
Machine Learning for Machine Data from a CATI Network

Sou-Cheng (Terrya) Choi∗

We dedicate this article to Fritz Scheuren, ASA1 Fellow and former ASA President,
on the occasion of his 75th birthday.

Abstract

This is a machine learning application paper involving big data. We present high-accuracy
prediction methods of rare events in semi-structured machine log files, which are produced at high
velocity and high volume by NORC’s computer-assisted telephone interviewing (CATI) network
for conducting surveys. We judiciously apply natural language processing (NLP) techniques and
data-mining strategies to train effective learning and prediction models for classifying uncommon
error messages in the log—without access to source code, updated documentation or dictionaries. In
particular, our simple but effective approach of features preallocation for learning from imbalanced
data coupled with naive Bayes classifiers can be conceivably generalized to supervised or semi-
supervised learning and prediction methods for other critical events such as cyberattack detection.

Key Words: Big data, imbalanced data, rare events, natural language processing, machine learning

1. Introduction

The data we processed and analyzed in this study stemmed from NORC’s computer-assisted
telephone interviewing (CATI) system. The CATI network can automatically retrieve and
dial a household phone number from a random sample, drawn from a comprehensive
vendor-prepared phone list, so NORC can conduct surveys and collect data on topics of
public interest, and compute statistics representative of the relevant population. Survey
data, traditionally, consist of relatively small samples and are often analyzed by statistical
techniques (Wolter 2007). More recently, as sizes, varieties, and complexities of survey
data grow faster than ever, novel machine learning methods especially those applicable to
text data are sought after for knowledge discovery and predictive analysis at a large scale
(see Murphy et al. 2014, for instance), an example being topic models (Blei et al. 2003)
applied to cluster survey responses by Wang and Mulrow (2014). Our work here using
naive Bayes method to classify machine messages is another attempt in such a direction.

The NORC CATI system is a vendor-developed black box; we do not have access to the
codebase. It is a distributed system and the infrastructure environment is complex, mostly
maintained by NORC’s information technology department on a daily basis. The system
has a front-end interface running on a web browser with whom an interviewer interacts
to initiate, conduct, and complete a phone survey. There are backend servers that persist
important and sometimes personally identifiable data into databases and machine messages
into rolling log files. At any moment during a business hour, there is data traffic over our
secure network going back and forth among front-end and backend components. These data
are typically text, numeric, voice and image files to and from interactive dynamic webpages

∗Statistics and Methodology Department, NORC at the University of Chicago, 55 East Monroe Street, Suite
3000, Chicago, IL 60603; Department of Applied Mathematics, Illinois Institute of Technology, 3300 South
Federal Street Chicago, IL 60616

1ASA refers to the American Statistical Association.

JSM2015 - Section on Statistical Learning and Data Mining

515

CATI	 Servers	

SQL	 Server	

	
	

Staging	 server	

Dialer	

Las	 Vegas	

	 	 Chicago	

…	

…	

Figure 1: A pictorial representation of NORC’s distributed CATI network.

called HTTP frames. The smallest components of network data are known as packets. For
the purpose of performance profiling, we collect information from HTTP frames down to
the level of packets, as well as machine log files and SQL database trace tables. NORC has
two large call centers across the U.S. continent: one is located in Chicago, Illinois and the
other one in Las Vegas, California. At full capacity, there are as many as 500 interviewers
working with multiple application servers and SQL databases in Chicago. Figure 1 is a
simplified pictorial representation of NORC’s distributed CATI network.

On June 4, 2014, during a regular business hour, our network and database engineers
collected web transactions and packet information on three client machines in our network.
For the three clients, two were in Chicago and one was in Las Vegas; the configuration was
made to gauge the effects of latency, i.e., the delay in time incurred in transferring data over
a long distance.

