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Abstract 

The basic reason for the failure of many standard randomized parallel placebo-controlled 
clinical trials with high placebo response rate is that the observed relative treatment 
difference only provides an estimate of the apparent treatment effect since the true 
treatment effect has been diminished by the presence of a substantial proportion of 
placebo responders in the population.  Analogous to an active control trial, the true 
treatment effect cannot be measured by the relative treatment difference.  An appropriate 
assessment of the true treatment effect is critical for making a risk/benefit analysis and 
dosage recommendation.  The primary purpose of this paper is to propose a method for 
adjusting the apparent treatment effect to account for the high placebo response rate 
within the framework of a doubly randomized delayed start design. 

Key Words:  Adjusted treatment effect, combination test, consistency test, doubly 
randomized delayed start design, Joint test, Sequential parallel design with re-
randomization  
 
 

1. Background 

1.1 The Sequential Enrichment Design 

The problem of a high placebo response rate in clinical trials occurs in several therapeutic 
areas, but it is most often observed in trials involving subjects with psychiatric disorders.  
This problem has been known for quite some time.  Temple [3] had suggested an 
enrichment design whereby subjects responding to placebo in a run-in period are 
excluded from a second period during which placebo non-responders are re-randomized 
to treatment and placebo in a parallel design.  The purpose of Temple’s enrichment 
design is merely to show that the treatment is effective in some subpopulation and in this 
case in the subpopulation of placebo non-responders.  However, one problem with this 
enrichment design is that the claim of treatment effectiveness cannot be extended to the 
entire intended study population.  Another problem is that for a patient to be treated in 
practice, the patient has to be given placebo first to verify his/her placebo response status 
before the treatment can be prescribed and this would entail an ethical dilemma. 
 
Fava et al. [2] proposed a sequential parallel design (SPD) where subjects are randomized 
to a treatment group and two placebo groups in the first period.  At the end of the first 
period, the non-responders in one placebo group will be given treatment in the second 
period, while the non-responders in the other placebo group will continue with placebo in 
the second period.  The subjects in the treatment group in the first period will continue on 
the treatment or on placebo in the second Period.  It should be noted that in the original 
proposed SPD design, the randomization in Period 2 refers to the original randomization 
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conducted at the beginning of the first period.  The lack of a re-randomization in the 
second period poses potential imbalance in key covariates between the two placebo non-
responder groups if there is a differential placebo dropout rate between the two placebo 
arms at the end of the first period.  Such imbalance may introduce bias and cause 
difficulty in the statistical inference.  Liu et al. [1] proposed a doubly randomized delayed 
start (DRDS) design which was presented at the 2010 BASS Conference.  This DRDS 
design involves re-randomizing the subjects to treatment and placebo in the first period 
and then re-randomizing the placebo non-responders identified at the end of the first 
period based on some pre-specified response threshold to treatment and placebo in the 
second period.  The terms “delayed start” were used for the obvious application of this 
design to trials involving progressive diseases.  Chen et al. [4] considered a SPD design 
with re-randomization in the second period which they termed a SPD-ReR design.  Now, 
the original SPD design has since also been revised to include re-randomization in the 
second period.  In this paper, a generic DRDS design as depicted in Figure 1 may refer to 
a SPD ReR design or a SPD design with re-randomization if appropriate, and for 
convenience, some of the terminologies and notations used in Liu et al. [1] are adopted in 
this paper.  The DRDS design has been accepted by the regulatory agencies as an 
innovative design.  But there are some conceptual and statistical issues yet need to be 
resolved.  To address these issues, a new methodological approach for a DRDS design 
that differs from the previous methods is proposed in this paper. 

Table 1 displays a summary of the data from a small completed phase II study based on a 
DRDS design.  The Period 1 data will be used later for illustrating the power and sample 
size of the various tests as well as generating a simulated trial using a DRDS design. 

 

1.2 Some Key Issues Associated with the Current Methods for a DRDS Design 

There are a few important conceptual and technical issues related to the problem of a 
high placebo response rate in a DRDS design that need to be satisfactorily resolved 
before a DRDS design can be applied to phase 3 trials to obtain the confirmatory 
evidence of effectiveness required.  These issues will now be discussed. 

Issue 1: The customary view considers the standard RDP design as the design of choice. 
But in a study population that has a substantial proportion of placebo responders, the 
relative treatment difference in a RDP design is only an apparent treatment effect, since it 
ignores the mitigating effect of the high placebo response rate on this difference. This 
problem is also present in the first period of a DRDS design.  Therefore, the apparent 
treatment effect from the first period of a DRDS design would underestimate the 
treatment effect.  Another inherent problem in this view is that even if perchance the 
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apparent treatment effect shows the treatment is superior to placebo (e.g. result of bias), 
any dosage recommendation based on an apparent dose-response relationship would 
likely lead to overdosing.  For these two reasons, an appropriate assessment of the 
treatment effect adjusting for high placebo response rate is imperative. 

Issue 2:  A problem that is born of the view above is present in the current proposed 
methods of analysis of a DRDS design.  These methods variously proposed to estimate 
the apparent treatment effect of Period 1 by a combined statistic, which is defined as a 
weighted combination of the apparent treatment effect of Period 1 and the enriched 
treatment effect of Period 2 under some assumptions that are either unreasonable or 
unnecessarily stringent.  The combination test that is derived from the combined statistic 
is used to test either the apparent treatment null hypothesis of Period 1, or a global null 
hypothesis which is defined as the joint apparent null of Period 1 and the enriched 
treatment null of Period 2.  Ignoring the appropriateness of these assumptions, the 
rejection of these null hypotheses by their combination tests would not have solved the 
problem discussed in Issue 1 above.   

Issue 3: A problem that is associated with the current method is that the weights used in 
the combined statistics depend on the placebo-to-treatment allocation ratios in Period 1 
and Period 2 of a DRDS design.  One can easily bias the estimate of the apparent 
treatment effect in favor of treatment by placing more weight on the Period 2 treatment 
effect estimate in the combined statistic which can be accomplished by simply increasing 
the allocation ratio in Period 1.  Such bias is present even when the allocation ratio in 
Period 1 is equal to 2 as is the case in most of the DRDS designs used in these earlier 
papers.  Such potential bias is of concern.  Furthermore, such inappropriate use of the 
Period 2 data and misleading interpretation of the purpose of the second period of a 
DRDS design (enrichment) are unfortunate and should be corrected. 

Issue 4:  Assuming for the moment that a combined statistic with weights that are 
independent of the allocation ratios has been defined.  Then, one needs to know what this 
combined statistic is estimating and how to interpret it.  Is the combined statistic 
estimating a treatment effect for the intended study population?  Does the treatment effect 
represent an appropriate assessment of the true treatment effect in the intended study 
population?  Does the treatment effect adjust for the presence of placebo responders in 
the intended study population?   Interpretability of the estimate of a combined statistic is 
crucial in its acceptability as an assessment of the true treatment effect for the intended 
study population.  Such interpretation is lacking for the combined statistics in most of the 
current available methods, except for those cases where the combined statistics are meant 
to estimate the apparent treatment effect of Period 1 as discussed in Issue 2 above. 

Issue 5:  Assuming that a combined statistic is estimating the true treatment effect for the 
intended study population as discussed in Issue 4, one problem that may arise is that it is 
possible for the combined statistic to show a positive combined treatment effect, yet the 
estimate of the apparent treatment effect from Period 1 may be negative.  This kind of 
inconsistency is not a desirable outcome, since it suggests that the treatment effect may 
be substantially worse than placebo among the placebo responders.  This issue is also not 
addressed relative to the combined statistics in the current available methods in addition 
to the other problems discussed above. 

