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Abstract
The Q-matrix of a cognitively diagnostic test is said to be complete if it allows for the iden-
tification of all possible proficiency classes among examinees. Completeness of the Q-matrix
is therefore a key requirement for any cognitively diagnostic test. However, completeness of
the Q-matrix is often difficult to establish, especially, for tests with a large number of items
involving multiple skills. As an additional complication, completeness is not an intrinsic
property of the Q-matrix, but can only be assessed in reference to a specific cognitive di-
agnosis model (CDM) supposed to underly the data—that is, the Q-matrix of a given test
can be complete for one model but incomplete for another. For different types of CDMs,
conditions of Q-completeness are studied. Rules are derived to determine the completeness
of a given Q-matrix.
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1. Introduction

Cognitively diagnostic (CD) modeling in educational assessment (DiBello, Roussos,
and Stout, 2007; Haberman and von Davier, 2007; Leighton and Gierl, 2007; Rupp,
Templin, and Henson, 2010) describes an examinee’s ability as a composite of spe-
cific discrete (cognitive) skills, each of which an examinee may or may not have
mastered. Distinct skill profiles define classes of proficiency. Fitting educational
testing data within a CD-framework seeks to estimate the parameters of the un-
derlying model and to assign examinees to proficiency classes (i.e., estimate their
individual skill profiles).

If the material constituting a knowledge domain requires K skills, then there are
M = 2K distinct proficiency classes, each of which is defined by a K-dimensional
binary skill profile αm = (α1, α2, . . . , αk . . . αK)′, with m = 1, 2, . . . ,M . Model
parameters and skill profiles are estimated from examinees’ observed responses Yj ,
j = 1, 2, . . . , J , to the J items in the test. Each individual item itself is associated
with a K-dimensional binary vector, qj , called item-skill profile, where qjk = 1 if a
correct answer requires mastery of the kth skill, and 0 otherwise. Note that item-
skill profiles consisting entirely of zeroes are inadmissible, because they correspond
to items that require no skills at all. Hence, given K skills, there are at most 2K−1
distinct item-skill profiles. The J item-skill profiles of a test constitute its Q-matrix,
Q = {qjk}(J×K), (Tatsuoka, 1985) that summarizes the constraints specifying the
associations between items and skills.

The Q-matrix is an integral component of any test that is based on the CD frame-
work. The Q-matrix must fulfill the requirement that it be complete—formally,
S(α) = S(α∗)⇒ α = α∗, where S(α) = E(Y | α) is the (conditional) expectation
of item response vector Y = (Y1, Y2, . . . , YJ)′, given skill profile α. Verbally stated,
a Q-matrix is said to be complete if it allows for the identification of all M possible
proficiency classes among examinees (Chiu, Douglas, and Li, 2009). Said differently,
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an incomplete Q-matrix does not allow for the identification of all M proficiency
classes thus, risking that examinees are assigned to proficiency classes to which they
do not belong. Completeness of the Q-matrix is therefore a key requirement for any
CD test.

However, completeness of the Q-matrix is often difficult to establish, especially,
for tests with a large number of items involving multiple skills. As an additional
complication, completeness is not an intrinsic property of the Q-matrix, but can only
be assessed in reference to a specific cognitive diagnosis model (CDM) supposed to
underly the data—that is, the Q-matrix of a given test can be complete for one
model, but incomplete for another.

This article studies aspects of Q-completeness for different CDMs and how these
can be used for assessing whether a given Q-matrix is complete. The approach
developed here relies on the theoretical framework of general CDMs (de la Torre,
2011; Henson, Templin, and Willse, 2009; Rupp et al., 2010; von Davier 2005, 2008).

