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Abstract
Log-linear models have been used to analyze association among categorical variables. As the

number of variables increases, the complexity of the corresponding model also grows. Two log-
linear models for a four-way contingency table are developed and compared using multinomial
distribution and Poisson distribution, respectively. Logistic regression is to explain the relationship
between explanatory variables and the response variable which is categorical. It considers the logit
of the parameter p, the probability of occurrence of one of the levels of the response variable.
First, a log-linear model is applied to explain first grade students’ awareness of final consonant
clusters in monomorphemic words, by analyzing associations among four categorical variables:
dialect - African-American English (AAE) or Mainstream American English (MAE), the ways of
pronunciation, presentations of stimuli, and tasks of rhyming or segmentation. Once the structure
of associations is confirmed, we move to the next step. With justification of possible causation
relationship, a logistic regression model is applied to analyze causation relationship from three
categorical variables: dialect, presentations of stimuli, and tasks, to a response variable, the ways of
pronunciation, which is also categorical.

1. Introduction

Until the late 1960’s, contingency tables were typically analyzed by testing the hypothesis
of independence between two categorical variables, using chi-square test statistic. When
tables have more than two categorical variables, researchers would compute the chi-square
test statistics for two-way tables which could be formed as multiple sub-tables. In the
1970’s, the analysis of cross-classified data changed with the publication of a series of
papers on log-linear models by L. A. Goodman (1973). The basic strategy in log-linear
modeling involves fitting models to the observed frequencies in the cross-tabulation of cat-
egorical variables. The models can then be represented by a set of expected frequencies that
may resemble the observed frequencies. In this paper, two log-linear models for a four-way
contingency table were developed using multinomial distribution and Poisson distribution,
respectively. The models were applied to explain first grade students’ awareness of final
consonant clusters in monomorphemic words, by analyzing associations among four cat-
egorical variables: dialect - African-American English (AAE) or Mainstream American
English (MAE), the ways of pronunciation, presentations of stimuli, and tasks of rhyming
or segmentation.

Logistic regression is a form of statistical modelling that is often appropriate for cate-
gorical variables (Stokes et al. (2012)). It describes the relationship between a categorical
variable and a set of explanatory variables, which can be either categorical or quantitative.
The response variable is dichotomous mostly, but it may be polytomous. The response
might be ordinal, or nominal. For ordinal response outcomes, the proportional odds model
with cumulative logits are used to implement ordered logistic regression. (Stokes et al.
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(2012)) For nominal response outcomes, we form generalized logits and implement a logis-
tic analysis by modelling multiple logits per subpopulation of levels. In this paper, we im-
plement the logistic regression to explain the relationship from three categorical variables:
dialect - African-American English (AAE) or Mainstream American English (MAE), pre-
sentations of stimuli, and tasks of rhyming or segmentation, to a response variable, the
ways of pronunciation, which is also categorical.

This paper is arranged as follows. Backgrounds on theories of the log-linear model and
logistic regression analysis are summarized in Section 2. In Section 3, a summary of real
data is provided. Applications of 2 × 2 sub-contingency tables are provided in Section 4,
and the full model of a four-way contingency table with log-linear analysis is presented
in Section 5. Applications of logistic regression analysis is provided in Section 6, and the
final conclusions are presented in Sections 7.

2. Background on Log-linear Models and Logistic Regression Analysis

2.1 Log-linear Models

In this subsection, we provide the motivation for log-linear models, present basic notations
and definitions. Log-linear analysis is an extension of the two-way contingency table where
the conditional relationship between two or more categorical variables is analyzed by taking
the natural logarithm of the cell frequencies within a contingency table. Not only to analyze
the relationship between two categorical variables, log-linear analysis can be also used to
evaluate multiway contingency tables which involve three or more variables.

The simplest model refers to the traditional chi-square test where two variables, each
with two levels (2 × 2 table), are evaluated to see if an association exists between two
variables, A and B. Two binomials are arranged in a 2 × 2 table, and the interest is in
examining possible differences between the two binomials. This can be generalized into an
I × J table.

