case for
MCMC based inference but in our case it is complicated by the unavailability of the pos-
terior distribution in closed form and the need to simulate using the Metropolis-Hastings
sampler. This however is only a technological limitation and can be overcome, or at least
alleviated, by the use of grid computing and parallelizing the computer code used for esti-
mation.

2Results for the unprocessed MCMC, including traceplots that ilustrate the label switching problem could
be found in Appendix A.
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αr = 0 (baseline)

αr < 0 αr > 0

Figure 3: Transition matrices θ̂rk′k for several clusters

Secondly, caution should be taken on the interpretation of the number and in general
individual mixture components. Mixture models are very flexible and with the enough
number of components could fit any dataset. Information criteria like WAIC and DIC
penalise model complexity but as the Bayesian equivalents of the AIC they potentially
also select too many cluster components. Measures like the WBIC (Watanabe, 2013) that
include a bigger penalty for model complexity could be worth exploring here.

Lastly, Bayesian approaches can always be sensitive to choice of priors. Our weakly
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informative priors could even make this problem worse. In order to rule out this, we have
ran simulations with different priors and similar sample size and number of cluster to the
SRHS data. Although not shown here we found that the conclusions are robust to the choice
of priors. A simulation study could nonetheless be important for a more comprehensive
check.

In addition to the above, we plan to extend the model in two directions: exploring other
ways to incorporate the correlation and including the number of mixture components as
parameter in the model. The former could be done by including past responses of higher
orders, not just the previous response as in the current model. The latter would imply the
use of trans-dimensional models such as RJMCMC (Green, 1995; Richardson & Green,
1997) or Bayesian Non-Parametric models (Müller, Quintana, Jara, & Hanson, 2015). Al-
beit more complex these models have also the advantage of estimating a posterior for the
number of mixture components and thus simplify the comparison of competing models.
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Appendix

A. Unprocessed and relabelled MCMC output for selected parameters

Unprocessed (selected α’s)

Relabelled (selected α’s)
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B. DIC estimates using unprocessed chains

Table 3: Model comparison unprocessed chains

R Pars D̄ pd DIC LPD p WAIC p2 WAIC2
1 7 3564.8 6.8 3571.6 3555.9 8.9 3573.8 9.0 3573.9
2 10 3233.9 -703.1 2530.8 3218.3 15.6 3249.4 15.7 3249.8
3 12 3073.5 -335.0 2738.4 3061.6 11.8 3085.3 12.0 3085.5
4 14 3042.2 -442.5 2599.7 3029.9 12.3 3054.5 12.5 3054.9
5 16 3035.2 -131.4 2903.8 3022.5 12.8 3048.0 13.0 3048.4
6 18 3035.6 -508.7 2526.9 3022.6 12.9 3048.5 13.2 3049.0

C. Proposals

Choose initial values for all the parameters in the model µ, α, β, π, σ2
µ, σ2

α, and σ2
β , and

update them according to the following:

µ′
k | µk, µk−1, µk+1∼U [ max(µk−τ, µk−1), min(µk+τ, µk+1)] k = 1, . . . , q−1, µ0 = −∞, µq = ∞

α′
r | αr

iid∼ Normal(αr, σ
2
αp) r = 2 . . . R, α1 = 0

β′
j | βj

iid∼ Normal(βj , σ2
βp) j = 2 . . . p, β1 = 0

logit(w′) | logit(w) ∼ Normal(logit(w), σ2
πp) w = πr1/(πr1 + πr2) r1, r2 ∈ 1 . . . R

π′
r1 = w′(πr1 + πr2) π′

r2 = (1− w′)(πr1 + πr2)

log(σ′2
µ ) | log(σ2

µ) ∼ Normal(log(σ2
µ), σ

2
σµp)

log(σ′2
α ) | log(σ2

α) ∼ Normal(log(σ2
α), σ

2
σαp)

log(σ′2
β ) | log(σ2

β) ∼ Normal(log(σ2
β), σ

2
σβp)

Where the proposals “steps” τ , σ2
αp, σ2

βp, σ2
πp, σ2

σµp, σ2
σαp and σ2

σβp are fixed.
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