2. Technical Background: General Cognitive Diagnosis Models

CDMs model the functional relation between skill mastery and the probability of
a correct item response. The distinct parameterizations of specific CDMs reflects
differences in the underlying theories on how (non-)mastery of skills affects an ex-
aminee’s test performance. General CDMs allow for expressing these distinct func-
tional relations in a unified mathematical form and parameterization. The archety-
pal general CDM is von Davier’s (2005, 2008) General Diagnostic Model (GDM).
Von Davier defined h(qj ,αi) as a general function of the skill profile of item j and
the skill profile αi of examinee i to allow for the flexible modeling of examinees’
responses to item j. The item response function (IRF) of presumably the most
popular version of von Davier’s GDM is formed by the logistic function of the linear
combination of all K skill main effects

P (Yij = 1 | αi) =
exp(βj0 + β′jh(qj ,αi))

1 + exp(βj0 + β′jh(qj ,αi))
=

exp(βj0 +
∑K

k=1 βjkqjkαik)

1 + exp(βj0 +
∑K

k=1 βjkqjkαik)

where qjk indicates whether mastery of skill αik is required for item j. Henson et
al. (2009) specified vj as the linear combination of the K skill main effects, αk, and
all their two-way, three-way, . . ., K-way interactions

vj = βj0 +
K∑
k=1

βjkqjkαik +
K∑

k′=k+1

K−1∑
k=1

βj(kk′)qjkqjk′αikαik′ + · · ·+ βj12...K

K∏
k=1

qjkαik

and defined the IRF of a general CDM termed the Log-Linear Cognitive Diagnosis
Model (LCDM) as

P (Yij = 1 | αi) =
exp(vj)

1 + exp(vj)

By imposing appropriate constraints on the β-coefficients in vj , the IRFs of specific
CDMs can be expressed as submodels of the LCDM. In addition to the logit link,
de la Torre (2011) proposed the identity link, P (Yij = 1 | αi) = vj , and the log link,
P (Yij = 1 | αi) = exp

{
vj
}

, for constructing the IRF of a general CDM called the
Generalized DINA (G-DINA) model. Note that the identity and the log link require
additional constraints on the coefficients to guarantee 0 ≤ P (Yij = 1 | αi) ≤ 1. (For
brevity, the examinee index i is henceforth omitted if the context permits.)
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3. Conditions of Q-Completeness

Recall that completeness of the Q-matrix must be determined in reference to a par-
ticular CDM; a Q-matrix can be complete for one model but incomplete for another.
The parameterization of general CDMs based on the kernel vj suggests a distinction
of CDMs that is used to structure the subsequent investigation of the conditions
of completeness of the Q-matrix: (a) Two special CDMs: The Deterministic Input
Noisy Output “AND” gate (DINA) model (Junker and Sijtsma, 2001; Macready
and Dayton, 1977) and the Deterministic Input Noisy Output “OR” gate (DINO)
model (Templin and Henson, 2006); (b) CDMs with main effects only; (c) CDMs
with main effects and interaction effects; (d) CDMs with only interaction effects.

3.1 Two Special CDMs: The DINA Model and the DINO Model

3.1.1 The Deterministic Input Noisy Output “AND” Gate Model

The IRF of the DINA model in specific parameterization is P (Yj = 1 | α) =

(1− sj)ηjg
(1−ηj)
j , subject to 0 < gj < 1− sj < 1 ∀j. The conjunction parameter ηj

is defined as ηj =
∏K
k=1 α

qjk
k ; ηj indicates whether examinee i has mastered all the

skills needed to answer item j correctly. The item-related parameters sj = P (Yj =
0 | ηj = 1) and gj = P (Yj = 1 | ηj = 0) formalize the probabilities of a slip (failing
to answer item j correctly despite having the skills required to do so) and guessing
(answering item j correctly despite lacking the skills required to do so), respectively.
For item j, define the set Lj = {k | qjk = 1} that contains the non-zero elements in
the item skill vector qj (i.e., the indices of all required skills αk). Thus, the IRF of
the DINA model as a general CDM using the logit link is

P (Yj = 1 | α) =
exp

(
βj0 + βj(∀k∈Lj)

∏
k∈Lj αk

)
1 + exp

(
βj0 + βj(∀k∈Lj)

∏
k∈Lj αk

)
subject to βj(∀k∈Lj) > 0. (If k ∈ Lj = {k | qjk = 1}, then qjk = 1 is always true;
hence, qjk has been dropped from the IRF.)