Issue 6:  In all of the currently available methods, Period 2 of a DRDS design is simply 
viewed as a trial independent of Period 1.  However, realistically, the probability 
structure underlying Period 2 in a DRDS design is conditional in nature.  The sample 
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cohorts in Period 2 represent placebo non-responders in Period 1 who were re-
randomized in Period 2 into treatment and placebo groups.  Therefore, the distributions of 
the response variables for these cohorts in Period 1 and Period 2 follow a singly truncated 
bivariate normal distribution.  The distributions of these cohorts in Period 2 are 
conditioned on the truncation of their placebo response in Period 1 at some threshold.  
Thus, the treatment effect at the end of Period 2 will be conditional in nature with some 
useful properties that are not available under the unconditional probability structure.           

To address the above issues, a new methodology is proposed in this paper.  The 
conditional probability structure underlying a DRDS design is described in Section 2.  In 
Section 3, the key concept of an adjusted treatment effect is defined.  In Section 4, a new 
combination test is derived.  The concept of a consistency measure is introduced and a 
consistency test is defined in Section.  In Section 6, a joint test composed of the 
combination and consistency tests is proposed for demonstrating that the treatment is 
effective for the intended study population.  In Section 7, a simulated DRDS designed 
trial is presented for illustration.  A summary discussion concludes the paper. 

2. The DRDS Design and Its Underlying Probability Structure 

In this section, a trial using the basic DRDS design is described and the probability 
structure behind this design is discussed which forms the basis for the proposed 
methodology.  

2.1 A DRDS Design Trial 

Consider a trial with a DRDS design.  Let Ω = Ω1 denote the intended study population, 
and assume that there is a subpopulation of placebo responders Ω𝑅 even though this 
subpopulation can’t be characterized prior to the start of the trial.  Let Ω𝑁𝑅 denote the 
placebo non-responder subpopulation.  Let 𝑇 denote an experimental treatment and 𝑃 the 
placebo.  In Period 1, 𝑁1 = 𝑛1 subjects are randomly assigned to  𝑇 and  𝑃 in a placebo-
to-treatment allocation ratio of 𝑟1 ≥ 1 with 𝑛1,𝑇 subjects assigned to treatment 𝑇 and 
𝑛1,𝑃 = 𝑟1𝑛1,𝑇 subjects assigned to placebo 𝑃, where  𝑛1 = 𝑛1,𝑃 + 𝑛1,𝑇.  Let 𝑋 denote a 
continuous clinical response variable of interest, 𝑋1,𝑇 and 𝑋1,𝑃  the response variables 𝑋 
under the treatment 𝑇 and the placebo 𝑃 respectively in Period 1.  Let 𝑋1,𝑃~𝑁(𝜇1,𝑃 , 𝜎1,𝑃2 ) 
& 𝑋1,𝑇~𝑁(𝜇1,𝑇, 𝜎1,𝑇

2 ) be normally distributed with the mean and variance (𝜇1,𝑃 , 𝜎1,𝑃2 ) and 
(𝜇1,𝑇 , 𝜎1,𝑇2 ) respectively.  For simplicity, it will be assumed that 𝜎1,𝑃2 = 𝜎1,𝑇

2 = 𝜎1
2.  Let 

∆1= 𝜇1,𝑇 − 𝜇1,𝑃 denote the relative treatment difference in Period 1.  Let {𝑥1,𝑃,𝑖 , 𝑖 =
1,2, . . . , 𝑛1,𝑃} and {𝑥1,𝑇,𝑗 , 𝑗 = 1,2, . . . , 𝑛1,𝑇} denote the observed sample responses from the 
placebo and treatment groups respectively.  Then, ∆̂1= (�̂�1,𝑇 − �̂�1,𝑃)~𝑁 (∆1,

𝜎1
2

𝑛1,𝑇𝑅1
), where 

�̂�1,𝑃 =
1

𝑛1,𝑃
∑ 𝑥1,𝑃,𝑖
𝑛1,𝑃
𝑖=1  , �̂�1,𝑇 =

1

𝑛1,𝑇
∑ 𝑥1,𝑇,𝑗
𝑛1,𝑇
𝑗=1  , and 𝑅1 =

𝑟1

1 + 𝑟1
=

𝑛1,𝑃

𝑛1,𝑃+𝑛1,𝑇
 is the fraction of 

placebo subjects among the entire sample of 𝑛1 subjects.  When the variances 𝜎12 and 𝜎22 
of ∆̂1 and ∆̂2 from Period 1 and Period 2 are considered unknown, then one may estimate 
these unknown variances by their respective pooled sample variances given by �̂�12 =
(𝑛1,𝑇 – 1) �̂�1,𝑇

2   +  (𝑛1,𝑃 – 1) �̂�1,𝑃
2  

(𝑛1,𝑇  +  𝑛1,𝑃 – 2)
 and �̂�22 =

(𝑛2,𝑇  − 1) �̂�2,𝑇
2   +  (𝑛2,𝑃 – 1) �̂�2,𝑃

2  

(𝑛2,𝑇  +  𝑛2,𝑃  − 2)
  where 

�̂�1,𝑇
2 =

1

(𝑛1,𝑇 − 1)
∑ (𝑋1,𝑇,𝑖 − �̅�1,𝑇)

2𝑛1,𝑇
𝑖=1 , �̂�1,𝑃2 =

1

(𝑛1,𝑃 − 1)
∑ (𝑋1,𝑃,𝑖 − �̅�1,𝑃)

2𝑛1,𝑃
𝑖=1 , 

�̂�2,𝑇
2 =

1

(𝑛2,𝑇 − 1)
∑ (𝑋2,𝑇,𝑖 − �̅�2,𝑇)

2𝑛2,𝑇
𝑖=1  and �̂�2,𝑃2 =

1

(𝑛2,𝑃 − 1)
∑ (𝑋2,𝑃,𝑖 − �̅�2,𝑃)

2𝑛2,𝑃
𝑖=1 .  At the end of 

Period 1, a pre-specified threshold c for the response variable 𝑋 will be applied to 
determine the response status of each placebo subject who completed the trial.  At the end 
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of Period 1, those placebo subjects who are identified as responders (𝑋1,𝑃 > 𝑐), and along 
with the placebo dropouts will be excluded from the second period of the study.  Those 
placebo subjects classified as non-responders (𝑋1,𝑃 < 𝑐), will be re-randomized to 
treatment and placebo at the start of Period 2.  It will be assumed that the proportion of 
placebo non-responders among the placebo dropouts in Period 1 is similar to their 
population proportion.  For simplicity, it is assumed here that there were no placebo 
dropouts.  Let 𝜏 = 𝑐 − 𝜇1,𝑃

𝜎1,𝑃
  be the standardized response threshold relative to the placebo 

response distribution in Period 1.  Let 𝑛2 denote the number of placebo non-responders 
who completed Period 1 of the study and 𝛾 = Φ(𝜏) = Φ(𝑐 − 𝜇1,𝑃

𝜎1,𝑃
) denote the population 

proportion of placebo non-responders in Ω = Ω1.  Then, the ratio  𝛾 = 𝑛2

𝑛1,𝑃
 should be a 

consistent estimate of the parameter Φ(𝜏) in the absence of placebo dropouts, or under the 
above assumption if placebo dropouts are present. 