The HTTP frames and packet data were compressed (saz, pcap) files. We also collected
server log files and database trace tables. For ease of analysis, we decompressed all files and
if necessary transformed them into text format. As a result, during that test-data collection
hour, we amassed almost 30 gigabytes (GB) of data. It is a potential source of big data
coming to NORC at high velocity and high volume. Here is a quick summary of our
collected machine data:

1. Raw data (compressed): 1.8 GB; 267 files.

(a) HTTP frames: 86.9 MB (megabytes)

(b) Packets data: 1.7 GB

(c) Server log: 31.5 MB

(d) Database trace table: 685 MB

2. Decompressed data (text): 28.9 GB; 27,785 files.

3. Analysis results (text) : 15.7 MB; 15 files.

JSM2015 - Section on Statistical Learning and Data Mining

516

We applied various methods for analyzing the datasets for causes of bottleneck perfor-
mance in the system that sometimes occur during a phone connection process. In addition,
from machine-generated time stamps, we measured the time lapses between comparable
web transactions and log messages; and we learnt about the significant effects of latency
(Choi et al. 2014) though we will not go into further details. In the rest of this report, we
focus on natural language processing (NLP) and machine-learning methods we applied on
the collected data.

Here is an outline of this report: In Section 2, we detail some of the characteristics and
challenges of server log data. In Section 3, we develop data preprocessing methods, model
building process, and performance evaluation criteria. Concrete examples are included for
illustration in Section 4. Lastly, we conclude with a few comments and thoughts of future
work in Section 5.

2. Data from Server Log

In the absence of dictionary and metadata, we set out to learn about the characteristics of the
CATI machine language. In particular, we focused on messages in the collected server log
files, one of the four key components of the raw data (see Section 1). Over the server side,
such communication is of high frequency and is captured in text files. The messages are
usually intended for network administrators and application programmers for performance
tuning or problem shooting. These log messages are lines after lines of records about the
internal states of the servers during run-time (e.g., key variable values, memory usage) and
traces of interactions and communication of the server with other network components. At
times when a server experiences stress due to, say, resource shortage, or not behaving as
programmed, it will issue warnings or error messages. These log events are typically semi-
structured, starting with a time stamp, followed by some text of heterogeneous data, which
consist of message type that may take on values such as FINE, DEBUG, INFO, WARNING,
ERROR, or FATAL. Sometimes after the message type, we see a few additional optional
fields such as program filename, method name, class name, and line number at which the
message is defined. Lastly we have the technical content of the message event. Hence
applying NLP techniques and machine learning methods for analysis seems fitting.

Example 2.1 In the following log message, 20140604 103903.913 is the time stamp
of the format YYYYMMDD HHMMSS.ttt, where YYYY represents year in four digits; MM
and DD for month and day, respectively; HHMMSS for hour, minutes, and seconds; ttt
for milliseconds. Error is the message type, which is followed by the message content
indicating the occurrence of an undesirable timeout event (not receiving any or an expected
response from a user or a network component within a time window):

20140604 103903.913 Error: ProntoEventServer. PE_Client removed on
Duration 8453ms Timeout 502ms StackSize 90

In our CATI system, message fields are, however, not always standardized, rendering
some messages appearing irregular and harder to read than usual by human experts or
computer programs. We give a few examples immediately below for illustration of such
difficulties.

Example 2.2 Each of the message field sometimes has missing or extra components. In
this example, the time stamp has no year information and there is an extra slash between
the month and the day, followed by a five-digit sequence (02488 below), which is unclear
to us what it means.

06/04 142452.865|02488|error | CAlarmFilter |general |onXmlRead>
xml element "alarms" is ignored

JSM2015 - Section on Statistical Learning and Data Mining

517

Example 2.3 In this example, the optional fields appear after—instead of before—the mes-
sage content. Their order and formats could appear quite different in other messages.

20140604 063402.441 ERROR : dcb_open(dcbB1D1,NULL)=success (#=0)
InstanceName=TDialogicDevice dcbB1D1
ClassName=TDialogicConferenceDevice MethodName=Initialize
FileName=.\DialogicDeviceConference.cpp LineNumber=138

Among all message types, errors are of particular importance to system administrators
or software engineers. They are the distress signals whereas messages of other types may
be considered “white noise.” Nonetheless, it is not always a straightforward matter to tell
whether a message is an error in our CATI log files. Example 2.4 below lists some of the
abnormal cases we encountered.