3.1.2 The Deterministic Input Noisy Output “OR” Gate Model

The DINO model (Templin and Henson, 2006) is a disjunctive CDM (i.e., mastery of
a subset of the required skills is a sufficient condition for maximizing the probability
of a correct item response). Define the disjunction parameter ωj = 1 −

∏K
k=1(1 −

αk)
qjk that indicates whether at least one of the skills required for item j has been

mastered. The IRF of the DINO model in specific parameterization is P (Yj = 1 |
α) = (1−sj)ωjg

(1−ωj)
j . The condition that mastery of just one skill of those required

for item j already maximizes the probability of a correct response translates into
the constraint that all coefficients—except βj0—in Equation 1 be equal; only their
signs oscillate depending on the order a of the terms in the equation: (−1)a+1; for
main effects, a = 1; for two-way interactions a = 2, and so on. Some algebra then
leads to the compact form of the IRF of the DINO model using the logit link

P (Yj = 1 | α) =
exp

(
βj0 + βjk

(
1−

∏
l∈Lj (1− αl)

))
1 + exp

(
βj0 + βjk

(
1−

∏
l∈Lj (1− αl)

)) for some k ∈ Lj

subject to βjk > 0.
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3.1.3 Q-Completeness

Chiu and collaborators proved for the DINA model (Chiu et al., 2009) and the
DINO model (Chiu and Köhn, 2015) that Q is complete if and only if each skill is
represented by at least one single-skill item—that is, Q has rows, e1, . . . , eK , among
its J rows, where ek represents a 1 ×K vector, with the kth element, ek, equal to
1, and all other entries equal to 0. As an illustration for the DINA model, consider
the two Q-matrices, Q1:3 and Q4:6, each with K = 3 skills and J = 3 items

Q1:3 =

 0 1 1
1 0 1
1 1 0

 Q4:6 =

 1 0 0
0 1 0
0 0 1


with the matrix subscripts referring to the item indices j = 1, . . . , 6. Q1:3 is not com-
plete, whereas Q4:6 is complete, as the computation of the expected item-response
profiles S(α) demonstrates. For the DINA model, the entries in S(α) are defined
as

Sj(α) = E(Yj | α) = P (Yj | α) =
exp

(
βj0 + βj(∀k∈Lj)

∏
k∈Lj αk

)
1 + exp

(
βj0 + βj(∀k∈Lj)

∏
k∈Lj αk

)
The subsequent table only reports the coefficients that are retained in Sj(α), but
not the expression of the entire logistic function.

Q1:3 Q4:6

α q1 = (011) q2 = (101) q3 = (110) q4 = (100) q5 = (010) q6 = (001)

S1(α) S2(α) S3(α) S4(α) S5(α) S6(α)
(000) β10 β20 β30 β40 β50 β60
(100) β10 β20 β30 β40 + β41 β50 β60
(010) β10 β20 β30 β40 β50 + β52 β60
(001) β10 β20 β30 β40 β50 β60 + β63
(110) β10 β20 β30 + β3(12) β40 + β41 β50 + β52 β60
(101) β10 β20 + β2(13) β30 β40 + β41 β50 β60 + β63
(011) β10 + β1(23) β20 β30 β40 β50 + β52 β60 + β63
(111) β10 + β1(23) β20 + β2(13) β30 + β3(12) β40 + β41 β50 + β52 β60 + β63

Clearly, Q1:3 is not complete because, for example, α1 = (000)T 6= α2 = (100)T , but

S(α1) = S(α2) = ( eβ10

1+eβ10
, eβ20

1+eβ20
, eβ30

1+eβ30
). Thus, Q1:3 does not allow to distinguish

between all α (i.e., all the M = 2K proficiency classes). However, if items 4–6
of Q4:6 are included, then α 6= α∗ ⇒ S(α) 6= S(α∗). In case of these single
skill items qj = ek; hence, the term βj(∀k∈Lj)