At the start of Period 2, the 𝑛2 placebo non-responders from Period 1 will be re-
randomized to treatment and placebo in a placebo-treatment allocation ratio of 𝑟2 ≥ 1.  
For practical reason, 𝑟2 is usually set to the value 1. Then, it follows that 𝑛2,𝑇 = 𝑛2,𝑃 =
𝑛2

1+𝑟2
=
𝛾𝑛1,𝑃

1+𝑟2
=
𝛾𝑛1,𝑇𝑟1

1+𝑟2
= 𝑛1,𝑇𝛾𝑅1,2, where 𝑅1,2 =

𝑟1

1+𝑟2
.  Now without loss in generality and for 

obvious reason, consider relabeling the entire placebo sample in Period 1 as follows:  
             {𝑋1,𝑃,𝑖, 𝑖 = 1,2, . . . , 𝑛2,𝑇, 𝑛2,𝑇 + 1, 𝑛2,𝑇 + 2, . . . , 𝑛2, 𝑛2 + 1, 𝑛2 + 2, . . . , 𝑛1,𝑃 }                  
where the first 𝑛2,𝑇 placebo subjects {𝑋1,𝑃,𝑖 , 𝑖 = 1,2, . . . , 𝑛2,𝑇} are placebo non-responders 
that have been re-randomized in Period 2 to treatment, and the next set of 𝑛2,𝑃 placebo 
subjects {𝑋1,𝑃,𝑖 , 𝑖 = 𝑛2,𝑇 + 1, 𝑛2,𝑇 + 2, . . . , 𝑛2, } are placebo non-responders that have been re-
randomized in Period 2 to placebo, while the remainder of the placebo sample 
{𝑋1,𝑃,𝑖 , 𝑖 = 𝑛2 + 1, 𝑛2 + 2, . . . , 𝑛1,𝑃} are the placebo subjects who were placebo responders 
(or placebo dropouts if any) in Period 1.  Note that under equal allocation in Period 2, 
𝑛2,𝑃 = 𝑛2,𝑇 =

𝑛2,𝑃+𝑛2,𝑇

2
=
𝑛2

2
=
𝛾𝑛1,𝑃

2
.  Assuming that the randomization in Period 1 holds, 

then the placebo sample should be representative of the population Ω = Ω1.  If the entire 
untruncated placebo sample at the end of Period 1were re-randomized in Period 2 to 
treatment, then the pair of response variables (𝑋1,𝑃 , 𝑋2,𝑇)~𝑁(𝝁𝟏𝟐,𝑻, 𝚺𝟏𝟐,𝑻) are bivariate 

normal with 𝝁𝟏𝟐,𝑻 = (
𝜇1,𝑃
𝜇2,𝑇

) and 𝚺𝟏𝟐,𝑻 = (
𝜎1,𝑃
2 𝜌𝑇𝜎1,𝑃𝜎2,𝑇

𝜌𝑇𝜎1,𝑃𝜎2,𝑇 𝜎2,𝑇
2 ) assuming that 𝜎1,𝑃2 = 𝜎1,𝑇

2 =

𝜎1
2, 𝜎2,𝑃2 = 𝜎2,𝑇

2 = 𝜎2
2, and where 𝜌𝑇 is the correlation 𝑐𝑜𝑟𝑟(𝑋1,𝑃 , 𝑋2,𝑇).  Similarly, if the 

entire placebo sample at the end of Period 1 were re-randomized in Period 2 to placebo, 

then the pair (𝑋1,𝑃 , 𝑋2,𝑃)~𝑁(𝜇12,𝑃 , Σ12,𝑃), 𝝁𝟏𝟐,𝑷 = (
𝜇1,𝑃
𝜇2,𝑃

) &  𝚺𝟏𝟐,𝑷 = (
𝜎1,𝑃
2 𝜌𝑃𝜎1,𝑃𝜎2,𝑃

𝜌𝑃𝜎1,𝑃𝜎2,𝑃 𝜎2,𝑃
2 )  

assuming that 𝜎1,𝑃2 = 𝜎1,𝑇
2 = 𝜎1

2, 𝜎2,𝑃2 = 𝜎2,𝑇
2 = 𝜎2

2, and where 𝜌𝑃 is the correlation 
𝑐𝑜𝑟𝑟(𝑋1,𝑃 , 𝑋2,𝑃).  Indeed, in this case, one may even assume that 𝜎1,𝑃2 = 𝜎2,𝑃

2 , 𝜎1,𝑇
2 = 𝜎2,𝑇

2  and 
hence 𝜎12 = 𝜎22.  It should be pointed out that if the treatment is not effective, then it is 
likely that 𝜌𝑃 = 𝜌𝑇, i.e., 𝜌𝑃 − 𝜌𝑇 = 0.  Otherwise, if the treatment is more effective than 
placebo, then one should expect that 𝜌𝑃 ≥ 𝜌𝑇, i.e., 𝜌𝑃 − 𝜌𝑇 ≥ 0. 

2.2 Truncated Distributions of the Two Placebo Non-Responder Cohorts in Period 2 

In a DRDS design, since only the placebo non-responders at the end of Period 1 are re-
randomized to placebo and treatment in Period 2, for the cohort of placebo non-
responders who were re-randomized to treatment in Period 2 denoted by (𝑃 → 𝑇), the 
sample pairs  {(𝑋1,𝑃,𝑖, 𝑋2,𝑇,𝑖), 𝑖 = 1, 2, . . . , 𝑛2,𝑇} should follow a singly truncated bivariate 
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normal distribution  ((𝑋1,𝑃|𝑋1,𝑃 < 𝑐), (𝑋2,𝑇|𝑋1,𝑃 < 𝑐))~ 𝑁(𝝁𝟏𝟐,𝑻|𝑿𝟏,𝑷< 𝒄, 𝚺𝟏𝟐,𝑻|𝑿𝟏,𝑷<𝒄) where 

                𝝁𝟏𝟐,𝑻|𝑿𝟏,𝑷< 𝒄 = (
𝜇1,𝑃|𝑿𝟏,𝑷< 𝒄
𝜇2,𝑇|𝑿𝟏,𝑷< 𝒄

) = (
𝜇1,𝑃 − 𝜎1,𝑃 (

𝜑(𝜏)

Φ(𝜏)
)

𝜇2,𝑇 − 𝜌𝑇𝜎2,𝑇 (
𝜑(𝜏)

Φ(𝜏)
)
)  and 

𝚺𝟏𝟐,𝑻|𝑿𝟏,𝑷<𝒄 = (
𝑣𝑎𝑟(𝑋1,𝑃|𝑋1,𝑃 < 𝑐) 𝑐𝑜𝑣(𝑋1,𝑃 , 𝑋2,𝑇|𝑋1,𝑃 < 𝑐)

𝑐𝑜𝑣(𝑋1,𝑃 , 𝑋2,𝑇|𝑋1,𝑃 < 𝑐) 𝑣𝑎𝑟(𝑋2,𝑇|𝑋1,𝑃 < 𝑐)
) 

where 𝑣𝑎𝑟(𝑋1,𝑃|𝑋1,𝑃 < 𝑐) = [1 − 𝜏
𝜑(𝜏)

Φ(𝜏)
− (

𝜑(𝜏)

Φ(𝜏)
)
2

] 𝜎1,𝑃
2 , 𝑣𝑎𝑟(𝑋2,𝑇|𝑋1,𝑃 < 𝑐) = (𝜌𝑇2 [1 − 𝜏

𝜑(𝜏)

Φ(𝜏)
−

(
𝜑(𝜏)

Φ(𝜏)
)
2

]𝜎1,𝑃
2 + (1 − 𝜌𝑇

2))𝜎2,𝑇
2  , 𝑣𝑎𝑟(𝑋2,𝑃|𝑋1,𝑃 < 𝑐) = (𝜌𝑃2 [1 − 𝜏

𝜑(𝜏)

Φ(𝜏)
− (

𝜑(𝜏)

Φ(𝜏)
)
2

]𝜎1,𝑃
2 + (1 −

𝜌𝑃
2)) 𝜎2,𝑃

 2  , 𝑐𝑜𝑣(𝑋1,𝑃 , 𝑋2,𝑇|𝑋1,𝑃 < 𝑐) = 𝜌𝑇 [1 − 𝜏
𝜑(𝜏)

Φ(𝜏)
− (

𝜑(𝜏)

Φ(𝜏)
)
2

]𝜎1,𝑃𝜎2,𝑇  and the correlation for 

the truncated (𝑃 → 𝑇) cohort given by 𝜌𝑇|𝑿𝟏,𝑷<𝒄 =
𝑐𝑜𝑣(𝑋1,𝑃,𝑋2,𝑇|𝑋1,𝑃<𝑐)