To describe the joint distribution of these two variables, we let πij denote the probability
that an observation falls in row i and column j of the table. These probabilities completely
describe the joint distribution of the two variables. We can also consider the marginal
distribution of each variable. Let πi. denote the probability that the row variable takes the
value i, and let π.j denote the probability that the column variable takes the value j. The
main hypothesis of interest with two variables is whether they are independent.

We want to consider two different cases which may arise in practice. One is with having
the total sample size, n, fixed in advance, and another is with having n random.

First, if the total sample size, n, is assumed fixed, and all other quantities are considered
random, the joint distribution follows multinomial distribution. We cross-classify each
observation of the sample independently in one of the IJ cells in the table. By definition,
two variables are independent if (and only if) their joint distribution is the product of the
marginal distributions. Thus, we can write the null hypothesis of independence as

Ho : πij = πi.π.j (1)

for all i = 1, 2, ..., I and j = 1, 2, ..., J .
Let Yij denote a random variable representing the number of observations in row i and

column j of the table, and let yij denote its observed value. The joint distribution of the
counts is then the multinomial distribution, with

P (Y = y) =

(
n

y11, ..., yij , ..., yIJ

)∏
i,j

π
yij
ij

JSM2015 - Section on Nonparametric Statistics

503



where Y is a random vector collecting all IJ counts and y is a vector of observed counts.
An alternative model for I×J table is to treat IJ counts as realizations of independent

Poisson random variables. In this model, the total sample size n is not fixed in advance,
and all counts are therefore random.

Under the assumption that the observations are independent, the joint distribution of
the IJ counts is a product of Poisson distribution,

P (Y = y) =
∏
i

∏
j

E
yij
ij e

−Eij

yij !
.

Taking natural logarithms we obtain the Poisson log-likelihood.
Testing the hypothesis of independence in the multinomial model is exactly equivalent

to testing the goodness of fit of the Poisson additive model.
If A and B are not independent, we have a saturated model as

ln(Eij) = µ+ λAi + λBj + λAB
ij . (2)

This model, Eq (2), is using

• Eij =expected cell frequency for the cases from the cell ij in the contingency table,

• µ =overall mean of the natural log of the expected frequencies,

• λAi =main effect of level i from factor A,

• λBj =main effect of level j from factor B, and

• λAB
ij =interaction effect between level i of factor A and level j of factor B.

If there is no significant interaction between A and B, then the interaction term will be
dropped so it becomes an additive model, given by

ln(Eij) = µ+ λAi + λBj .

Just as a sample is classified by the levels of two variables, a sample can be classified
by the levels of three variables, resulting in an I × J ×K table. This can be extended to a
three-way contingency table in the following way. Let us first introduce some notation. We
will use three subscripts to identify the cells in an I × J ×K table, with i indexing the I
rows, j indexing the J columns, and k indexing the K layers.

Let πijk denote the probability that an observation falls in cell (i, j, k). These probabil-
ities define the joint distribution of the three variables. We also let yijk denote the observed
count in cell (i, j, k), which we treat as a realization of a random variable Yijk having a
multinomial or Poisson distribution. We will also use the dot convention to indicate sum-
ming over a subscript, so πi.. is the marginal probability that an observation falls in row i
and yi.. is the frequency (or count) in row i. The notation extends to two dimensions, so
πij. is the marginal probability that an observation falls in row i and column j, and yij. is
the corresponding count.

In the similar way, we can extend this to a four-way contingency table, which has four
categorical variables, A, B, C and D.