∏
k∈Lj αk is reduced to a skill “main

effect”—βjk—that then allows also to discriminate between α1, α2, α3, and α4.)
In summary, for the DINA model and the DINO model, the inclusion of all K

single-skill items in the Q-matrix is a necessary condition for its completeness. For
other CDMs, however, this is a sufficient, but not a necessary condition—that is,
alternative compositions of the Q-matrix that do not include all single-skill items
also guarantee completeness.

3.2 CDMs With Main Effects Only

As an example for a CDM with main effects only, consider the GDM that has IRF
and expected item response Sj(α)

P (Yj = 1 | α) =
exp

(
βj0 +

∑K
k=1 βjkqjkαk

)
1 + exp

(
βj0 +

∑K
k=1 βjkqjkαk

) = Sj(α)
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For the GDM, Q4:6 is guaranteed to be complete due to the sufficiency condition.
However, Q1:3 is also complete for the GDM despite the removal of all interaction
effects βj(kk′)—that is, S(α) = S(α∗)⇒ α = α∗ still holds:

Q1:3

α q1 = (011) q2 = (101) q3 = (110)

S1(α) S2(α) S3(α)
(000) β10 β20 β30
(100) β10 β20 + β21 β30 + β31
(010) β10 + β12 β20 β30 + β32
(001) β10 + β13 β20 + β23 β30
(110) β10 + β12 β20 + β21 β30 + β31 + β32
(101) β10 + β13 β20 + β21 + β23 β30 + β31
(011) β10 + β12 + β13 β20 + β23 β30 + β32
(111) β10 + β12 + β13 β20 + β21 + β23 β30 + β31 + β32

3.3 CDMs With Main Effects and Interaction Effects

Take the (saturated) LCDM as an example for a model containing all main effects
and all interaction effects. For K = 3 skills, the IRF is

P (Yj = 1 | α) =
exp

(
βj0 +

∑K
k=1 βjkqjkαk +

∑3
k′=k+1

∑2
k=1 βj(kk′)qjkqjk′αkαk′ + βj(123)

∏3
k=1 qjkαk

)
1 + exp

(
βj0 +

∑3
k=1 βjkqjkαk +

∑3
k′=k+1

∑2
k=1 βj(kk′)qjkqjk′αkαk′ + βj(123)

∏3
k=1 qjkαk

)
Note that the expression of the expected response Sj(α) is equal to the IRF of item
j. For the saturated LCDM, Q4:6 is complete due to the sufficiency condition of
Q-matrices containing all K single skill items. Q1:3, on the other hand, does not
contain any single-skill item, but is also complete for the saturated LCDM, as the
calculation of the S(α) demonstrates:

Q1:3

α q1 = (011) q2 = (101) q3 = (110)

S1(α) S2(α) S3(α)
(000) β10 β20 β30
(100) β10 β20 + β21 β30 + β31
(010) β10 + β12 β20 β30 + β32
(001) β10 + β13 β20 + β23 β30
(110) β10 + β12 β20 + β21 β30 + β31 + β32 + β3(12)
(101) β10 + β13 β20 + β21 + β23 + β2(13) β30 + β31
(011) β10 + β12 + β13 + β1(23) β20 + β23 β30 + β32
(111) β10 + β12 + β13 + β1(23) β20 + β21 + β23 + β2(13) β30 + β31 + β32 + β3(12)

3.4 CDMs With No Main Effects, But Only Interaction Effects

What are the consequences if all main effects are removed from, say the saturated
LCDM? For example, consider

P (Yj = 1 | α) =
exp

(
βj0 +

∑K
k′=k+1

∑K−1
k=1 βj(kk′)qjkqjk′αkαk′ + · · ·+ βj(12...K)