√𝑣𝑎𝑟(𝑋1,𝑃|𝑋1,𝑃<𝑐)√𝑣𝑎𝑟(𝑋2,𝑇|𝑋1,𝑃<𝑐)

 .  In practice, 

𝑣𝑎𝑟(𝑋1,𝑃|𝑋1,𝑃 < 𝑐), 𝑣𝑎𝑟(𝑋2,𝑇|𝑋1,𝑃<𝑐) and 𝑐𝑜𝑣(𝑋1,𝑃 , 𝑋2,𝑇|𝑋1,𝑃<𝑐) may be estimated by their 
respective sample variances and the sample covariance given by 𝑆𝑋1,𝑃|𝑋1,𝑃 <𝑐

2 =
1

𝑛2,𝑇
∑ (𝑋1,𝑃,𝑖 − �̂�1,𝑃|𝑋1,𝑃<𝑐)

2𝑛2,𝑇
𝑖=1 ,  𝑆𝑋2,𝑇|𝑋1,𝑃 <𝑐

2 =
1

𝑛2,𝑇
∑ (𝑋2,𝑇,𝑖 − �̂�2,𝑇|𝑋1,𝑃<𝑐)

2𝑛2,𝑇
𝑖=1  and 

𝑆(𝑋1,𝑃,   𝑋2,𝑇|𝑋1,𝑃<𝑐) =
1

𝑛2,𝑇
∑ (𝑋1,𝑃,𝑖 − �̂�1,𝑃|𝑋1,𝑃<𝑐)(𝑋2,𝑇,𝑖 − �̂�2,𝑇|𝑋1,𝑃<𝑐)
𝑛2,𝑇
𝑖=1 , where �̂�1,𝑃|𝑋1,𝑃 <𝑐 =

1

𝑛2,𝑇
∑ (𝑋1,𝑃,𝑖|𝑋1,𝑃 < 𝑐)
𝑛2,𝑇
𝑖=1   and  �̂�2,𝑇|𝑋1,𝑃 <𝑐 =

1

𝑛2,𝑇
∑ (𝑋2,𝑇,𝑖|𝑋1,𝑃 < 𝑐)
𝑛2,𝑇
𝑖=1 . The sample correlation 

is given by �̂�𝑇|𝑋1,𝑃<𝑐 = 𝑆(𝑋1,𝑃,   𝑋2,𝑇|𝑋1,𝑃<𝑐)/√𝑆𝑋1,𝑃|𝑋1,𝑃<𝑐
2

√𝑆𝑋2,𝑇|𝑋1,𝑃<𝑐
2  . 

Similarly, for the cohort (𝑃 → 𝑃) in Period 2, the sample pairs  {(𝑋1,𝑃,𝑛2,𝑇+𝑖 , 𝑋2,𝑃,𝑖), 𝑖 =
1, 2, . . . , 𝑛2,𝑃} also follows a singly truncated bivariate normal distribution with 
((𝑋1,𝑃|𝑋1,𝑃 < 𝑐), (𝑋2,𝑃|𝑋1,𝑃 < 𝑐))~𝑁(𝝁𝟏𝟐,𝑷|𝑿𝟏,𝑷< 𝒄, 𝚺𝟏𝟐,𝑷|𝑿𝟏,𝑷<𝒄), where                   

                𝝁
𝟏𝟐,𝑷|𝑿𝟏,𝑷< 𝒄

= (
𝜇
1,𝑃|𝑋1,𝑃< 𝑐

𝜇
2,𝑃|𝑋1,𝑃< 𝑐

) = (
𝜇
1,𝑃
− 𝜎1,𝑃 (

𝜑(𝜏)

Φ(𝜏)
)

𝜇
2,𝑃
− 𝜌

𝑃
𝜎2,𝑃 (

𝜑(𝜏)

Φ(𝜏)
)
) and  

 𝚺𝟏𝟐,𝑷|𝑿𝟏,𝑷<𝒄 = (
𝑣𝑎𝑟(𝑋1,𝑃|𝑋1,𝑃 < 𝑐) 𝑐𝑜𝑣(𝑋1,𝑃 , 𝑋2,𝑃|𝑋1,𝑃 < 𝑐)

𝑐𝑜𝑣(𝑋1,𝑃 , 𝑋2,𝑃|𝑋1,𝑃 < 𝑐) 𝑣𝑎𝑟(𝑋2,𝑃|𝑋1,𝑃 < 𝑐)
)                                            

The expressions for the elements of the above variance-covariance matrix 𝚺𝟏𝟐,𝑷|𝑿𝟏,𝑷<𝒄 are 
similar to the previous expressions derived for the (𝑃 → 𝑇) cohort and will not be 
repeated here. 

Now, with the underlying conditional probability structure for a DRDS design as 
described above, the Period 2 expected treatment effect is now given by the conditional 
(truncated) mean difference                                                                                             
        (∆2|𝑋1,𝑃 < 𝑐) = 𝜇2,𝑇 | 𝑋1,𝑃<𝑐 − 𝜇2,𝑃 | 𝑋1,𝑃<𝑐 = (𝜇2,𝑇 − 𝜇2,𝑃) + (𝜌𝑃𝜎2,𝑃 − 𝜌𝑇𝜎2,𝑇) (

𝜑(𝜏)

Φ(𝜏)
)     (1) 

which may be estimated by the observed mean difference (∆̂2|𝑋1,𝑃 < 𝑐) = �̂�2,𝑇 | 𝑋1,𝑃<𝑐 −

�̂�
2,𝑃 | 𝑋1,𝑃<𝑐

  where   �̂�
2,𝑇 | 𝑋1,𝑃<𝑐

= �̂�2,𝑇|𝑋1,𝑃<𝑐 =
1

𝑛2,𝑇
∑ (𝑋2,𝑇,𝑖|𝑋1,𝑃 < 𝑐)
𝑛2,𝑇=𝑛2,𝑃
𝑖=1

 and   �̂�2,𝑃 | 𝑋1,𝑃<𝑐 =

�̂�2,𝑃|𝑋1,𝑃<𝑐 =
1

𝑛2,𝑃
∑ (𝑋2,𝑃,𝑖|𝑋1,𝑃 < 𝑐)
𝑛2,𝑃=𝑛2,𝑇
𝑖=1 .  Thus, 𝐸(∆̂2|𝑋1,𝑃 < 𝑐) = (∆2|𝑋1,𝑃 < 𝑐).                  

If the duration of Period 1 is relatively short, then in the above expression for 𝐸(∆̂2|𝑋1,𝑃 <
𝑐), the first term (𝜇2,𝑇 − 𝜇2,𝑃) = (𝜇1,𝑇 − 𝜇1,𝑃), which is the apparent treatment effect from 
Period 1; hence the increase in the expected treatment effect in Period 2 arises primarily 
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from the second term (𝜌𝑃𝜎2,𝑃 − 𝜌𝑇𝜎2,𝑇)
𝜑(𝜏)

Φ(𝜏)
 which is 0 when there is no treatment effect 

and should be positive when the treatment is effective, since in that case, one expects that 
(𝜌𝑃𝜎2,𝑃 − 𝜌𝑇𝜎2,𝑇) > 0.  Some of the above expressions in the conditional distributions are 
well-known.  See for example, Johnson and Kotz [5]. Other expressions can be directly 
derived from them. 

2.2 The Joint Distribution of (∆̂𝟏, (∆̂𝟐|𝑿𝟏,𝑷 < 𝒄)) 

Now with the above derivation of the conditional probability structure underlying the two 
cohorts (𝑃 → 𝑇) and (𝑃 → 𝑃) in Period 2, one can establish the following lemma. 

