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Abstract 
Pediatric trials are often conducted to obtain extended marketing exclusivity or to satisfy 
regulatory requirements. There are many challenges in designing and analyzing pediatric 
trials arising from special ethical issues and the relatively small accessible patient 
population. The application of conventional phase 3 trial designs to pediatrics is generally 
not realistic in some therapeutic areas. In this paper we review regulatory guidance and 
existing research in pediatrics. We then examine different approaches for designing a 
pediatric trial and analyzing outcomes. In particular, we consider weighted combination 
methods utilizing available adult data such as James-Stein shrinkage estimates, empirical 
shrinkage estimates and Bayesian methods. The performance of these methods is 
assessed through simulation. 
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1. Introduction 
 
Pediatric efficacy and safety assessments are often conducted either to obtain extended 
marketing exclusivity or to satisfy requirements from health authorities due to the 
potential for off-label use in pediatric patients. Challenges in the design and analysis of 
Phase 3 pediatric trials include addressing specific ethical issues and taking into 
consideration the relatively small candidate patient population. The application of a well-
powered conventional phase 3 trial design for a pediatric population is not realistic in 
some therapeutic areas, including pediatric Type 2 diabetes mellitus (T2DM).   
 
A recent example arose in response to a health authority request for a brief description of 
a Phase 3 pediatric trial design in T2DM where change in HbA1c, a blood factor 
associated with diabetes status, is the primary endpoint. The recruitment of T2DM 
pediatric patients is known to be very challenging due to the small pool of patients and 
competing trials from comparators. Thus, it is not practical to design a full scale trial with 
enough power that can be completed in the required timeframe. Alternative approaches 
should be considered. 
 
The purpose of this paper is to summarize guidance from health authorities and related 
articles and to assess the performance of different approaches that could be considered 
and used for estimating sample size in designing a pediatric efficacy and safety trial with 
a continuous variable as the primary interest and its subsequent analyses. We discuss 
three weighted combination methods for borrowing information from multiple existing 
adult trials for designing a pediatric trial. The first is a fixed effects model with James-
Stein (J-S) shrinkage estimation. The second is a random effects model with empirical 
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shrinkage estimation and the last uses Bayesian estimation.  In the Bayesian method, we 
apply the idea of a power prior [1, 2, 3] by using a discount factor to quantify how much 
information to borrow from adult trials. But unlike Hobbs et al. [2] and Hobbs, Carlin 
and Mueller [3] who considered the discount factor to be a random variable, we assume 
that the discount factor is a fixed value. 
 

2. Regulatory guidance and literature review 
 
This section briefly summarizes guidance, guidelines or concept papers in this area from 
health authorities, particularly FDA or European Medicines Agency (EMA). Related 
articles are also briefly summarized. 
 
The ICH Topic E11 guideline [4] provides a general outline of critical issues and 
approaches to the safe, efficient and ethical study in pediatric drug development. This 
guidance briefly mentions the possible extrapolation from adult efficacy data but does not 
discuss any details. 

FDA has released draft industry guidance for planning pediatric studies [5]. It mainly 
covers the content of and process for submitting initial and amended pediatric study 
plans. It does not contain statistical details for designing a pediatric efficacy and safety 
trial. 
 
EMA released the guideline on clinical trials in small populations [6] briefly discusses 
the statistical methods to consider in a limited patient population, suggesting combining 
knowledge from previous data through Bayesian method in data analysis. From a study 
design perspective, it mainly suggests using adaptive design, such as sequential design 
and response-adaptive design. EMA also issued a draft concept paper in 2012 on the 
extrapolation of efficacy and safety in medicine development which can be applicable to 
pediatrics [7]. It gives a general discussion with no particular statistical details. 
 
The adhoc group for the development of implementing guidelines for Directive 
2001/20/EC relating to good clinical practice in the conduct of clinical trials on medicinal 
products for human use, chaired by the European Commission released a document in 
2008 on the topic of ethical considerations for clinical trials on medicinal products 
conducted with the paediatric population [8]. It provides a general review of a pediatric 
study design, but no specific statistical related context is discussed. 
 
In the area of T2DM, EMA issued the report of a workshop on pediatric investigational 
plans in T2DM that was held in London on February 2013 [9]. One of the main 
objectives of the meeting was to identify possible approaches to improve practicability of 
conducting a pediatric trial inT2DM. One suggestion was to reduce the sample size: 
comments from some Biostatistics experts include possibly adopting Bayesian methods 
where adult information is employed as a prior or changing to a lower significance level 
(for example, change from a 0.05 to a 0.1 significance level). 
 
In terms of the modeling and simulation approaches, Dunne et al. [10] reviewed 370 
pediatric studies submitted to the FDA between 1998 and 2008. They examined the cases 
in which efficacy was extrapolated from adult data or other data and classified the type of 
pediatric data required to support extrapolation. Manolis and Pons [11] presented the 
approaches to implement modeling and simulation in pediatric drug development in the 
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European regulatory environment based on the EMA guidelines. Zisowsky, Krause and 
Dingemanse [12] reviewed regulatory guidelines from EMA and FDA for pediatric drug 
development from industry perspective, mainly focusing on the role of modeling and 
simulation in pediatrics, i.e., PK/PD modeling. Jadhav, Zhang and Gobburu [13] 
discussed a case study to use prior exposure response data from adult patients in PK/PD 
modeling and simulation for designing a pediatric trial in developing rationale for dosing 
recommendation in pediatrics. 
 
For borrowing historical information while assessing treatment effects, several 
approaches have been proposed [1, 2, 3, 14, 15]. Further detailed review of this research 
area can be found in [16]. Two pediatric case studies which utilize adult data using the 
Bayesian approach have been discussed in the literature [17, 18].  
 