Example 2.4 Message type in the following log event is CriticalError, which may,
or may not, indicate a more serious kind of error:

20140604 120353.022 CriticalError: Report: SQL Exception: Query:
sp_Pronto_AddAgentActivity

In other cases, an error message may have no mention of the word “error” anywhere,
or the value of message type is missing. The following are two such examples, where the
first one seems to be an error whereas the second one is not:

20140604 144846.946 04776 A:006 line 5 still in dialing mode.
Sending error 27 to dial command before ending the session

20140604 064238.541 11DE6B80: LineCallSpecificLine(1) return
ADVR_NO_ERROR

The next example is a message that concludes with “no error.” Hence the appearance
of the word “error” in message content may not necessarily represent an erroneous event:

06/04 145011.634|01384 | debug |dispatcher |L:000 |LogMetaEventInfo>
E=GCEV_ANSWERED (802h) : gc_ResultInfo()=0h; gcVal=500h, Normal
completion ccId=6h, GC_DM3CC_LIB ccVal=0h, No Error

3. NLP and Naive Bayes Classifier

The discussion so far has led to the question, among others, that in the presence of afore-
mentioned or other abnormalities, how a log event could be accurately classified as an error
or a non-error. One approach is to learn about the machine log features associated with
known errors and characteristics of recognized non-errors, and then build a model to per-
form a binary classification of a message of unknown type as an error or not. We note that
the notion of “error” here can be generalized to any event of interested outcome that can be
annotated by human experts or inferred by computer programs. The problem of error clas-
sification is not necessarily too difficult, but it comes with some challenges for our CATI
system, to name a few:

1. Software code is not available for tracing or modification.

2. Lack of (updated) documentation.

3. The machine language, that is programmers’ language, in log files is often incompre-
hensible. The log messages often contain many unreadable, unnatural variable names
and values. No dictionary or sufficient metadata are available to us for lookup.

JSM2015 - Section on Statistical Learning and Data Mining

518

4. The event of interest, ERROR, occurs rarely (< 1% of all events) because we do
have a well-maintained and highly functional production system.

Previous works on extensive log analysis include Xu (2010) and Xu et al. (2010), which
apply principal component analysis (PCA) for anomaly detection and decision trees for
visualization. However, our problem appears to be more onerous due to lack of access to
source code.

Our analysis consists of seven basic programmatic steps. The first three steps belong to
the domain natural language processing. The last four steps are related to machine learning;
we repeat them and adjust the input parameters (p, n, and m below) if necessary, until the
model performance in Step 7 is satisfactory.

1. Read every event line of a log file into three fields: time stamp, message type, and
message content. If optional fields such as filename or method name are available,
we consider them parts of the message content. To enhance the effectiveness of our
reading task, we employ regular expressions in Python.

2. Assign a class to every event by looking at value of message type, i.e., set an out-
come variable isError to true if message type contains the word “error” (case
insensitive), and false otherwise.

3. Reduce all messages into tokens of words.

4. Select top p most frequently seen words as features.

5. Learn on a time-consecutive training set of messages whose size, n, is user chosen.

6. Classify a test set of m messages that happened after the training set messages.

7. Evaluate performance of the prediction model.

Our machine-learning method of choice in this study is naive Bayes classification—
it could have been decision tree, random forest, or other models; see, for example, Han
et al. (2012) for an overview of these methods. Here we give a succinct summary of the
naive Bayes classifier. Given a training dataset {ai}ni=1 and each item ai’s class label
ci ∈ {Cj}Kj=0. Suppose each ai has p given feature values {Xk = xi,k}pk=1. When a new
data point an+1 with its property values {Xk = xn+1,k}pk=1 come in, we want to classify
it by estimating the probabilities of it belonging to each class Cj given its features. In
particular, when K = 1, we have a binary classification problem. We use the shorthand
P (Cj |X) ≡ P (cn+1 = Cj |Xk = xn+1,k for k = 1, . . . , p). Then, by the Bayes theorem
and assuming class conditional independence, we have

P (Cj |X) =
P (X|Cj)P (Cj)

P (X)
∝ Πp

k=1P (Xk|Cj)P (Cj), (1)

product of the probabilities of the item’s features given a class and the proportion of the
class, both estimated from the training set. The algorithm simply classifies the new data
point to be in class CJ such that J = arg maxj=0,...,K P (Cj |X). Note that the quantity
P (X) in (1) can be omitted in the optimization process as it is the same across all classes.