We limit our models to a hierarchical set in which higher-order terms may be included
only if the related lower-order terms are included. As an example, a three-way interaction
λABC
ijk cannot be included in a model unless all two-way interaction terms λAB

ij , λBC
jk , and

λAC
ik are in the model. However it does not require λABC

ijk to be in the model because
two-way interaction terms are in the model (Fienberg (2007)).
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2.2 Logistic Regression Analysis

In this subsection, we provide the motivation for logistic regression analysis, present basic
notations and definitions, and describe how parameters are estimated. When the response
variable is dichotomous, we consider the success probability p, which is the probability
of occurrence of one of two levels from the response variable. Instead of modeling the
probability p directly with a linear model, we first consider the odds, or odds ratio

odds =
p

1− p
(3)

which is the ratio of the probability of success p to the probability of failure 1− p.
In logistic regression for a binary response variable, we model the natural log of the

odds ratio, which is called logit(p). Thus

logit(p) = ln(odds)

= ln

(
p

1− p

)
. (4)

The logit is a function of the probability p. In the simplest model, we assume that the
logit graphs as a straight line in the predictor variable X so

logit(p) = ln(odds)

= ln

(
p

1− p

)
= βo + β1x+ ε. (5)

In other words, the log odds are linear in the predictor variable, X .
It is also possible to think in terms of probabilities. We can convert from the logit or

log odds to the probability p. By first exponentiating

ln

(
p

1− p

)
= βo + β1x+ ε,

we obtain
p

1− p
= exp(βo + β1x).

Next solving for p, we obtain

p =
exp(βo + β1x)

1 + exp(βo + β1x)
, (6)

which describes a logistic curve. The relation between p and the predictor X is not linear
but has an S-shaped graph. If the response variable is polytomous with r levels, we use the
generalized logit, which is defined as

logiti = ln

(
pi
pr

)
(7)

for i = 1, 2, ..., (r − 1). A logit is formed for the probability of each succeeding category
over the last response category.
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3. Application to Real Data

In this section, we want to apply the log-linear model to a four-way contingency table. This
contains four categorical variables: dialect - African-American English (AAE) or Main-
stream American English (MAE), the ways of pronunciation, presentations of stimuli, and
tasks of rhyming or segmentation (Shollenbarger (2014)). We want to explain first grade
students’ awareness of final consonant clusters in monomorphemic words, by analyzing
associations among these variables.

In the United States, children speak many language varieties (i.e., dialects) when they
begin school. Dialects are linguistic varieties of a language or similar speech patterns that
people speak (Wolfram & Schillings-Estes (2006)), and they serve as functional and effec-
tive varieties of languages that reflect the social and cultural background of speakers. The
American Speech-Language-Hearing Association (ASHA) posits that dialectal varieties of
American English are not disordered speech or language (ASHA (2003)), yet some are val-
ued more socially than others. Mainstream American English (MAE), which is a term used
to describe the broad category of language varieties valued in the media, government, and
education system in the United States, is one dialect group that will be referred to in this
study. African-American English (AAE) is a dialect containing speech patterns that have
developed from the unique history of modern day African Americans (Rickford & Rickford
(2000)), and it is also of interest in this study.

AAE is a rule-governed dialect spoken primarily, but not exclusively, by African Amer-
ican children in the United States. AAE can be characterized by at least 40 different phono-
logical (i.e., sounds) and morphosyntatic (i.e., grammatical) features that differ systemati-
cally from other varieties of English (Connor & Craig (2006), Craig et al. (2009), Pollock
et al. (1998)), and may be a factor in the achievement gap between White and Black stu-
dents (U.S. Department of Education (2012)).

We are looking at the relationship among African American English dialect on rhyming
and segmenting of words that end in final clusters. A phonological feature of African
American English is to reduce final clusters in words like ”nest”, which an AAE speaker
would pronounce ”nes”, ”soft”, which may be pronounced ”sof”, etc. Some researchers
are studying these dialect features and their relationship to or interaction with early literacy
skills (Connor & Craig (2006), Craig et al. (2009), Shollenbarger (2014)).