3. Method for estimating sample size and analysis 
 
Let ℎ be the number of available adult trials. Suppose the pediatric and all adult trials are 
2-arm with equal sample size 𝑛𝑛𝑖𝑖, 𝑖𝑖 = 0, 1,⋯ ,ℎ  per arm. Let  𝑛𝑛0 be the sample size per 
arm in the pediatric trial that we plan to design. Then 𝑁𝑁 = ∑ 𝑛𝑛𝑖𝑖ℎ

𝑖𝑖=1  is the total number of 
patients per arm in all adult trials. Suppose 𝛿𝛿𝑖𝑖 , 𝑖𝑖 = 1,⋯ , ℎ, is the true treatment effect in 
the existing adult trial 𝑖𝑖. Let 𝛿𝛿0  be the true treatment effect in the pediatric trial. We 
define the treatment effect as the mean difference between 2 treatment groups. Then the 
estimator 𝛿𝛿𝑖𝑖 of the treatment effect (defined as the sample mean difference) given the true 
treatment effect for trial 𝑖𝑖, 𝑖𝑖 = 0,⋯ ,ℎ, follows 

�𝛿𝛿𝑖𝑖�𝛿𝛿𝑖𝑖�~𝑁𝑁 �𝛿𝛿𝑖𝑖 ,
2𝜎𝜎𝑖𝑖2

𝑛𝑛𝑖𝑖
�, 

where 𝜎𝜎𝑖𝑖2 is the variance of the treatment effect in the 𝑖𝑖th trial. 
 
In the following sections, we consider both fixed and random effect models that allow 
borrowing information from existing adult trials for designing the pediatric trials.  In 
fixed effect models, we consider two options for 𝛿𝛿0  to calculate the sample size, 
assuming either a known fixed value or following a normal distribution with mean and 
variance 𝛾𝛾2. In random effect models, the existing adult trials and the pediatric trial we 
design are assumed to be similar in the sense that the treatment effect δ0, δ1,⋯ , δhare 
from a common normal distribution  

δi~N (δ, τ2), 𝑖𝑖 = 0,⋯ ,ℎ 
where τ2 represents between-study variation. Then 𝛿𝛿𝑖𝑖 (𝑖𝑖 = 0,⋯ ,ℎ) can be calculated as 
following the normal distribution with mean 𝛿𝛿 and variance 𝜏𝜏2 + 2𝜎𝜎𝑖𝑖2

𝑛𝑛𝑖𝑖
. That is,  

 

𝛿𝛿𝑖𝑖~𝑁𝑁�𝛿𝛿, 𝜏𝜏2 +
2𝜎𝜎𝑖𝑖2

𝑛𝑛𝑖𝑖
�. 

 
3.1 Classical and typical fixed-effect approach 
 
We first consider the classical and typical sample size determination approach without 
borrowing any adult information. In order to better compare with all extrapolation 
methods, we also consider that the true pediatric treatment effect is either a known fixed 
value or a random variable in calculating the sample size and power. 
 
a. True pediatric treatment effect is a known fixed value 
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Suppose the true pediatric treatment effect  𝛿𝛿0  is a known fixed value. Then, for a 
given  𝛿𝛿0  and the desired power 1 − 𝛽𝛽  , the required sample size 𝑛𝑛0  per arm in the 
pediatric trial is  

𝑛𝑛0 = 2𝜎𝜎02�𝑧𝑧1−𝛼𝛼 2⁄ +𝑧𝑧1−𝛽𝛽�
2

𝛿𝛿0
2 ,    (1) 

where 𝑧𝑧1−𝛼𝛼 2⁄  represents the1 − 𝛼𝛼 percentile of the standard normal distribution and is 
1.96 when 𝛼𝛼 = 0.05. 
 
b. True pediatric effect is a random variable with variability 
 
The known fixed value 𝛿𝛿0  in (1) is an estimate from historical data. It certainly has 
variability. Instead of a known fixed value of 𝛿𝛿0, suppose the true pediatric treatment 
effect is distributed as 

𝛿𝛿0~𝑁𝑁 (𝛿𝛿, 𝛾𝛾2), 
where 𝛿𝛿 is a known value that can be estimated from the adult data. Then the sample size 
𝑛𝑛0  for the desired power 1 − 𝛽𝛽 in the pediatric trial can be obtained by solving 𝑓𝑓(𝑛𝑛0) =
1 − 𝛽𝛽, where  

𝑓𝑓(𝑛𝑛0) = 1 − 𝐸𝐸𝛿𝛿0

⎝

⎜
⎜
⎜
⎛

Φ

⎝

⎜
⎜
⎛
𝑧𝑧1−𝛼𝛼 2⁄ −

𝛿𝛿0

�2𝜎𝜎02
𝑛𝑛0

�

�
𝛿𝛿0

⎠

⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎞

. 

 
3.2 Methods incorporating data from adult studies 
 
3.2.1 James-Stein (J-S) shrinkage fixed-effects estimator 
 
Quan et al. [19] proposed to use the J-S shrinkage estimator for multi-regional clinical 
trial design to quantify regional treatment effects. We apply the concept of J-S shrinkage 

estimator to pediatric trial design. Let the overall treatment effect be 𝛿𝛿̅ = 𝑛𝑛0𝛿𝛿0+∑ 𝑛𝑛𝑖𝑖𝛿𝛿𝑖𝑖ℎ
𝑖𝑖=1

∑ 𝑛𝑛𝑖𝑖ℎ
𝑖𝑖=0

=
𝑛𝑛0𝛿𝛿0+∑ 𝑛𝑛𝑖𝑖𝛿𝛿𝑖𝑖ℎ

𝑖𝑖=1
𝑁𝑁+𝑛𝑛0

. The J-S shrinkage estimator 𝛿𝛿0 is written as 

𝛿𝛿0 = 𝑏𝑏0�̂�𝛿0 + (1 − 𝑏𝑏0)𝛿𝛿̅, 
where 𝑏𝑏0 is obtained using the results shown in Quan et al. [19] 
 

𝑏𝑏0 = ∑ 𝑛𝑛𝑖𝑖�𝛿𝛿𝑖𝑖−𝛿𝛿��
2ℎ

𝑖𝑖=0

∑ 𝑛𝑛𝑖𝑖�𝛿𝛿𝑖𝑖−𝛿𝛿��
2ℎ

𝑖𝑖=0 +∑ 2𝜎𝜎𝑖𝑖2ℎ
𝑖𝑖=0

.                                    (2) 

 
Given the observed treatment effects (𝛿𝛿𝑖𝑖) from adult trials, we can replace 𝛿𝛿𝑖𝑖  with 

𝛿𝛿𝑖𝑖 , 𝑖𝑖 = 1, … ℎ  in (2). Let 𝛿𝛿∗ = ∑ 𝑛𝑛𝑖𝑖𝛿𝛿�𝑖𝑖ℎ
𝑖𝑖=1
𝑁𝑁+𝑛𝑛0

. In data analysis after the pediatric trial is 

completed, we can use 𝛿𝛿0 to replace 𝛿𝛿0 for estimating 𝑏𝑏0. The estimator 𝛿𝛿0 is unknown at 
the time of the pediatric study design, and suppose 𝛿𝛿0|𝛿𝛿0~𝑁𝑁 �𝛿𝛿0, 2𝜎𝜎0

