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Abstract

The Hosmer Lemeshow Test (HLT) is commonly used as a goodness of fit test for logistic
regression. However, it is over-powered in medium (100,000 to 500,000 observations) to large (1
million plus observations) datasets. Recent research [Paul, Pennell, Lemeshow 2012] proposes to
address this by increasing the number of groups for the HLT to disperse the power. This helps
expand the HLT to datasets of up to 25,000 observations. Yet, in today’s world of big data we need
to be able to assess fit on logistic regression models with large datasets. We propose a bootstrapping
approach to obtain a modified HLT (mHLT) statistic. Several point estimates are considered for
being the mHLT, including a median, trimmed mean and 5th and 95th percentiles.
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1. Introduction

Logistic regression is a commonly used statistical model when you have two possible out-
comes. It has been used to predict if a customer will purchase again (yes or no), mortality
outcomes (alive or dead ) and many more. One of the most common tests to assess if your
model fits your data well, is called the Hosmer-Lemeshow Test (HLT). This test has been
used for many years and is common in modern statistical software packages.

After reading a paper by Lemeshow [7] the issue became clear. The power of the HLT
increase very quickly with sample size. This is true with most statistical tests however, it is
not a desirable property with a goodness of fit test. The issue of power increasing rapidly
with sample size was also1 found by Kramer and Zimmerman [5] while studying mortality.

1.1 Current State

Currently, there are 3 different data situations that exist for applying the HLT to determine
model fit. The first is when your sample is small ( n ≤ 1,000) then setting your groups equal
to ten. The second case is where your data is slightly bigger (1,000 ≤ n ≤ 25,000) and you
have to use an equation to determine the number of groups. The third case, which is the
most concerning involves larger datasets over 25,000 observations. The HLT is simply not
recommended in these situations. This is the area that needs improvement so practitioners
can make informed decisions regarding model fit.

2. Potential Solutions

Below are multiple methods that attempt to overcome this limitation and provide a method
for determining model fit for large datasets using logistic regression. The goal is to find a
∗University of Northern Colorado
†University of Northern Colorado
1I encountered this issue while running a large logistic regression (over a million observations), at work.

After reconsidering the model I had specified and trying several other models that made sense, I found myself
still unable to ‘fail to reject’ on a HLT.
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way to modify the HLT or potentially apply it more than once to different parts of the data
in order to have a valid test statistic with larger datasets.

Proposed Solutions:

1. Split the data set

(a) Fix the number of successes in each sample

(b) Divide the data set into a number of small dataset where the HLT is known to
work using SRS.

2. Subsampling

(a) Use small samples and test the HLT repeatedly with the group size fixed at ten
(g=10).

(b) Use larger samples of 25,000 and test the HLT repeatedly with the group size
fixed at some appropriate yet undetermined level.

One thing that is solved by the approach in 1a is that the number of groups ‘g’ would
be constant for each sample. The samples could simply take all of the successes and split
them into ‘q’ mutually exclusive groups. Simple Random Sampling (SRS) could then be
performed to on the remaining observations (failures) to complete each sample.

If SRS alone was performed 1b there could be a different number of success in each
sample which might lead to a different number of groups, see Table 1 (Each group size is
in bold that would be selected by using Equation 1) . Then one is left with the problem
of trying to draw a meaningful conclusion from a collection of HLT statistics that were
performed with varying number of groups. Equation 1 is reproduced from [7] showing
how to calculate the number of groups for samples larger than 1,000 observations.

g = max
(
10,min

[
m

2
,
n−m

2
, 2 + 8

( n

1000

)2
])

(1)

Where:
m = number of success
n = sample size

It was determined that approach 1b was a dead end and our time was invested in a
repeated sampling method.

Sample n Success Failures m
2

n−m
2 2 + 8

(
n

1000

)2 df
1 10,000 4,000 6,000 2,000 3,000 802 800
2 10,000 1,000 9,000 500 4,500 802 498
3 10,000 500 9,500 250 4,750 802 248

Table 1: Example of Difficulties of using SRS on group size

It is worth noting that in the hypothetical example in Table 1, the degrees of freedom
are 3.2 times as large if you compare sample 1 to sample 3. This shows why this approach
was not pursued.