Lemma: For a DRDS design, the treatment effect estimates ∆̂1 and ∆̂2  from Period 1 and 
Period 2 follow an asymptotically normal bivariate distribution, (∆̂1, (∆̂2|𝑋1,𝑃 <

𝑐))~ 𝚽(𝝁𝟏𝟐, 𝚺𝟏𝟐), where  𝝁𝟏𝟐 = (
Δ1

(Δ2|𝑋1,𝑃 < 𝑐)
) = (

𝜇1,𝑇 − 𝜇1,𝑃

(𝜇2,𝑇 − 𝜇2,𝑃) + (𝜌𝑃𝜎2,𝑃 − 𝜌𝑇𝜎2,𝑇)
𝜑(𝜏)

Φ(𝜏)

),  

𝚺𝟏𝟐 = (
𝑣𝑎𝑟(∆̂1) 𝑐𝑜𝑣 (∆̂1, (∆̂2|𝑋1,𝑃 < 𝑐))

𝑐𝑜𝑣 (∆̂1, (∆̂2|𝑋1,𝑃 < 𝑐)) 𝑣𝑎𝑟(∆̂2|𝑋1,𝑃 < 𝑐)
) ,  and       

                         𝑣𝑎𝑟(∆̂1) =
𝜎1
2  

𝑛1,𝑇𝑅1
, assuming that 𝜎1,𝑇

2 = 𝜎1,𝑃
2 = 𝜎1

2                                          (2)           

                         𝑣𝑎𝑟(∆̂2|𝑋1,𝑃 < 𝑐) =
1

𝑛2,𝑇
(𝑣𝑎𝑟(𝑋2,𝑇|𝑋1,𝑃 < 𝑐) + 𝑣𝑎𝑟(𝑋2,𝑃|𝑋1,𝑃 < 𝑐))                (3) 

where    𝑣𝑎𝑟(𝑋2,𝑇|𝑋1,𝑃 < 𝑐) = (𝜌𝑇
2 [1 − 𝜏

𝜑(𝜏)

Φ(𝜏)
− (

𝜑(𝜏)

Φ(𝜏)
)
2

] 𝜎1,𝑃
2 + (1 − 𝜌

𝑇
2)) 𝜎2,𝑇

2                                      

                 𝑣𝑎𝑟(𝑋2,𝑃|𝑋1,𝑃 < 𝑐) = (𝜌𝑃
2 [1 − 𝜏

𝜑(𝜏)

Φ(𝜏)
− (

𝜑(𝜏)

Φ(𝜏)
)
2

] 𝜎1,𝑃
2 + (1 − 𝜌𝑃

2)) 𝜎2,𝑃
2                              

and  𝑐𝑜𝑣(∆̂1, (∆̂2|𝑋1,𝑃 < 𝑐)) = 𝑐𝑜𝑣((�̂�1,𝑇 − �̂�1,𝑃), (�̂�2,𝑇 | 𝑋1,𝑃<𝑐 − �̂�2,𝑃 | 𝑋1,𝑃<𝑐))                            
                           =

1

𝑛1𝑃
(𝑐𝑜𝑣(𝑋1,𝑃 , 𝑋2,𝑃| 𝑋1,𝑃 < 𝑐) − 𝑐𝑜𝑣(𝑋1,𝑃 , 𝑋2,𝑇| 𝑋1,𝑃 < 𝑐)) → 0                   (4) 

The proof of this lemma will be omitted since these expressions can be directly derived 
from the parameters of the conditional distributions of the cohorts (𝑃 → 𝑃) and (𝑃 → 𝑇). 

3. The Adjusted Treatment Effect 

In a trial with high placebo response rate, the first problem encountered is the inability to 
characterize the subpopulation of placebo responders Ω𝑅.  Therefore, if a traditional RDP 
design is used, such as the first period of a DRDS design, then the high placebo response 
rate in the intended study population Ω = Ω1 would obviously reduce the treatment effect 
because it is measured as a relative difference ∆1= 𝜇1,𝑇 − 𝜇1,𝑃 between the treatment and 
placebo groups, a problem that is all too familiar in an active control trial.  If placebo 
responders are present in substantial proportion, then this relative difference will be 
smaller.  This reduced treatment effect termed the apparent treatment effect is the reason 
why many such trials had failed in the past.  Thus, a better assessment of the treatment 
effect for the intended study population is needed. 

3.1 An Adjusted Treatment Effect 

Under the assumption 𝜎1,𝑃2 = 𝜎1,𝑇
2 , denote their common variance by 𝜎12, and hence 

𝜎∆̂1
2 =

𝜎1
2

𝑛1,𝑇𝑅1
.  Similarly, one may assume without loss in generality that in Period 2, the 

conditional variances are equal, i.e., 𝜎2,𝑇|𝑋1,𝑃<𝑐
2 = 𝑣𝑎𝑟(𝑋2,𝑇|𝑋1,𝑃 < 𝑐) = 𝜎2,𝑃|𝑋1,𝑃<𝑐

2 =
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𝑣𝑎𝑟(𝑋2,𝑃|𝑋1,𝑃 < 𝑐) = 𝜎2
2, which is also suggested by the data in the example given in 

Table 1, although it was not assumed to be so in the earlier expression for 𝜎(∆̂2|𝑋1,𝑃<𝑐)
2 , and 

hence here one has 𝜎(∆̂2|𝑋1,𝑃<𝑐)
2 =

𝜎2
2

𝑛2,𝑇𝑅2
.  If one were to combine the treatment effect 

estimate ∆̂1 from Period 1 and (∆̂2|𝑋1,𝑃 < 𝑐) from Period 2 using weights defined through 
their inverse variances following the method of weighted least square [6], then the least 
square estimator of the treatment effect is given by                                                  
              ∆̂= 𝛼1∆̂1 + 𝛼2(∆̂2|𝑋1,𝑃 < 𝑐)                                                                                    (5) 
where the coefficients 𝛼1 and 𝛼2 are given in general by                                                 

               𝛼1 = 1 − 𝛼2  where  𝛼2 =
𝜎1
2

𝑛1,𝑇𝑅1
 − 𝑐𝑜𝑣(∆̂1,(∆̂2| 𝑋1,𝑃<𝑐))

𝜎1
2

𝑛1,𝑇𝑅1
+

𝜎2
2

𝑛2,𝑇𝑅2
 − 2𝑐𝑜𝑣(∆̂1,(∆̂2| 𝑋1,𝑃<𝑐))

                                      (6) 

Now, since 𝑐𝑜𝑣(∆̂1, (∆̂2| 𝑋1,𝑃 < 𝑐)) → 0 asymptotically as noted earlier, hence under large 
sample, 𝛼2 in Eqn. (6) is approximately given by                                   

                              𝛼2 =

𝜎1
2

𝑛1,𝑇𝑅1

𝜎1
2

𝑛1,𝑇𝑅1
+

𝜎2
2

𝑛2,𝑇𝑅2

=

𝑛1,𝑇𝛾𝑅12𝑅2

𝜎2
2

𝑛1,𝑇𝑅1

𝜎1
2 +

𝑛1,𝑇𝛾𝑅12𝑅2

𝜎2
2

=
1

1+(
𝜎2
𝜎1
)
21

𝛾
(

𝑅1
𝑅12𝑅2

)
                                   

where 𝑛2,𝑇 = 𝑛1,𝑇𝛾𝑅12, and 𝛾 = Φ(𝜏) is the population proportion of placebo non-
responders which can be consistently estimated by the fraction of placebo non-responders 
at the end of Period 1under the previous assumptions.   

Now, in a DRDS design, for practical reasons, the following constraints on the allocation 
ratios are expected 1 ≤ 𝑟2 ≤ 𝑟1.  Based on this restriction, the ratio  ( 𝑅1

𝑅12𝑅2
)  in the above 

expression for 𝛼2 achieves its maximum value of 2 which is the value actually attained 
under the case of equal allocations, when  𝑟1 = 𝑟2 = 1.  Therefore, one can define 
               𝛼2 =

1

1+(
𝜎2
𝜎1
)
22

𝛾

   and 𝛼1 = 1 − 𝛼2                                                                             (7) 

which minimizes the weight 𝛼2 placed on (∆2|𝑋1,𝑃 < 𝑐), the Period 2 treatment effect.  