The naive Bayes classifier is in practice a very efficient and robust algorithm even when
the assumption of conditional independence may not hold for an input dataset; see, for
example, López et al. (2013). When at a future time we know for certain about the class true
value, CJ∗ , of the data point an+1, we can then compare CJ∗ with the model’s previously
predicted value CJ , and update the confusion matrix

[
a b
c d

]
, where a and d are respectively

JSM2015 - Section on Statistical Learning and Data Mining

519

the true positive and true negative counts, whereas b and c are the false positive and false
negative counts. Note that a + b + c + d = m, the size of test set. We can then proceed to
compute the prediction model’s accuracy and precision, which are defined as a+d

m and a
a+b ,

respectively, as they are among the most common performance measures for a prediction
model; see, for example, Han et al. (2012).

We use an open-source Python package called Natural Language Toolkit, or NLTK in
short; see Bird et al. (2009). We started with a simple adaptation of the NLTK examples.
Unfortunately it resulted in poor accuracy, memory exhaustion, and slow performance.
There are a few strategies in implementation that we have found useful in overcoming the
performance problems and generally resulting in better model predictiveness.

1. Exclude stop words (e.g., prepositions such as “of” and “from”) from the features
because such frequently seen words are not predictive of errors or non-errors.

2. Change all words to lowercase in tokenization and feature selection processes. This
reduces number of features without sacrificing predictive power of the model.

3. Exclude numbers from features. This strategy is found to be helpful in our study but
may not always be effective in other cases.

4. Preallocate a significant number of features for learning from error messages. We
cannot emphasize enough that this is the most important and effective strategy of
all in our experience. Since error events are rare, features were quickly filled up by
non-error content, and consequently the model would not have accumulated enough
information about error events, resulting in poor predictive accuracy due to too small
values of P (Xk|Cj) and P (Cj) in (1).

A common technique that we have not used is simulation or over-sampling of rare
events during the training stage so as to increase the values of P (Xk|Cj) and P (Cj). For
a comprehensive discussion of challenges and strategies for learning rare events, we refer
readers to a recent review by López et al. (2013).

4. Examples

In this section, we present two examples. Built on NLTK (version 3.0.0), we developed an
object-oriented class in Python (version 2.7.10) called norc classwith simple interfaces
for reading a text log file; tokenizing messages with NLTK’s function word tokenize();
assigning labels; picking features; building models mainly based on methods train()
and classify many() in the NLTK class NaiveBayesClassifier; and last but
not least, displaying results.

Example 4.1 We built a learning and prediction model with p = 562 features selected
from a training set of size n = 20, 000. The following results show that, on a test set of size
m = 50, 210, with less than one percent errors, the trained classifier predicted only one
error message incorrectly as non-error, given a total of 110 error events; that is to say, the
prediction model’s accuracy was 0.95 and its precision was 0.99. The two most predictive
words of errors were “circuit” and “pronto”. The absence of the words “failure” and
“dialogic”, or the presence of “*dlggctelapi” were most predictive of a non-error event
(we use an asterisk to mask the vendor name).

len(documents) = 71210
len(features) = 562
len(train_set) = 20000
len(test_set) = 51210
n_errs = 697, percentage = 0.98

JSM2015 - Section on Statistical Learning and Data Mining

520

Confusion matrix =
[109 1]
[2340 48760]
Accuracy [0-1] = 0.95. Precision [0-1] = 0.99
Most Informative Features

circuit = True True : False = 12799.6 : 1.0
pronto = True True : False = 163.4 : 1.0
failed = False False : True = 128.8 : 1.0

dialogic = False False : True = 122.4 : 1.0

*dlggctelapi = True False : True = 95.3 : 1.0

Example 4.2 In this example, the number of sample messages in the dataset was 97, 832
and about merely one percent were error messages. The first n = 88, 049 messages were
used to build a naive Bayes classifier with p = 2, 000 features. On the test set consisting
of the remaining 9, 783 messages, the model predicted error events at an accuracy of 0.97
and a precision of 0.98. The most predictive words of error messages were “exception”,
“page”, “intweb”,“putting”, and “list”.