2

𝑛𝑛0
� . Then, the 

estimator of 𝑏𝑏0 can be written as  
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𝑏𝑏�0 =
𝐸𝐸𝛿𝛿�0 �∑ 𝑛𝑛𝑖𝑖 �  𝛿𝛿𝑖𝑖 − 𝛿𝛿∗ − 𝑛𝑛0�̂�𝛿0

𝑁𝑁 + 𝑛𝑛0
�
2

+ 𝑛𝑛0 � 𝛿𝛿0 − 𝛿𝛿∗ − 𝑛𝑛0�̂�𝛿0
𝑁𝑁 + 𝑛𝑛0

�
2

ℎ
𝑖𝑖=1 �

𝐸𝐸𝛿𝛿�0 �∑ 𝑛𝑛𝑖𝑖 �  𝛿𝛿𝑖𝑖 − 𝛿𝛿∗ − 𝑛𝑛0�̂�𝛿0
𝑁𝑁 + 𝑛𝑛0

�
2

+ 𝑛𝑛0 � 𝛿𝛿0 − 𝛿𝛿∗ − 𝑛𝑛0�̂�𝛿0
𝑁𝑁 + 𝑛𝑛0

�
2

ℎ
𝑖𝑖=1 � + ∑ 2𝜎𝜎𝑖𝑖2ℎ

𝑖𝑖=0

. 

 
The J-S shrinkage estimator 𝛿𝛿0is 

𝛿𝛿0 = �𝑏𝑏�0 + �1 − 𝑏𝑏�0�
𝑛𝑛0

𝑁𝑁 + 𝑛𝑛0
�𝛿𝛿0 + �1 − 𝑏𝑏�0�𝛿𝛿∗ 

with variance 

𝑣𝑣𝑣𝑣𝑣𝑣�𝛿𝛿0�𝛿𝛿0� = �𝑏𝑏�0 + �1 − 𝑏𝑏�0�
𝑛𝑛0

𝑁𝑁 + 𝑛𝑛0
�
2 2𝜎𝜎02

𝑛𝑛0
+ �1 − 𝑏𝑏�0�

2 ∑ 𝑛𝑛𝑖𝑖2𝜎𝜎𝑖𝑖2ℎ
𝑖𝑖=1

(𝑁𝑁 + 𝑛𝑛0)2
. 

Note that if the observed variability across observed treatment effects (𝛿𝛿𝑖𝑖 , 𝑖𝑖 = 1, …ℎ) 
from adult trials is large, then the J-S estimator will be close to 𝛿𝛿0 and 𝑏𝑏�0 will approach 
to 1. 
 
Similar to the discussion in Section 2.1, we consider two options for the true pediatric 
treatment effect in calculating the sample size and power: either a known fixed value or a 
random variable. 
 
a. True pediatric treatment effect is a known fixed value 
 
Suppose the true pediatric treatment effect  𝛿𝛿0  is a known fixed value. Then, for a 
given  𝛿𝛿0  and then desired power1 − 𝛽𝛽  , the required sample size 𝑛𝑛0  per arm in the 
pediatric trial is calculated by solving𝑓𝑓(𝑛𝑛0) =  1 − 𝛽𝛽, where 

𝑓𝑓(𝑛𝑛0) = Pr�
𝛿𝛿0

𝑠𝑠𝑠𝑠�𝛿𝛿0�𝛿𝛿0�
> 𝑧𝑧1−𝛼𝛼 2⁄ � 𝛿𝛿0� 

= Pr  �
�𝑏𝑏�0 + �1 − 𝑏𝑏�0�

𝑛𝑛0
𝑁𝑁 + 𝑛𝑛0

�𝛿𝛿0 + �1 − 𝑏𝑏�0�𝛿𝛿∗

𝑠𝑠𝑠𝑠�𝛿𝛿0�𝛿𝛿0�
> 𝑧𝑧1−𝛼𝛼 2⁄ � 𝛿𝛿0� 

= Pr

⎝

⎜
⎜
⎛𝛿𝛿0 − 𝛿𝛿0

�2𝜎𝜎02
𝑛𝑛0

>

𝑧𝑧1−𝛼𝛼 2⁄ 𝑠𝑠𝑠𝑠�𝛿𝛿0�𝛿𝛿0� − �1 − 𝑏𝑏�0��̌�𝛿∗

�𝑏𝑏�0 + �1 − 𝑏𝑏�0�
𝑛𝑛0

𝑁𝑁 + 𝑛𝑛0
�

− 𝛿𝛿0

�2𝜎𝜎02
𝑛𝑛0

�

�
𝛿𝛿0

⎠

⎟
⎟
⎞

  

= 1 −Φ

⎝

⎜
⎛

𝑧𝑧1−𝛼𝛼 2⁄ 𝑠𝑠𝑠𝑠�𝛿𝛿�0�𝛿𝛿0�−�1−𝑏𝑏�0�𝛿𝛿�∗

�𝑏𝑏�0+�1−𝑏𝑏�0�
𝑛𝑛0

𝑁𝑁+𝑛𝑛0
�

−𝛿𝛿0

�2𝜎𝜎0
2

𝑛𝑛0

�� 𝛿𝛿0

⎠

⎟
⎞

.             

 
b. True pediatric effect is a random variable with variability 
 
Instead of a known fixed value of  𝛿𝛿0 , suppose the true pediatric treatment effect is 
distributed as  

𝛿𝛿0~𝑁𝑁 (𝛿𝛿, 𝛾𝛾2), 
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where 𝛿𝛿 is a known value that can be estimated from the adult data. Then the required 
sample size 𝑛𝑛0 per arm for the desired power 1-β in the pediatric trial can be calculated 
by solving 𝑓𝑓(𝑛𝑛0) =  1 − 𝛽𝛽, where 