Definition 1:  Under a DRDS design, the adjusted treatment effect is defined as the 
convex combination                                                                                                            
                             ∆= 𝛼1∆1 + 𝛼2(Δ2|𝑋1,𝑃 < 𝑐)                                                                      (8) 
where the coefficients 𝛼1 and 𝛼2 are as defined in Eqn. (7). 

Remark 1: It is important to emphasize again that the adjusted treatment effect is 
independent of the allocation ratios in the class of DRDS designs that are subject to the 
constraint 1 ≤ 𝑟2 ≤ 𝑟1.  More importantly, 𝛼2 represents the smallest possible weight 
assigned to ∆2 under a DRDS design subject to the above restriction and 𝛼2 is actually 
attained under a DRDS design with equal allocation.  Also, with 𝛼2 so defined, the actual 
DRDS design can still assume allocation ratios other than equal allocation provided the 
allocation ratios satisfy the above constraints.  Thus, if a given DRDS design adopts an 
allocation ratio  𝑟1 > 1, it will improve the precision of estimates, but the estimate of the 
adjusted treatment effect as defined in Eqn. (8) remains invariant under the constraints.  

Remark 2:  The fact that the weights defined in Eqn. (7) for the adjusted treatment effect 
as defined in Eqn. (8) are independent of the allocation ratios 𝑟1 and 𝑟2 as long as they 
satisfy the constraints  1 ≤ 𝑟2 ≤ 𝑟1 allows one to freely choose a DRDS design with any 
allocation ratios 𝑟1 and 𝑟2 as long as they satisfy the constraints.  This flexibility will be 
needed to assure the type I error control of the joint test to be discussed in Section 5.1.  
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Note: The combined statistic as given in Eqn. (5) will not necessarily retain the 
efficiency property of a least square estimator in light of the weights as defined in Eqn. 
(7) unless it is a DRDS design with equal allocation ratios.  But this may be the trade-off 
that one has to consider if one wishes to be able to define an adjusted treatment effect 
where the weights are independent of the allocation ratios to avoid bias favoring the 
treatment.  Avoiding bias seems to be more important than optimal efficiency, because an 
appropriate definition of adjusted treatment effect is critical in a proper assessment of the 
treatment effect for the intended population.  
 
3.2 Interpretation of the Adjusted Treatment Effect 

If one were able to characterize the subpopulation Ω𝑅 of placebo responders and the 
subpopulation Ω𝑁𝑅 of placebo non-responders, then for the overall study population Ω =
Ω1 in Period 1 of a DRDS design, the apparent treatment effect Δ1 can be expressed as 
               Δ1 = 𝛼𝑅Δ𝑅 + 𝛼𝑁𝑅Δ𝑁𝑅                                                                                             (9) 
Then, the adjusted treatment effect given by Eqn. (8) becomes                                      
               ∆ = 𝛼1Δ1 + 𝛼2(Δ2|𝑋1,𝑃 < 𝑐) = 𝛼1[𝛼𝑅Δ𝑅 + 𝛼𝑁𝑅Δ𝑁𝑅] + 𝛼2(Δ2|𝑋1,𝑃 < 𝑐)               
where (Δ2|𝑋1,𝑃 < 𝑐) ≅ Δ𝑁𝑅 assuming that the distribution of the placebo responders/non-
responders among the placebo dropouts, if any, is the same as the population distribution.  
Hence, from the fact that 𝛼1 = (1 − 𝛼2) and 𝛼𝑅 = 1 − 𝛼𝑁𝑅 , one has                                       
                ∆ ≅ (𝛼𝑅 − 𝛼2𝛼𝑅)Δ𝑅 + (𝛼𝑁𝑅 + 𝛼2𝛼𝑅)Δ𝑁𝑅                                                                  (10) 
Upon comparing Eqn. (9) and Eqn. (10), one notes that the adjusted treatment effect ∆ as 
defined in Eqn. (8) can be viewed as a weighted average of Δ𝑅 and Δ𝑁𝑅 as in Eqn. (9) for 
Δ1 except now the weight for Δ𝑅 has been decreased by the fractional amount 𝛼2𝛼𝑅 while 
the weight for Δ𝑁𝑅 has been increased by the same fractional amount 𝛼2𝛼𝑅.  Thus, Eqn. 
(10) shows that the adjusted treatment effect ∆ can be viewed as a weighted average of 
the treatment effect Δ𝑅 and Δ𝑁𝑅 and hence represents a treatment effect for the intended 
study population  Ω = Ω1.  The fraction 𝛼2𝛼𝑅 represents the amount of adjustment needed 
to account for the presence of placebo responders Ω𝑅 in  Ω = Ω1 which can be seen as 
follows.  Now, Eqn. (10) can also be rearranged as follows:                                             
               ∆ ≅ Δ1 + 𝛼2[𝛼𝑅(Δ𝑁𝑅 − Δ𝑅)]                                                                                 (11) 
Now the quantity [𝛼𝑅(Δ𝑁𝑅 − Δ𝑅)] represents the total amount of expected treatment 
effect Δ𝑁𝑅 that is not observed in Ω𝑅 due to the placebo response in Ω𝑅.  Furthermore, 
because  Δ𝑁𝑅 = Δ2, one can view  [𝛼𝑅(Δ𝑁𝑅 − Δ𝑅)] = [𝛼𝑅(Δ2 − Δ𝑅)]  as the equivalent 
amount of treatment effect from Period 2 that has been nullified by the placebo response 
in Ω𝑅.  Hence, in light of the weights used in the definition of adjusted treatment effect in 
Eqn. (8), it follows that 𝛼2[𝛼𝑅(Δ2 − Δ𝑅)] represents an appropriately weighted amount of 
[𝛼𝑅(Δ2 − Δ𝑅)] from Period 2 that needs to be added to the apparent treatment 
effect Δ1 from Period 1 to account for the presence of placebo responders Ω𝑅.    

4. The Combination Test 

The adjusted treatment null hypothesis and its alternative are now defined as follows:                                                                                                                         
      𝐻𝑜,𝐴𝑑𝑗: ∆= 𝛼1∆1 + 𝛼2(Δ2|𝑋1,𝑃 < 𝑐) ≤ 0  𝑣𝑠. 𝐻𝑎,𝐴𝑑𝑗 : ∆= 𝛼1∆1 + 𝛼2(Δ2|𝑋1,𝑃 < 𝑐) > 0     (12) 
The adjusted null hypothesis is a stronger null hypothesis than the global null hypothesis 
because the parameter space defined by {(∆1, (Δ2|𝑋1,𝑃 < 𝑐)) | ∆1≤ 0 & (Δ2|𝑋1,𝑃 < 𝑐) ≤ 0 } 
includes the third quadrant as illustrated in Figure 2.  Let the estimate of the adjusted 
treatment effect ∆ be given by the least square estimator as defined by Eqn. (5) with 
weights defined by Eqn. (7), that is,  ∆̂= 𝛼1∆̂1 + 𝛼2(∆̂2|𝑋1,𝑃 < 𝑐) 
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Then, it follows that  𝐸(∆̂) = ∆  and 𝑣𝑎𝑟(∆̂) = Σ∆̂
2 = 𝛼1