In the past, there have been various attempts to analyze and understand these relation-
ships and structures. Hierarchical linear modeling (HLM) examined the effect of dialect on
emergent reading skills (Connor & Craig (2006)). MANOVA was implemented to examine
influence of SES, gender, and community, and a paired t-tests compared phonological, mor-
phological, and combination of AAE features (Thompson et al. (2004)). One-way ANOVA
was used to compare dialect density by grade, and also to compare phonological feature
use by grade (Craig et al. (2003)). Later, Craig et al used piecewise latent growth cross-
classified random effects models with repeated measures over time, with considering that
dialect changes over Grade 1-2 with children nested in Grade 1 or 2 classrooms (2009).
Terry et al analyzed correlations among variables (Terry et al. (2012)). Most recently,
ANOVA was used to compare difference between AAE and MAE groups for phonological
scores, grammatical scores, and naming accuracy (Terry (2014)). Data on interval or ratio
level of measurements with ”correct/incorrect” scoring have been used. We are focusing
on one phonological feature of AAE - final consonant cluster reduction - and we want to
analyze the association of this phonological feature with other variables, dialect, task and
stimulus presentation. These four variables are on nominal scales and can be analyzed
using log-linear models.

Three elementary schools in Northeast Arkansas, were chosen and first graders were
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recruited from the schools. Over 50 children were involved in this study, and they are cross-
classified by the dialect groups (A), stimulus presentation (C), tasks (D) and the type of
pronunciations of their responses (B). Their dialects were classified into two, Mainstream
American English speakers (MAE) and African American English speakers (AAE). They
were given three different stimuli for each task of rhyme identification and segmentation.
In one stimulus, the child named pictures without a model from the examiner. In a second
stimulus, the pictures were named by the examiner, and the child completed the word. In
the third stimulus, nonsense words were named by the examiner, and the child completed
the rhyming or segmenting task.

Let us define variable notations and their levels as following.

• variable A (dialect group): 0 (AAE), 1 (MAE),

• variable B (pronunciation): 0 (AAE), 1 (MAE),

• variable C (stimulus presentation): 0 (child names), 1 (examiner names), 2 (nonsense
words), and

• variable D (task): 0 (rhyme ID), 1 (segmentation).

The frequency of incorrect responses across all tasks (i.e, not a rhyme, not a segment,)
compared to the MAE or AAE responses were negligible and therefore taken out of the
final log-linear analysis.

We want to test independence among A, B, C, and D. However it is not meaningful
to test independence between A and C, C and D, and A and D for the context. We
start with full hierarchical (saturated model) as in Eq (8) and test statistical significance of
independence. With an error term of ε, the model is given as

ln(Eijkl) = µ+ λA + λB + λC + λD

+λAB + λBC + λBD

+λACB + λABD + λBCD

+λABCD + ε. (8)

Because the total sample size is fixed in advance, we use a multinomial model, where
we focus on the joint distribution of the four variables, A, B, C, and D. As previously
indicated, the purpose of this investigation was to examine the awareness of final consonant
clusters in first grade children who speak MAE and AAE through rhyming and segmenting
tasks with monomorphemic words. This research was conducted with the approval of the
Institutional Review Board of the University of Arkansas at Little Rock.

4. Application: Log-linear Models on Sub-contingency Tables with A and B Only

Do first grade participants who speak AAE differ from their MAE speaking peers in rhyming
and segmenting words with contrasting features? We want to test if dialect and pronuncia-
tion are independent or dependent at each combination of tasks and stimuli. With the raw
data, children who speak African American English have more of an influence of their di-
alect when they say a word or words and complete the task than when a MAE speaking
examiner says the word or words and they complete the tasks. In other words, we test inde-
pendence between A and B using six 2 × 3 tables, respectively. Corresponding log-linear
model is,

ln(Eij) = µ+ λA + λB + λAB + ε.
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B1 B2 row total
A1 73 53 126
A2 49 81 130

column total 122 134 256

Table 1: C1D1, child names-rhyme
Figure 1: Bar graph of sample proportions
from Table 1

B1 B2 row total
A1 88 36 124
A2 64 69 133

column total 152 105 257

Table 2: C2D1, examiner names-rhyme
Figure 2: Bar graph of sample proportions
from Table 2

The frequency distribution of responses to the combinations of stimulus presentations with
tasks are shown in Tables 1 through 6. The raw frequency data was used in the log-linear
analysis. The raw relative frequencies are presented in Figures 1 through 6 in each category.