𝑓𝑓(𝑛𝑛0) = 𝐸𝐸𝛿𝛿0 �Pr �
𝛿𝛿0

𝑠𝑠𝑠𝑠�𝛿𝛿0�𝛿𝛿0�
> 𝑧𝑧1−𝛼𝛼 2⁄ � 𝛿𝛿0�� 

= 𝐸𝐸𝛿𝛿0
⎝

⎛Pr �
�𝑏𝑏�0 + �1 − 𝑏𝑏�0�

𝑛𝑛0
𝑁𝑁 + 𝑛𝑛0

�𝛿𝛿0 + �1 − 𝑏𝑏�0��̌�𝛿∗

𝑠𝑠𝑠𝑠�𝛿𝛿0�𝛿𝛿0�
> 𝑧𝑧1−𝛼𝛼 2⁄ � 𝛿𝛿0�

⎠

⎞ 

= 𝐸𝐸𝛿𝛿0
⎝

⎛Pr ��̂�𝛿0 >
𝑧𝑧1−𝛼𝛼 2⁄ 𝑠𝑠𝑠𝑠�𝛿𝛿0�𝛿𝛿0� − �1 − 𝑏𝑏�0��̌�𝛿∗

�𝑏𝑏�0 + �1 − 𝑏𝑏�0�
𝑛𝑛0

𝑁𝑁 + 𝑛𝑛0
�

� 𝛿𝛿0�

⎠

⎞ 

= 𝐸𝐸𝛿𝛿0

⎝

⎜
⎜
⎜
⎛

Pr 

⎝

⎜
⎜
⎛𝛿𝛿0 − 𝛿𝛿0

�2𝜎𝜎02
𝑛𝑛0

>

𝑧𝑧1−𝛼𝛼 2⁄ 𝑠𝑠𝑠𝑠�𝛿𝛿0�𝛿𝛿0� − �1 − 𝑏𝑏�0��̌�𝛿∗

�𝑏𝑏�0 + �1 − 𝑏𝑏�0�
𝑛𝑛0

𝑁𝑁 + 𝑛𝑛0
�

− 𝛿𝛿0

�2𝜎𝜎02
𝑛𝑛0

�

�
𝛿𝛿0

⎠

⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎞

 

= 1 − 𝐸𝐸𝛿𝛿0

⎝

⎜⎜
⎛
Φ

⎝

⎜
⎛

𝑧𝑧1−𝛼𝛼 2⁄ 𝑠𝑠𝑠𝑠�𝛿𝛿�0�𝛿𝛿0�−�1−𝑏𝑏�0�𝛿𝛿�∗

�𝑏𝑏�0+�1−𝑏𝑏�0�
𝑛𝑛0

𝑁𝑁+𝑛𝑛0
�

−𝛿𝛿0

�2𝜎𝜎0
2

𝑛𝑛0

�� 𝛿𝛿0

⎠

⎟
⎞

⎠

⎟⎟
⎞

.                  

 
3.2.2 Empirical shrinkage estimator under random effects model  
 
For generalization purpose, we consider a random effect model in this section, taking into 
account between-study variability. One overall estimator of treatment effect 𝛿𝛿 from a 
random effects model follows a normal distribution. That is, 

𝛿𝛿 =
∑ 𝑤𝑤𝑖𝑖𝛿𝛿𝑖𝑖ℎ
𝑖𝑖=0

∑ 𝑤𝑤𝑖𝑖ℎ
𝑖𝑖=0

~𝑁𝑁�𝛿𝛿,   
1

∑ 𝑤𝑤𝑖𝑖ℎ
𝑖𝑖=0

�, 

where 𝑤𝑤𝑖𝑖 = 1
𝜏𝜏2+2 𝜎𝜎𝑖𝑖

2 𝑛𝑛𝑖𝑖�
. 

Denote 𝑣𝑣0 = 𝜏𝜏2

𝜏𝜏2+ 2𝜎𝜎0
2 𝑛𝑛0�

= 𝜏𝜏2𝑤𝑤0 . Then, the empirical shrinkage estimate (𝛿𝛿0 ) of the 

pediatric trial treatment effect 𝛿𝛿0 borrowing information from adult trials can be written 
by incorporating the adult data as 

𝛿𝛿0 = 𝑣𝑣0𝛿𝛿0 + (1 − 𝑣𝑣0)𝛿𝛿 

       = 𝑣𝑣0𝛿𝛿0 + (1 − 𝑣𝑣0) ∑ 𝑤𝑤𝑖𝑖𝛿𝛿�𝑖𝑖ℎ
𝑖𝑖=0
∑ 𝑤𝑤𝑖𝑖
ℎ
𝑖𝑖=0

  

      = �𝑣𝑣0 +
(1 − 𝑣𝑣0)𝑤𝑤0
∑ 𝑤𝑤𝑖𝑖ℎ
𝑖𝑖=0

�𝛿𝛿0 + (1 − 𝑣𝑣0)
∑ 𝑤𝑤𝑖𝑖𝛿𝛿𝑖𝑖ℎ
𝑖𝑖=1

∑ 𝑤𝑤𝑖𝑖ℎ
𝑖𝑖=0

 

                  = 𝐴𝐴0�̂�𝛿0 + (1 − 𝐴𝐴0)𝛿𝛿∗,         (3) 

where 𝐴𝐴0 = 𝑣𝑣0 + (1−𝑎𝑎0)𝑤𝑤0
∑ 𝑤𝑤𝑖𝑖
ℎ
𝑖𝑖=0

= 𝜏𝜏2𝑤𝑤0 ∑ 𝑤𝑤𝑖𝑖
ℎ
𝑖𝑖=1 +𝑤𝑤0

𝑤𝑤0+∑ 𝑤𝑤𝑖𝑖
ℎ
𝑖𝑖=1

 and 𝛿𝛿∗ = ∑ 𝑤𝑤𝑖𝑖𝛿𝛿�𝑖𝑖ℎ
𝑖𝑖=1
∑ 𝑤𝑤𝑖𝑖
ℎ
𝑖𝑖=1

. It should be noted that 

1 − 𝐴𝐴0 is considered a weight to the information from adult studies. 
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The conditional mean and variance of empirical shrinkage estimator 𝛿𝛿0 in (3) given the 
observed adult data are calculated as 

𝐸𝐸(𝛿𝛿0�𝛿𝛿∗� = 𝐴𝐴0𝐸𝐸�𝛿𝛿0� + (1 − 𝐴𝐴0)�̂�𝛿∗ = 𝐴𝐴0𝛿𝛿 + (1 − 𝐴𝐴0)�̂�𝛿∗ and 

𝑉𝑉𝑣𝑣𝑣𝑣�𝛿𝛿0|𝛿𝛿∗� = 𝐴𝐴02 �𝑉𝑉𝑣𝑣𝑣𝑣 �𝐸𝐸�𝛿𝛿0�𝛿𝛿0�� + 𝐸𝐸 �𝑉𝑉𝑣𝑣𝑣𝑣�𝛿𝛿0�𝛿𝛿0��� = 𝐴𝐴02 �𝜏𝜏2 + 2𝜎𝜎02

𝑛𝑛0
�. 