2𝑣𝑎𝑟(∆̂1) + 𝛼2
2𝑣𝑎𝑟(∆̂2|𝑋1,𝑃 < 𝑐) +

2𝛼1𝛼2𝑐𝑜𝑣 (∆̂1, (∆̂2|𝑋1,𝑃 < 𝑐)), where 𝑣𝑎𝑟(∆̂1), 𝑣𝑎𝑟(∆̂2|𝑋1,𝑃 < 𝑐) and 𝑐𝑜𝑣 (∆̂1, (∆̂2|𝑋1,𝑃 < 𝑐)) 
are given in Eqn. (2), Eqn. (3) and Eqn. (4).  The combination test for testing the adjusted 
null hypothesis is then given by �̂� = (∆̂−∆)

√𝑣𝑎𝑟(∆̂ )
 

   =
[𝛼1∆̂1 + 𝛼2(∆̂2|𝑋1,𝑃 < 𝑐)] − [𝛼1∆1 + 𝛼2(Δ2|𝑋1,𝑃 < 𝑐)]

√𝛼1
2(𝛾, 𝜎1, 𝜎2)𝑣𝑎𝑟(∆̂1) + 2𝛼1𝛼2𝑐𝑜𝑣 (∆̂1, (∆̂2|𝑋1,𝑃 < 𝑐)) + 𝛼2

2(𝛾, 𝜎1, 𝜎2)𝑣𝑎𝑟 ((∆̂2|𝑋1,𝑃 < 𝑐))

 

4.1 The Type I Error, Power and Sample Size for the Combination Test 

The type I error for the combination test is given by 𝛼 = 𝑃(�̂� >  𝑐𝛼| 𝐻𝑜,𝐴𝑑𝑗) = 𝑃(�̂�𝑜 > 𝑐𝛼) 

where �̂�𝑜 = (
((𝛼1∆̂1+𝛼2(∆̂2|𝑋1,𝑃<𝑐)))

√𝑣𝑎𝑟(𝛼1∆̂1+𝛼2(∆̂2|𝑋1,𝑃<𝑐))

 ), 𝑣𝑎𝑟 (𝛼1∆̂1 + 𝛼2(∆̂2|𝑋1,𝑃 < 𝑐)) = 𝛼12(𝛾, 𝜎1, 𝜎2)𝑣𝑎𝑟(∆̂1)    

+ 2𝛼1𝛼2𝑐𝑜𝑣 (∆̂1, (∆̂2|𝑋1,𝑃 < 𝑐)) + 𝛼2
2(𝛾, 𝜎1, 𝜎2)𝑣𝑎𝑟 ((∆̂2|𝑋1,𝑃 < 𝑐)). The power of the 

combination test at a specified alternative (∆1, ∆2) in the first quadrant is given by  
1 − 𝛽 = 𝑃(�̂�𝑜 > 𝑐𝛼│𝐻𝑎,𝐴𝑑𝑗: (∆1, ∆2) 𝑖𝑛 1𝑠𝑡 𝑄𝑢𝑎𝑑𝑟𝑎𝑛𝑡, 𝜌𝑃 > 𝜌𝑇) = 

𝑃 (�̂�𝑎 > 𝑐𝛼 −
𝛼1∆1+𝛼2(Δ2|𝑋1,𝑃<𝑐)

Σ∆̂,𝑎
|𝐻𝑎,𝐴𝑑𝑗: (∆1, ∆2) 𝑖𝑛 1𝑠𝑡 𝑄𝑢𝑎𝑑𝑟𝑎𝑛𝑡, 𝜌𝑃 > 𝜌𝑇  ), where Σ∆̂,𝑎 = Σ∆̂,𝑜 

and �̂�𝑎 =
(𝛼1∆̂1+𝛼2(∆̂2|𝑋1,𝑃<𝑐))−(𝛼1∆1+𝛼2(Δ2|𝑋1,𝑃<𝑐))

Σ∆̂,𝑎
~ 𝑁(0,1).  From the above power function, 

the sample size formula is given by:                                     

     𝑛1𝑇 = (
𝑐𝛼+𝑐1−𝛽

𝛼1∆1+𝛼2(Δ2|𝑋1,𝑃<𝑐)
)
2

(𝛼1
2 𝜎1

2

𝑅1
+ 𝛼2

2
𝜎∆̂2|𝑋1𝑃<𝑐
2

𝛾𝑅12
+  2𝛼1𝛼2𝜌1,2

𝜎1

√𝑅1

𝜎∆̂2|𝑋1𝑃<𝑐

√𝛾𝑅12
) 

Table 2provides the power and sample size for selected scenarios based on Table 1 data. 

5. Consistency 

The null space as depicted in Figure 2 shows that there is an area in the alternative space 
that is situated inside the second quadrant.  This suggests that even though the probability 
may be small, the adjusted treatment null may be rejected by the combination test, but the 
Period 1 treatment effect Δ1 may be negative.  From Eqn. (9), such a negative Δ1 implies 
that the treatment may perform worse than placebo in the subpopulation  Ω𝑅.  Now in the 
subpopulation  Ω𝑅, the placebo acts like an active control trial in a non-inferiority trial.  
In a non-inferiority trial, a treatment is still considered effective if it performs no worse 
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than placebo by a given non-inferiority margin 𝛿 > 0.  So, what should be an equivalent 
non-inferiority margin for assessing the effectiveness of a treatment in the 
subpopulation Ω𝑅?  As a condition required for an apparent treatment effectiveness claim 
to be extendable to the intended population, Tamura et al. [7] introduced a monotonicity 
condition for the case under binary outcome.  The condition requires that each placebo 
responder is also a treatment responder.  Under binary outcome, this monotonicity 
condition is equivalent to requiring that the treatment be at least as effective as placebo.   
Now for continuous outcome, one can see from Eqn. (9) that this condition is equivalent 
to the following condition since under the earlier assumptions on the placebo dropouts if 
any, 𝛼𝑁𝑅 = 𝛾 = Φ(𝜏) and ∆𝑁𝑅= ∆2:  

∆1= 𝛼𝑅∆𝑅 + 𝛼𝑁𝑅∆𝑁𝑅> 𝛾(∆2|𝑋1,𝑃 < 𝑐) or (∆2|𝑋1,𝑃 < 𝑐) <
1

𝛾
∆1                             (13) 

This condition is depicted in Figure 3.  It is clear that this condition is quite stringent and 
in addition, superiority is also not required for a non-inferiority trial.  The reason Tamura 
et al [7] need a stringent condition is because they want to estimate the apparent 
treatment effect. Therefore, a less stringent monotonicity condition is needed, a condition 
that allows the treatment to perform no worse than placebo by a non-inferiority margin.  
An obvious general monotonicity condition (see Figure 3) is to require that  

(∆2|𝑋1,𝑃 < 𝑐) < 𝜂∆1, for some 𝜂 > 1
𝛾
                                                                   (14) 

The slope 𝜂 can be viewed here as the equivalent of a non-inferiority margin 𝛿.  But how 
should 𝜂 be determined?  This would be a challenging problem.  But even the general 
monotonicity condition as defined by Eqn. (14) is unnecessarily stringent because the 
general monotonicity conditions as defined by Eqn. (14) places a constraint on the 
expected Period 2 treatment effect (∆2|𝑋1,𝑃 < 𝑐).  This constraint is really not necessary 
because from Eqn. (1), one has 
  (∆2|𝑋1,𝑃 < 𝑐) = (𝜇2,𝑇 − 𝜇2,𝑃) + (𝜌𝑃𝜎2,𝑃 − 𝜌𝑇𝜎2,𝑇) (

𝜑(𝜏)

Φ(𝜏)
) ≅ ∆1 + (𝜌𝑃𝜎2,𝑃 − 𝜌𝑇𝜎2,𝑇) (

𝜑(𝜏)

Φ(𝜏)
) (15)  

From Eqn. (15), one can see that the magnitude of the expected Period 2 treatment effect 
(∆2|𝑋1,𝑃 < 𝑐) is determined by the magnitude of the Period 1 treatment effect ∆1 and the 
term  (𝜌𝑃𝜎2,𝑃 − 𝜌𝑇𝜎2,𝑇) (

𝜑(𝜏)

Φ(𝜏)
), whose magnitude cannot be arbitrarily large. Therefore, one 

should consider relaxing the condition by letting 𝜂 → ∞.  Now if one let  𝜂 → ∞, the line 
(∆2|𝑋1,𝑃 < 𝑐) = 𝜂∆1→ the (∆2|𝑋1,𝑃 < 𝑐) – axis.  This then naturally leads to the 
consistency condition to be introduced in the next section. 
 