At all six combinations of stimulus presentations and task, dialect and pronunciations
were significantly associated, because all p-values for testing homogeneity of proportions
were lower than < 0.001. As a conclusion, dialect and pronunciation are dependent at
all possible combinations of stimulus presentation and task. The next question is, if this
implies or indicates that two-way interactions which are related with B are significant. So
we want to test the model

ln(Eijk) = µ+ λA + λB + λC + λD

+λAB + λBC + λBD.

For a hierarchical model, all terms are significant, and this indicates that A and B are
dependent, and so are B and C, and B and D overall.

B1 B2 row total
A1 59 65 124
A2 31 93 124

column total 90 158 248

Table 3: C3D1, nonsense words-rhyme
Figure 3: Bar graph of sample proportions
from Table 3
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B1 B2 row total
A1 39 82 121
A2 2 127 129

column total 41 209 250

Table 4: C1D2, child names - segmentation
Figure 4: Bar graph of sample proportions
from Table 4

B1 B2 row total
A1 31 94 125
A2 3 130 133

column total 34 224 258

Table 5: C2D2, examiner names-
segmentation

Figure 5: Bar graph of sample proportions
from Table 5

B1 B2 row total
A1 18 110 128
A2 0 132 132

column total 18 242 260

Table 6: C3D2, nonsense words-
segmentation

Figure 6: Bar graph of sample proportions
from Table 6
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With having all four variables, now we want to ask the question if they are independent
to each other. This generalizes a two-way model into a four-way model.

5. Application: Log-linear Models on a Four-way Contingency Table

We want to test independence among A, B, C, and D. However we are not interested in
independence between A and C, C and D, and A and D. Hence, the full model is

ln(Eijkl) = µ+ λA + λB + λC + λD

+λAB + λAC + λAD

+λBC + λBD + λCD

+λABC + λABD + λBCD

+λABCD

+ε.

The test result is provided in Table 7.

Source DF Chi-Square Pr > ChiSq
A 1 8.31 0.0039
B 1 58.96 <.0001

A*B 1 27.80 <.0001
C 2 0.23 0.8928

A*C 2 1.01 0.6031
B*C 2 6.82 0.0331

A*B*C 2 0.48 0.7871
D 1 15.10 0.0001

A*D 1 9.22 0.0024
B*D 1 52.32 <.0001

A*B*D 1 6.31 0.0120
C*D 2 0.21 0.9007

A*C*D 2 0.94 0.6260
B*C*D 2 3.22 0.1997

A*B*C*D 1 0.75 0.3859

Table 7: Full model with all variables

The highest order interaction A ∗ B ∗ C ∗ D has its p-value of 0.3859, so it is not
significant. This leads us into the three-way log-linear model.

We start with all three-way interactions from four variables.
As presented in Table 8, two of the three-way interactions, ABC and BCD, are not

significant with p-values of 0.8676 and 0.0873, respectively. We drop the one with highest
p-value first, so ABC is dropped and the resulting model is tested. We keep exploring
the models with three-way interactions until all terms are significant. As a result, the final
model is given in Eq (9).

ln(Eijkl) = µ+ λA + λB + λD

+λAB + λAD + λBD + λBC

+λABD

+ε. (9)
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Source DF Chi-Square Pr > ChiSq
A 1 22.66 <.0001
B 1 121.52 <.0001

A*B 1 61.74 <.0001
C 2 5.28 0.0715

A*C 2 2.93 0.2309
B*C 2 22.54 <.0001

A*B*C 2 0.28 0.8676
D 1 35.96 <.0001

A*D 1 23.96 <.0001
B*D 1 107.48 <.0001

A*B*D 1 18.19 <.0001
C*D 2 2.64 0.2675

B*C*D 2 4.88 0.0873

Table 8: Reduced model with three-way interactions

We started with two-way log-linear models using A and B at six combinations of C
and D, and found that A and B are dependent at each combination of C and D. Then the
four-way log-linear model was fitted using A, B, C, and D all together, and found that A,
B, and D are dependent to each other. It is also found that B and C are dependent to each
other.