 
Then the required sample size 𝑛𝑛0 per arm for the desired power 1-β in the pediatric trial 
is calculated by solving 𝑓𝑓(𝑛𝑛0) =  1 − 𝛽𝛽, where  
 

𝑓𝑓(𝑛𝑛0) = Pr � 𝛿𝛿�0
𝑠𝑠𝑠𝑠�𝛿𝛿�0|𝛿𝛿0�

> 𝑧𝑧1−𝛼𝛼 2⁄ � 𝛿𝛿0, 𝛿𝛿∗�  

= Pr �𝐴𝐴0𝛿𝛿
�0+(1−𝐴𝐴0)𝛿𝛿�∗

𝑠𝑠𝑠𝑠�𝛿𝛿�0|𝛿𝛿0�
> 𝑧𝑧1−𝛼𝛼 2⁄ � 𝛿𝛿0, 𝛿𝛿∗�  

= Pr �𝛿𝛿0 > 𝑧𝑧1−𝛼𝛼 2⁄ 𝑠𝑠𝑠𝑠�𝛿𝛿�0�−(1−𝐴𝐴0)𝛿𝛿�∗

𝐴𝐴0
� 𝛿𝛿0, 𝛿𝛿∗�  

= Pr� 𝛿𝛿�0−𝛿𝛿0
𝑠𝑠𝑠𝑠�𝛿𝛿�0|𝛿𝛿0�

>
𝑧𝑧1−𝛼𝛼 2⁄ 𝑠𝑠𝑠𝑠�𝛿𝛿�0|𝛿𝛿�∗�−(1−𝐴𝐴0)𝛿𝛿�∗

𝐴𝐴0
−𝛿𝛿0

𝑠𝑠𝑠𝑠�𝛿𝛿�0|𝛿𝛿0�
� 𝛿𝛿0, 𝛿𝛿∗�  

= 𝟏𝟏 −𝚽𝚽

⎝

⎜
⎛

𝒛𝒛𝟏𝟏−𝜶𝜶 𝟐𝟐⁄ 𝒔𝒔𝒔𝒔�𝜹𝜹�𝟎𝟎|𝜹𝜹�∗�−�𝟏𝟏−𝑨𝑨𝟎𝟎�𝜹𝜹�∗

𝑨𝑨𝟎𝟎
−𝜹𝜹𝟎𝟎

�𝟐𝟐𝟐𝟐𝟎𝟎
𝟐𝟐

𝒏𝒏𝟎𝟎 ⎠

⎟
⎞

    

 
3.2.3 Bayesian method  
 
We generalize and extend the Bayesian method proposed by Schoenfeld, Zheng and 
Finkelstein [18]. SupposePr(𝛿𝛿) ∝ 1, a non-informative prior for 𝛿𝛿 of the treatment effect. 
The posterior distribution of 𝛿𝛿 based on the existing adult data is calculated as 

Pr�𝛿𝛿�𝛿𝛿𝑖𝑖 , 𝑖𝑖 = 1,⋯ℎ� ∝�𝐿𝐿�𝛿𝛿𝑖𝑖|𝛿𝛿�
ℎ

𝑖𝑖=1

Pr(𝛿𝛿). 

That is, the updated prior distribution of treatment effect 𝛿𝛿 before the pediatric study data 
follows  

𝛿𝛿|𝛿𝛿𝑖𝑖 , 𝑖𝑖 = 1,⋯ℎ, 𝜏𝜏2 ~ 𝑁𝑁�∑ 𝑤𝑤𝑖𝑖𝛿𝛿�𝑖𝑖ℎ
𝑖𝑖=1
∑ 𝑤𝑤𝑖𝑖
ℎ
𝑖𝑖=1

, 1
∑ 𝑤𝑤𝑖𝑖
ℎ
𝑖𝑖=1

�.    (4) 

Let 𝛿𝛿∗ = ∑ 𝑤𝑤𝑖𝑖𝛿𝛿�𝑖𝑖ℎ
𝑖𝑖=1
∑ 𝑤𝑤𝑖𝑖
ℎ
𝑖𝑖=1

. Then the predictive distribution of the pediatric treatment effect 𝛿𝛿0 

given the adult data 𝛿𝛿𝑖𝑖 , 𝑖𝑖 = 1,⋯ℎ and the between-study variability 𝜏𝜏2 can be calculated 
from (4) as  

𝛿𝛿0|𝜏𝜏2, 𝛿𝛿∗~𝑁𝑁�𝛿𝛿∗ ,   1
∑ 𝑤𝑤𝑖𝑖
ℎ
𝑖𝑖=1

+ 𝜏𝜏2�.     (5) 

This predictive distribution of 𝛿𝛿0 in (5) is used as the prior distribution of 𝛿𝛿0 before the 
pediatric trial for calculating the conditional posterior distribution of 𝛿𝛿0|𝜏𝜏2,𝛿𝛿0, 𝛿𝛿∗ which 
is of interest for calculating the sample size of the pediatric trial.  
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Suppose 𝑠𝑠  is the discount factor on the prior distribution, adapting the power prior 
concept for borrowing the information from adult studies. Based on Bayes theorem, the 
conditional posterior distribution of 𝛿𝛿0 given the between-study variability 𝜏𝜏2and existing 
adult data along with the data from the pediatric study we plan to design is written as  

Pr�𝛿𝛿0|𝜏𝜏2, 𝛿𝛿0 ,𝛿𝛿∗� ∝ 𝐿𝐿�𝛿𝛿0�𝛿𝛿0� 𝑃𝑃𝑣𝑣�𝛿𝛿0|𝜏𝜏2, 𝛿𝛿∗�
𝑠𝑠

   (6) 