len(documents) = 97832
len(features) = 2000
len(train_set) = 88049
len(test_set) = 9783
n_errs = 1117, percentage = 1.14

Confusion matrix =
[100 2]
[243 9438]
Accuracy [0-1] = 0.97. Precision [0-1] = 0.98
Most Informative Features

exception = True True : False = 4311.8 : 1.0
page = True True : False = 3569.3 : 1.0

intweb = True True : False = 2141.6 : 1.0
putting = True True : False = 1189.8 : 1.0

list = True True : False = 973.5 : 1.0

5. Conclusions

We developed systematic ways of collecting and parsing data in NORC’s distributed CATI
production network. By examples of event messages in server log files, despite their highly
technical nature, we built performant supervised models for classification of rare error.
The key enabling data preprocessing technique here is preallocation of features in memory
dedicated to learning most frequently seen words of rare event messages.

For future work, we shall continue to refine and automate the naive Bayes classification
model, making it incremental and with less memory and computational requirements. We
could employ more robust techniques such as k-fold cross validation and ROC curves for
model quality evaluation (Han et al. 2012). When the work is mature, we could port our
prototype to Hadoop or Spark servers for large-scale (near) real-time analysis. We may
also adapt our model to predict other events of business interests such as long wait time
before a call is connected or delays in inbound calls. Lastly, it would be valuable to predict
occurrence of a positive event in advance. Our preliminary models that learnt about each
example as a brief time window of messages unfortunately yielded low accuracy (around
the value of 0.6). The approach was not effective probably because many attributes from
events leading up to errors became intermixed with those associated with non-errors—
better models have yet to be developed.

JSM2015 - Section on Statistical Learning and Data Mining

521

Acknowledgement

We thank the inputs and feedback from our colleagues at NORC: Kennon Copeland, Rick
Kelly, Matt Krump, Robert Montgomery, Edward Mulrow, Josh Seeger, Benjamin Skalland,
Sean Ware, Kirk Wolter, Patrick van Kessel, Patrick Zukosky, as well as members of
NORC’s Telephone Surveys and Support Operations, Social Media Analytics Group, and
last but not least, the Innovation Days Committee. Any mistakes in the paper are however
ours to own.

REFERENCES

Bird, S., Klein, E., and Loper, E. (2009), Natural Language Processing with Python, O’Reilly Media, Inc.
Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003), “Latent Dirichlet Allocation,” Journal of Machine Learning

Research, 3, 993–1022
Choi, S.-C. T., Seeger, J., and Ware, S. (2014), “CATI Network Performance through Packet and Log Analysis,”

[PowerPoint slides], NORC at the University of Chicago.
Han, J., Kamber, M., and Jian P. (2012), Data Mining: Concepts and Techniques (3rd edition), Elsevier.
López, V., Fernández, A., Garcı́a, S., Palade, V., and Herrera, F. (2013), “An Insight into Classification with

Imbalanced Data: Empirical Results and Current Trends on Using Data Intrinsic Characteristics,” Infor-
mation Sciences 250, 113–141.

Murphy, J., Hill, C. A., and Dean, E. (2014), Social Media, Sociality, and Survey Research, John Wiley &
Sons, Inc.

Wang, F. and Mulrow, E. (2014), “Analyzing Open-Ended Survey Questions Using Unsupervised Learning
Methods,” JSM Proceedings.

Wolter, K., (2007), Introduction to Variance Estimation, Springer Science & Business Media.
Xu, W. (2010), “System Problem Detection by Mining Console logs,” PhD Thesis, UC Berkeley.
Xu, W., Huang, L., Fox, A., Patterson, D., and Jordan, M. I. (2010), “Detecting Large-Scale System Problems

by Mining Console Logs,” Proceedings of the 27th International Conference on Machine Learning, 37–46.

JSM2015 - Section on Statistical Learning and Data Mining

522