JSM2015 - Section for Statistical Programmers and Analysts

524



Variable Type Description
PurchaseFlag Dichotomous ( 1= Suc-

cess and 0 = Failure)
1 or 0 flag indicating if a customer
made a purchase in 14months follow-
ing their first order

Order1items Integer Values are 1+
ModClassOrder Factor The modularity class that a customer is

assigned to after their first purchase
Order1Channel Factor The Channel that was used to place first

order, e.g. Email or Catalog
ordermonth Factor Month Factor to help account for sea-

sonality differences that may exist
Order1Sales Continuous The amount of money spent on first

purchase in US dollars , not adjusted
for inflation

EmailStatus Factor Email Status at time of data pull, e.g.
Opted In or Opted Out

Table 2: Description of Variables

3. Using data

Using our dataset containing 1,118,829 rows we took a 1,000 random samples of size
n=1,000 and n=25,000. For each sample a logistic regression model was fit and then a
Hosmer-Lemeshow Goodness of Fit Test was performed. The sampling was conducted
with replacement. The model that was fitted can be seen in equation 3 . For each pass of
the simulation 1,000 observations were taken at random and the model in 3 was fit. Then
a HLT test was fit with the number of groups equal to ten. The HLT statistic and the cor-
responding p-value were saved. This was done repeatedly and generated a distribution of
HLT statistics and p-values. These can be seen in figure 4 and 4 . We expect about 5%
of the tests to be rejected based on an α = .05 assuming that we have the correct model
specified. A rejection rate of 0.06 was found which is quite close and may move even close
to 5% if the number of iterations was increased.

PurchaseFlag = Order1items + ModClassOrder1 + Order1Channel + factor(ordermonth) +
Order1Sales + EmailStatus

(2)

4. Simulation with Sample Size of 1,000
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Figure 1: Hosmer-Lemeshow Test Statistic and associated p-values from simulation using
n=1,000 with repetitions =1,000
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Figure 2: Distribution of the Hosmer-Lemeshow Test Statistic from simulation using
n=1,000 with repetitions =1,000
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5. Simulation with Sample Size of 25,000
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Figure 3: Hosmer-Lemeshow Test Statistic and associated p-values from simulation using
n=25,000 with repetitions =1,000

Which statistic would be appropriate to use for determining goodness of fit is not yet
clear. Examining the distributions of p-values for both simulation conditions both Tables 3
and 4 are very close and give values that you would expect from a uniform distribution.

Min. 1st Qu. 5th Percentile Median Mean TrimMean 3rd Qu. 95th Percentile Max.
0.001 0.246 0.040 0.506 0.501 0.502 0.761 0.953 1.000

Table 3: Summary Of P-Values n = 1,000

Min. 1st Qu. 5th Percentile Median Mean TrimMean 3rd Qu. 95th Percentile Max.
0.000 0.106 0.014 0.251 0.324 0.309 0.516 0.835 0.996

Table 4: Summary Of P-Values n=25,000
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Figure 4: Distribution of the Hosmer-Lemeshow Test Statistic from simulation using
n=25,000 with repetitions =1,000

6. Conclusion

There is much work that remains to find a viable solution for using the Hosmer-Lemeshow
Test with large datasets. A greater understanding of the distribution of the the bootstrapped
HLT need to be understood in order to develop, p-values and cutoffs that are theoretically
justified. Future work needs to use simulated data where the true model is known and
examine the performance of the proposed mHLT statistics. There needs to also be a push to
get these tools into the hands of practitioners and applied statisticians. The default option
for all statistical packages that the author is aware of, sets the number of groups equal to 10.
This is only appropriate in small data situations. For the time being, practitioners should at
least be adjusting the number of groups based on sample size where appropriate until a long
term solution is found. The determineG function can be found in Logistic Regression
Tools (lrt) Package2, which is part of an R package currently under development. It will
calculate the appropriate number of groups based upon how large that data are.

2https://github.com/Spoted21/lrt
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