The posterior in (6) follows a normal distribution with mean    

𝐸𝐸�𝛿𝛿0|𝜏𝜏2, 𝛿𝛿0 ,𝛿𝛿∗� =
�2𝜎𝜎02
𝑛𝑛0

�
−1

𝛿𝛿0 + � 1
∑ 𝑤𝑤𝑖𝑖𝑠𝑠ℎ
𝑖𝑖=1

+ 𝜏𝜏2
𝑠𝑠 �

−1

𝛿𝛿∗

�2𝜎𝜎02
𝑛𝑛0

�
−1

+ � 1
∑ 𝑤𝑤𝑖𝑖𝑠𝑠ℎ
𝑖𝑖=1

+ 𝜏𝜏2
𝑠𝑠 �

−1   

 
= 𝐶𝐶0�̂�𝛿0 + (1 − 𝐶𝐶0)�̂�𝛿∗   

and variance 
𝑉𝑉𝑣𝑣𝑣𝑣�𝛿𝛿0|𝜏𝜏2, 𝛿𝛿0 ,𝛿𝛿∗� = 𝐶𝐶0

2𝜎𝜎02

𝑛𝑛0
, 

 
where  

𝐶𝐶0 =
�2𝜎𝜎02
𝑛𝑛0

�
−1

�2𝜎𝜎02
𝑛𝑛0

�
−1

+ � 1
∑ 𝑤𝑤𝑖𝑖𝑠𝑠ℎ
𝑖𝑖=1

+ 𝜏𝜏2
𝑠𝑠 �

−1 

 
First, Pr(𝛿𝛿0 < 0) = Pr �𝛿𝛿0−𝐸𝐸�𝛿𝛿0|𝜏𝜏2,𝛿𝛿�0 ,𝛿𝛿�∗�

𝑠𝑠𝑠𝑠�𝛿𝛿0|𝜏𝜏2,𝛿𝛿�0 ,𝛿𝛿�∗�
< −𝐸𝐸�𝛿𝛿0|𝜏𝜏2,𝛿𝛿�0 ,𝛿𝛿�∗�

𝑠𝑠𝑠𝑠�𝛿𝛿0|𝜏𝜏2,𝛿𝛿�0 ,𝛿𝛿�∗�
� ≤ 𝛼𝛼 2⁄ , implying 

𝐸𝐸�𝛿𝛿0|𝜏𝜏2,𝛿𝛿�0 ,𝛿𝛿�∗�
𝑠𝑠𝑠𝑠�𝛿𝛿0|𝜏𝜏2,𝛿𝛿�0 ,𝛿𝛿�∗�

> 𝑧𝑧1−𝛼𝛼 2⁄ .  Then the required sample size 𝑛𝑛0 per arm for the desired power 

1-β in the pediatric trial is obtained by computing𝑓𝑓(𝑛𝑛0) =  1 − 𝛽𝛽, where  
 

𝑓𝑓(𝑛𝑛0) = Pr � 𝐸𝐸�𝛿𝛿0|𝜏𝜏2,𝛿𝛿�0 ,𝛿𝛿�∗�
𝑠𝑠𝑠𝑠�𝛿𝛿0|𝜏𝜏2,𝛿𝛿�0 ,𝛿𝛿�∗�

> 𝑧𝑧1−𝛼𝛼 2⁄ � 𝛿𝛿0, 𝛿𝛿∗�  

= Pr �𝐶𝐶0𝛿𝛿
�0+(1−𝐶𝐶0)𝛿𝛿�∗

𝑠𝑠𝑠𝑠�𝛿𝛿0|𝜏𝜏2,𝛿𝛿�0 ,𝛿𝛿�∗�
> 𝑧𝑧1−𝛼𝛼 2⁄ � 𝛿𝛿0, 𝛿𝛿∗�  

= Pr�𝐶𝐶0�̂�𝛿0> 𝑧𝑧1−𝛼𝛼 2⁄ 𝑠𝑠𝑠𝑠�𝛿𝛿0|𝜏𝜏2, 𝛿𝛿0 ,𝛿𝛿∗� − (1 − 𝐶𝐶0)�̂�𝛿∗�𝛿𝛿0,𝛿𝛿∗�  

= Pr �𝛿𝛿0 > 𝑧𝑧1−𝛼𝛼 2⁄ 𝑠𝑠𝑠𝑠�𝛿𝛿0|𝜏𝜏2,𝛿𝛿�0 ,𝛿𝛿�∗�−(1−𝐶𝐶0)𝛿𝛿�∗

𝐶𝐶0
� 𝛿𝛿0, 𝛿𝛿∗�  

= Pr� 𝛿𝛿�0−𝛿𝛿0
𝑠𝑠𝑠𝑠�𝛿𝛿�0|𝛿𝛿0�

>
𝑧𝑧1−𝛼𝛼 2⁄ 𝑠𝑠𝑠𝑠�𝛿𝛿0|𝜏𝜏2,𝛿𝛿�0 ,𝛿𝛿�∗�−(1−𝐶𝐶0)𝛿𝛿�∗

𝐶𝐶0
−𝛿𝛿0

𝑠𝑠𝑠𝑠�𝛿𝛿�0|𝛿𝛿0�
� 𝛿𝛿0, 𝛿𝛿∗�  

= 𝟏𝟏 −𝚽𝚽

⎝

⎜
⎛

𝒛𝒛𝟏𝟏−𝜶𝜶 𝟐𝟐⁄ �𝑪𝑪𝟎𝟎
𝟐𝟐𝟐𝟐𝟎𝟎

𝟐𝟐

𝒏𝒏𝟎𝟎
−�𝟏𝟏−𝑪𝑪𝟎𝟎�𝜹𝜹�

∗

𝑪𝑪𝟎𝟎
−𝜹𝜹𝟎𝟎

�𝟐𝟐𝟐𝟐𝟎𝟎
𝟐𝟐

𝒏𝒏𝟎𝟎 ⎠

⎟
⎞

  

 
4. Simulation results 
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Simulation studies were performed to investigate the performance of the aforementioned 
methods in terms of required sample size or power. We also conducted simulations 
comparing the weights for adult trials between the empirical shrinkage estimator and the 
Bayesian method, under various between-study variability 𝜏𝜏2, given a pediatric sample 
size 𝑛𝑛0. The weights for adult trials in the J-S shrinkage fixed estimator depend on the 
variability of the observed treatment effects in existing adult trials; the higher the 
variability is, the lower the weight is.  
 
All simulations were conducted in the T2DM setting where the primary efficacy endpoint 
is often the treatment effect in HbA1c change from baseline after 6 months of treatment.  
 
In the simulation, we setℎ = 3 , the number of existing adult trials, Without loss of 
generality, we assumed a balanced design, with equal sample size 𝑛𝑛𝑖𝑖 = 102 per arm for 
all 3 adult trials and the same common standard deviation 𝜎𝜎𝑖𝑖 of 1.1%, 𝑖𝑖 = 1,⋯ , 3. We set 
the same observed treatment effect of 0.5% in all 3 adult trials for the HbA1c change 
from baseline in all simulations except for J-S shrinkage fixed effect estimator: that is, 
𝛿𝛿1 = 𝛿𝛿2 =  𝛿𝛿3 = 0.5% . The sample size of 102 patients per arm corresponds to the 
required size for obtaining 90% power to detect the treatment effect of 0.5% between 
treatment arms with a common standard deviation of 1.1% (2-sided, alpha=0.05) using 
the classical sample size calculation method.  
 