This indicates that dialect, the way of pronunciation, and tasks are associated, and
the way of pronunciation is associated with the stimulus presentation. However it does not
necessarily mean that all four variables are associated (Figure 7). It is important to consider
the relationship between dialect and performance on literacy tasks when teaching children
how to read.

Figure 7: Association of four variables

6. Application: Logistic Regression Analysis

Because of the fact that dialect (variable A) is an antecedent to pronunciation (variable
B), we have chosen to treat dialect as an explanatory variable for the response variable,
pronunciation. It was confirmed that there exists association among A, B, C, and D using
log-linear analysis.
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Thus it is meaningful to investigate further for causation relationship among them. We
define the success probability p as the probability if the pronunciation of a child belongs to
MAE group. The corresponding full model is

logit(p) = ln

(
p

1− p

)
= βo + βAA+ βCC + βDD

+βACAC + βADAD + βCDCD

+βACDACD + ε. (10)

The result from the full model is summarized in Table 9.

Effect DF Wald Chi-Square p-values
A 1 0.0049 0.9445
C 2 0.1755 0.9160

A*C 2 0.6053 0.7389
D 1 0.0054 0.9416

A*D 1 0.0042 0.9485
C*D 2 0.0052 0.9974

A*C*D 2 0.7548 0.6856

Table 9: Summary results from the full model

The three-way interaction has p-value of 0.6856 (Table 9), which is higher than α =
0.05, so we drop the three-way interaction and fit the model with two-way interactions
only. Eventually, we have the last model with the interaction between A and D only.
(Table tab:reducedmodel4)

logit(p) = ln

(
p

1− p

)
= βo + βAA+ βCC + βDD + βADAD + ε

and their estimates are

ˆlogit(p) = 4.9565− 3.2092A− 0.6746C1 − 0.9251C2 − 3.8674D + 2.2863AD.(11)

Variables A and D have significant interaction, while C does not. Thus, the effect of C
can be interpreted by itself.

7. Conclusion

Despite the fact that dialect (variable A) is an antecedent to pronunciation (variable B),
we have chosen for the time being not to treat dialect as an explanatory variable for the

Effect DF Wald Chi-Square p-values
A 1 47.2020 <.0001
C 2 34.8163 <.0001
D 1 69.7370 <.0001

A*D 1 21.6896 <.0001

Table 10: Summary results from the reduced model with interaction between A and D only
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Parameter level DF Estimate p-values exp(Est)
Intercept 1 4.9565 <.0001 142.093

A 1 1 -3.2092 <.0001 0.040
C 1 1 -0.6746 <.0001 0.509
C 2 1 -0.9251 <.0001 0.397
D 1 1 -3.8674 <.0001 0.021

A*D 1 1 1 2.2863 <.0001 9.838

Table 11: Estimates from the reduced model with interaction between A and D only

response variable, pronunciation. We started with two-way log-linear models using A and
B at six combinations of C and D, and found that A and B are dependent at each combi-
nation of C and D. Then we fitted the four-way log-linear model using A, B, C, and D
all together, and found that A, B, and D are dependent to each other. It is also found that
B and C are dependent to each other. This indicates that dialect, the way of pronuncia-
tion, and tasks are associated, and the way of pronunciation is associated with the stimulus
presentation. However it does not necessarily mean that all four variables are associated
(Figure 7). It is important to consider the relationship between dialect and performance on
literacy tasks when teaching children how to read.

Using logistic regression analysis, we find that all of A, C, and D have effects on the
response variable, B, pronunciation. With using either the model with only one interaction
between A and D, or the additive model, we can conclude that children with AAE dialect
has a significantly lower chance to produce in MAE, while having rhyme ID task results
in a significantly lower chance to have pronunciation in MAE. For stimuli presentation
(variable C), children have the highest chance to pronounce in MAE if they are given
nonsense words.
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