∏K
k=1 qjkαk

)
1 + exp

(
βj0 +

∑K
k′=k+1

∑K−1
k=1 βj(kk′)qjkqjk′αkαk′ + · · ·+ βj(12...K)

∏K
k=1 qjkαk

)
Then, as the inspection of the S(α) immediately shows, matrix Q1:3 is no longer
complete because some S(α) = S(α∗) despite α 6= α∗: Four of the proficiency
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classes are not identifiable. Note that, different from the DINA model, using Q4:6

as Q-matrix instead of Q1:3 does not resolve the completeness issue but rather seems
to worsen it because then, none of the proficiency classes is identifiable:

Q1:3 Q4:6

α q1 = (011) q2 = (101) q3 = (110) q4 = (100) q5 = (010) q6 = (001)

S1(α) S2(α) S3(α) S4(α) S5(α) S6(α)
(000) β10 β20 β30 β40 β50 β60
(100) β10 β20 β30 β40 β50 β60
(010) β10 β20 β30 β40 β50 β60
(001) β10 β20 β30 β40 β50 β60
(110) β10 β20 β30 + β3(12) β40 β50 β60
(101) β10 β20 + β2(13) β30 β40 β50 β60
(011) β10 + β1(23) β20 β30 β40 β50 β60
(111) β10 + β1(23) β20 + β2(13) β30 + β3(12) β40 β50 β60

4. Synthesis and Conclusions: Q-Completeness

In light of the last result, it comes as no surprise that models without main ef-
fects, but only containing interaction terms—at least to our knowledge—have never
been proposed in the literature: These models cannot discriminate between the M
proficiency classes. Said differently, for models without the kth main effect, any
Q-matrix is incomplete.

The DINA model and the DINO model form a category of their own: A Q-matrix
to be used with either of the two models is complete if and only if it contains among
its J items all K single skill items, with item skill vectors q1 = e1, q1 = e1, . . .,
qK = eK , where ek was defined earlier as a unit vector with all elements equal 0
except the kth entry (for proofs of this claim, consult Chiu et al., 2009; Chiu and
Köhn, 2015).

For CDMs containing only main effects, the following claim about the com-
pleteness of Q can be made. Consider two skill profiles α 6= α∗. Then there
exists at least one k such that αk = 1 and α∗k = 0. In addition, assume that qjk
in Q is 1 for some j. For models that contain only main effects, a J × K ma-
trix Q is complete if and only if it contains K linearly independent q-vectors and∑K

k′=1,k′ 6=k βjk′qjk′(αk′ − α∗k′) 6= βjk for some k. For an illustration, look at

Q =

 1 0 1
0 1 1
1 1 1


that consists of three linearly independent q-vectors. But the constraint

∑K
k′=1,k′ 6=k βjk′qjk′(αk′−

α∗k′) 6= βjk is possibly violated, as can be readily verified:

Q1:3

α q1 = (101) q2 = (011) q3 = (111)

S1(α) S2(α) S3(α)
(001) β10 + β13 β20 + β23 β30 + β33
(110) β10 + β11 β20 + β22 β30 + β31 + β32

If β13 = β11, β23 = β22, and β33 = β31 + β32, then the two proficiency classes
with skill profiles (001) and (110) cannot be distinguished. However, this particular
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constellation is presumably pretty rare; it can only occur if the expected responses
for distinct α are not nested within each other.

For CDMs containing main effects and interaction terms, the general condition
for Q-completeness can be stated as follows. Consider two skill profiles α 6= α∗.
Then there exists at least one k such that αk = 1 and α∗k = 0. In addition, assume
that qjk in Q is 1 for some j. For models that contain main effects and interaction
terms, a J×K matrix Q is complete if and only if it contains K linearly independent

q-vectors and
∑K

k′=1,k′ 6=k βjk′qjk′(αk′ − α∗k′) + · · · + βj(12...K)

∏K
k=1 qjk

(∏K
k=1 αk −∏K

k=1 α
∗
k

)
6= −βjk for some k.
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