For J-S shrinkage fixed effect estimator method, unlike other methods in which sample 
size depends on only the overall observed treatment effect across existing adult trials, the 
sample size reduction depends on the variability of the observed treatment effects in 
existing adult trials. If the estimated treatment effect from the existing adult trials is 
almost homogeneous, then the required sample size for pediatric trial from J-S shrinkage 
fixed effect estimator method can be drastically reduced. Thus, we considered the 
following two scenarios for observed treatment effects from 3 adult trials for the J-S 
shrinkage estimator method: (1) adult studies with a larger observed sample 
variance:  𝛿𝛿1 = 0.3, 𝛿𝛿2 = 0.5,  and𝛿𝛿3 = 0.7 ; (2) adult studies with a smaller observed 
sample variance: 𝛿𝛿1 = 0.45,𝛿𝛿2 = 0.5, and 𝛿𝛿3 = 0.55. 
 
For exploring the Bayesian method, we considered a discount factor 𝑠𝑠 of 0.2, 05 or 1.  
 
For the pediatric trial that we aimed to calculate the sample size, we assumed a 2-arm, 
equal randomization ratio and the common standard deviation of 1.1% (i.e.,𝜎𝜎0 = 1.1). 
For both the classical method and J-S shrinkage fixed effect estimator, the true pediatric 
treatment effect 𝛿𝛿0is set to 0.5% if it is assumed to be a known fixed value or set to 
follow a normal distribution with mean 0.5% and variance 𝛾𝛾2 (ie, 𝛿𝛿0~𝑁𝑁 (0.5%,𝛾𝛾2)) 
when it is considered a random variable. For the empirical shrinkage estimator and the 
Bayesian method, the true pediatric treatment effect was assumed to follow a normal 
distribution with mean of common treatment effect of 0.5% and the variance 𝜏𝜏2, between-
study variability (i.e., 𝛿𝛿𝑖𝑖~𝑁𝑁 (0.5%, 𝜏𝜏2)), 𝑖𝑖 = 0, 1,⋯ , 3.  
 
4.1 Comparing sample sizes given a study power 
 
We first compared sample sizes among the classical approach, J-S shrinkage fixed effect 
estimator and Bayesian method for the pediatric trial, given a study power of 80% and 
85%, respectively, in Figure 1. As mentioned above, the J-S shrinkage fixed effect 
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estimator was explored under two scenarios for the observed treatment effect from 3 
adult trials, and the Bayesian method was examined with a small discount factor 𝑠𝑠 = 0.2.  
 
We considered the variability (between-study variability 𝜏𝜏2for the Bayesian method or 
variance 𝛾𝛾2 of the true pediatric treatment effect 𝛿𝛿0) up to 0.04% in Figure 1. In T2DM, 
the between-study variability (𝜏𝜏2) of the estimated treatment effect of HbA1c change or 
the variability around the true pediatric treatment effect is expected to be small. For 
example, 0.04% of variability (i.e., 0.2% of standard deviation) indicates the lower limit 
of the 95% confidence interval for the overall estimated treatment effect is around 0.1%.  
 
As seen from Figure 1, both the J-S shrinkage fixed effect estimator and Bayesian 
method utilizing adult information reduced the required sample size for the pediatric trial, 
compared to the classical approach. The Bayesian method that utilized about 20% of the 
information from adult trials resulted in more than 30% reduction in required sample size, 
compared to the classical approach; the difference in sample size between these methods 
was bigger when 𝜏𝜏2  became larger. Also, the Bayesian approach appeared to show a 
similar sample size with increased 𝜏𝜏2. When the observed treatment effect in 3 existing 
adult trials was very similar to each other (𝛿𝛿1 = 0.45,𝛿𝛿2 = 0.5,𝛿𝛿3 = 0.55), the required 
sample size for the pediatric trial was drastically reduced, even lower than the number 
from the Bayesian method. 
 

 
Figure 1: Required sample size per arm in the pediatric trial to obtain 80% and 85% 
power from three methods (2-sided and α=0.05): Classic indicates the classical method 
with 𝛿𝛿0~𝑁𝑁(0.5%,𝛾𝛾2), where 𝛾𝛾2 represents variability; Bayesian indicates the Bayesian 
method with 𝛿𝛿0~𝑁𝑁(0.5%, 𝜏𝜏2) and 𝑠𝑠 = 0.2, where 𝜏𝜏2 represents variability; J-S Large 
Adult Var indicates the J-S shrinkage fixed effect estimator with 𝛿𝛿1 = 0.3,𝛿𝛿2 = 0.5,𝛿𝛿3 =
0.7; J-S Small Adult Var indicates the J-S shrinkage fixed effect estimator with 𝛿𝛿1 =
0.45,𝛿𝛿2 = 0.5,𝛿𝛿3 = 0.55. Both J-S estimators assumed 𝛿𝛿0~𝑁𝑁(0.5%,𝛾𝛾2), where 𝛾𝛾2 
represents variability. 
 
4.2 Comparing powers given sample sizes in Bayesian method under 
different d values  
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Table 1 to Table 3 present power calculations of Bayesian method, given a sample size, 
under different 𝑠𝑠 values. Overall, the study power was decreasing when 𝜏𝜏2  increased, 
given a sample size.  
 
Table 1 shows the powers, under various sample sizes per arm, with 𝑠𝑠 = 1 (fully utilize 
the existing adult data). The results may be bias due to the dominance of adult data, that 
is, too much information is borrowed. Thus, we considered 𝑠𝑠 = 0.5  and 𝑠𝑠 = 0.2,  in 
which the contribution of the adult data was reduced to a half or 20% (Table 2 and Table 
3). As expected, the study powers, given a sample size, were decreased, more noticeably 
with increased 𝜏𝜏2. Despite the reduced power with larger 𝜏𝜏2, the resulted study power 
was greater than the classical approach. The discount value 𝑠𝑠 = 0.5  may still cause 
agency’s concern of borrowing too much of the adult information, while 𝑠𝑠 = 0.2 which 
limits to 20% of information from existing adult studies may be acceptable to health 
authorities.  
 
As shown in Table 3, with the discount value of 0.2 (i.e., 𝑠𝑠 = 0.2), about 80 pediatric 
patients per arm was needed to obtain the 90% power when 𝜏𝜏2=0.005. When 𝜏𝜏2ranged 
from 0.02% to 0.03%, between 80 and 100 pediatric patients per arm was required to 
obtain the 90% power. It is known that the required sample size is 102 per arm for 
achieving 90% power with a common standard deviation of 1.1%, when the true pediatric 
treatment effect 𝛿𝛿0  is assumed to be a known fixed value of 0.5%. As discussed in 
Section 3.1, given a fixed sample size with at least 𝑛𝑛0=60, the study power remained 
similar with increased 𝜏𝜏2.   

 

 

 
𝜏𝜏2=0.005 𝜏𝜏2 =0.01 𝜏𝜏2 =0.02 𝜏𝜏2 =0.025 𝜏𝜏2 =0.03 𝜏𝜏2=0.04 

𝑛𝑛0=20 >99.9% 99.6% 89.7% 82.1% 75.2% 64.5% 
𝑛𝑛0=40 >99.9% 99.6% 94.0% 90.3% 86.7% 80.7% 
𝑛𝑛0=60 >99.9% 99.7% 96.8% 94.8% 92.8% 89.4% 
𝑛𝑛0=80 >99.9% 99.8% 98.3% 97.2% 96.2% 94.3% 
𝑛𝑛0=100 >99.9% 99.9% 99.1% 98.5% 98.0% 96.9% 
𝑛𝑛0=120 >99.9% 99.9% 99.5% 99.3% 99.0% 98.4% 

 

 

 
𝜏𝜏2=0.005 𝜏𝜏2 =0.01 𝜏𝜏2 =0.02 𝜏𝜏2 =0.025 𝜏𝜏2 =0.03 𝜏𝜏2 =0.04 

𝑛𝑛0=20 95.3% 80.8% 59.9% 54.2% 50.1% 44.9% 
𝑛𝑛0=40 96.9% 89.6% 77.9% 74.2% 71.4% 67.4% 
𝑛𝑛0=60 98.3% 94.4% 87.8% 85.5% 83.7% 81.1% 
𝑛𝑛0=80 99.1% 97.0% 93.3% 92.0% 90.9% 89.3% 
𝑛𝑛0=100 99.5% 98.4% 96.4% 95.6% 95.0% 94.1% 
𝑛𝑛0=120 99.7% 99.2% 98.1% 97.7% 97.3% 96.8% 

 

 

Table 1: Power calculations using Bayesian method with  𝑠𝑠 = 1, α=0.05 and 2-sided, 
under various pediatric sample sizes(𝑛𝑛0) per arm  and between-study variability (𝜏𝜏2) 

Table 2:  Power calculations using Bayesian method with  𝑠𝑠 = 0.5, α=0.05 and 2-sided, 
under various pediatric sample sizes(𝑛𝑛0) per arm  and between-study variability (𝜏𝜏2) 

Table 3:  Power calculations using Bayesian method with  𝑠𝑠 = 0.2, α=0.05 and 2-sided, 
under various pediatric sample sizes(𝑛𝑛0) per arm  and between-study variability (𝜏𝜏2) 
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𝜏𝜏2=0.005 𝜏𝜏2 =0.01 𝜏𝜏2 =0.02 𝜏𝜏2 =0.025 𝜏𝜏2 =0.03 𝜏𝜏2 =0.04 

𝑛𝑛0=20 58.1% 47.7% 39.8% 38.0% 36.7% 35.1% 
𝑛𝑛0=40 76.8% 69.6% 63.2% 61.5% 60.3% 58.7% 
𝑛𝑛0=60 87.1% 82.5% 78.1% 76.9% 76.0% 74.8% 
𝑛𝑛0=80 92.9% 90.2% 87.4% 86.6% 86.0% 85.2% 
𝑛𝑛0=100 96.2% 94.6% 92.9% 92.4% 92.1% 91.6% 
𝑛𝑛0=120 98.0% 97.1% 96.1% 95.8% 95.6% 95.3% 

 
4.3 Comparing weights to the adult data given a sample size of the pediatric 
trial between empirical shrinkage estimator and Bayesian method  
 
Figure 2 shows that for both the empirical shrinkage estimator and Bayesian method, 
weights for adult studies decreases as 𝜏𝜏2 increases, given a fixed pediatric sample size 𝑛𝑛0. 
For empirical shrinkage estimator, the weight was the largest in the sense that it had very 
high degree of shrinkage and the data from the existing adult trials almost dominated the 
final pediatric results, especially when 𝜏𝜏2 was very small. For Bayesian method, the more 
adult information was borrowed (i.e., the greater the discount value 𝑠𝑠 is), the larger the 
weight for adult data was.  

 
Figure 2: Weights for existing adult trials versus between-study variability 𝜏𝜏2 in 
empirical shrinkage estimator and Bayesian method with 𝑠𝑠 = 0.2, 0.5, 1 for the pediatric 
sample size per arm 𝑛𝑛0 = 40 or  𝑛𝑛0 = 80. 
 

5. Discussion 
 
Conducting well-powered conventional efficacy and safety trials in pediatric patients is 
known to be challenging. Using the typical classical study design could require a sizeable 
number of patients which is not practical in some therapeutic areas, including T2DM.  
 
Here we have considered and compared the performance of three methods for 
incorporating information from adult data in designing a Phase 3 pediatric trial that lead 
to a reduced sample size: J-S fixed effect estimates, empirical shrinkage estimates and 
Bayesian methods using a discount factor determined by the amount of adult data. If the 
observed treatment effect from existing adult trials is similar to each other, the J-S 
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shrinkage fixed-effect estimation can substantially reduce the required sample size for a 
pediatric trial. The fixed-effect method is commonly used, but a random effects model 
may be considered if generalization is necessary.   
 
Assuming similar PK, PD and safety effects in adult and pediatric populations, an 
alternative approach to that explored here is to consider the concept of consistency with 
the treatment effect observed in the adult population instead of aiming to show a 
significant treatment difference in the pediatric patients. This concept was originally 
proposed in the MHLW guidance by PMDA for multi-regional clinical trials [20]. 
Multiple methodologies including sample size considerations have been developed for 
showing consistency of treatment effects. Additional work on the application of the 
consistency concept to the design and analysis of Phase 3 pediatric trials is ongoing. 
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