5.1 A Measure of Consistency and A Test for Consistency 

 
Let the consistency measure  Γ  between  ∆1 and  (Δ2|𝑋1,𝑃 < 𝑐) be defined as  Γ =
∆1(Δ2|𝑋1,𝑃 < 𝑐).  Then the consistency null and alternative hypotheses are defined as: 
           𝐻𝑜,𝐶: Λ = ∆1(Δ2|𝑋1,𝑃 < 𝑐)  ≤ 0     𝑣𝑠.     𝐻𝑜,𝐶: Λ = ∆1(Δ2|𝑋1,𝑃 < 𝑐) > 0                   (16) 
The consistency null hypothesis is depicted by the shaded region in Figure 4.  Now 
consider the following statistic: Γ̂ = ∆̂1(∆̂2|𝑋1,𝑃 < 𝑐) − 𝑐𝑜�̂� (∆̂1, (∆̂2|𝑋1,𝑃 < 𝑐)).  Then, one 
has 𝐸(Γ̂) = 𝐸 (∆̂1(∆̂2|𝑋1,𝑃 < 𝑐) − 𝑐𝑜𝑣 (∆̂1, (∆̂2|𝑋1,𝑃 < 𝑐)) ) = Γ.  The variance of  Γ̂ is given 
asymptotically by 𝑣𝑎𝑟(Γ̂) = [𝑣𝑎𝑟(∆̂1)𝑣𝑎𝑟(∆̂2|𝑋1,𝑃 < 𝑐)] + 𝑐𝑜𝑣2 (∆̂1, (∆̂2|𝑋1,𝑃 < 𝑐)) +
[(Δ2|𝑋1,𝑃 < 𝑐)

2
𝑣𝑎𝑟(∆̂1)] + [∆1

2𝑣𝑎𝑟(∆̂2|𝑋1,𝑃 < 𝑐)] + [4∆1(Δ2|𝑋1,𝑃 < 𝑐)𝑐𝑜𝑣 (∆̂1, (∆̂2|𝑋1,𝑃 <

𝑐))] + ∆1
2(Δ2|𝑋1,𝑃 < 𝑐)

2
.  The consistency test is then defined by:  �̂� =

Γ̂−𝐸(Γ̂)

√𝑣𝑎𝑟(Γ̂)

= 

[∆̂1(∆̂2|𝑋1,𝑃<𝑐)−𝑐𝑜�̂�(∆̂1,(∆̂2|𝑋1,𝑃<𝑐))]  −∆1(Δ2|𝑋1,𝑃<𝑐)

√[𝑣𝑎𝑟(∆̂1)𝑣𝑎𝑟(∆̂2|𝑋1,𝑃<𝑐)]+𝑐𝑜𝑣
2(∆̂1,(∆̂2|𝑋1,𝑃<𝑐))+[(Δ2|𝑋1,𝑃<𝑐)

2
𝑣𝑎𝑟(∆̂1)]+[∆1

2𝑣𝑎𝑟(∆̂2|𝑋1,𝑃<𝑐)]+[4∆1∆2𝑐𝑜𝑣(∆̂1,(∆̂2|𝑋1,𝑃<𝑐))]+∆1
2∆2
2
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where 𝑐𝑜�̂� (∆̂1, (∆̂2|𝑋1,𝑃 < 𝑐)) =
1

𝑛1𝑃
(𝑆𝑋1,𝑃<𝑐,𝑋2,𝑃|𝑋1,𝑃 − 𝑆𝑋1,𝑃<𝑐,𝑋2,𝑇|𝑋1,𝑃 ), 𝑆𝑋1,𝑃<𝑐,𝑋2,𝑃|𝑋1,𝑃  and 

𝑆𝑋1,𝑃<𝑐,𝑋2,𝑇|𝑋1,𝑃 are the sample covariance estimates for 𝑐𝑜𝑣(�̂�1,𝑃 | 𝑋1,𝑃<𝑐 , �̂�2,𝑃 | 𝑋1,𝑃<𝑐) and 
𝑐𝑜𝑣(�̂�1,𝑃 | 𝑋1,𝑃<𝑐 , �̂�2,𝑇 | 𝑋1,𝑃<𝑐) for the two cohorts (𝑃 → 𝑃) and (𝑃 → 𝑇). 

  

5.2 The Type I Error, Power and Sample Size for the Consistency Test 

The type I error for the consistency test assumes is maximum at (∆1, (Δ2|𝑋1,𝑃 < 𝑐)) =
(0,0) and 𝑐𝑜𝑣 (∆̂1, (∆̂2|𝑋1,𝑃 < 𝑐)) = 0.  Therefore, the type I error for the consistency test 
evaluated at its maximum is given by 

𝛼 = 𝑃(
∆̂1(∆̂2|𝑋1,𝑃<𝑐)−𝑐𝑜�̂�(∆̂1,(∆̂2|𝑋1,𝑃<𝑐))  

√[𝑣𝑎𝑟(∆̂1)𝑣𝑎𝑟(∆̂2|𝑋1,𝑃<𝑐)]+[(Δ2|𝑋1,𝑃<𝑐)
2
𝑣𝑎𝑟(∆̂1)]+[∆1

2𝑣𝑎𝑟(∆̂2|𝑋1,𝑃<𝑐)]

> 𝑐𝛼,𝑊) 

Since �̂�𝑜 = �̂�1�̂�2 =
∆̂1

√𝑣𝑎𝑟(∆̂1)

(∆̂2|𝑋1,𝑃<𝑐)

√𝑣𝑎𝑟(∆̂2|𝑋1,𝑃<𝑐)

 is not normally distributed and has a distribution 

with heavy tail, its critical values are somewhat larger for the same significance level 𝛼 as 
compared to the critical values from a normal distribution.  In light of the joint test to be 
proposed later, it is recommended that the significance level for the consistency test be 
chosen at the one-sided 0.05 level with a critical value of 1.60 instead of the one-sided 
0.025 level with a critical value of 2.18.   

The Power of the Consistency Test is given by: 1 − 𝛽 = 𝑃(�̂�𝑜 > 𝑐𝛼|𝐻𝑎,𝐶) = 𝑃 (�̂�𝑎 >

𝑐𝛼,𝑊√𝑣𝑎𝑟(�̂�𝑜)−∆1(∆2|𝑋1,𝑃<𝑐)

√𝑣𝑎𝑟(�̂�𝑎)
 |𝐻𝑎,𝐶),   where  �̂�𝑎 =

∆̂1(∆̂2|𝑋1,𝑃<𝑐)−𝑐𝑜�̂�(∆̂1 ,(∆̂2|𝑋1,𝑃<𝑐))−∆1(∆2|𝑋1,𝑃<𝑐) 

√𝑣𝑎𝑟(�̂�𝑎)
 ,     

𝑣𝑎𝑟(�̂�𝑜) = 𝑣𝑎𝑟(∆̂1)𝑣𝑎𝑟(∆̂2|𝑋1,𝑃 < 𝑐),𝑣𝑎𝑟(�̂�𝑎) = 𝑣𝑎𝑟(�̂�𝑜) + 𝑐𝑜𝑣2 (∆̂1, (∆̂2|𝑋1,𝑃 < 𝑐)) +

(Δ2|𝑋1,𝑃 < 𝑐)
2
𝑣𝑎𝑟(∆̂1) + ∆1

2𝑣𝑎𝑟(∆̂2|𝑋1,𝑃 < 𝑐) + 4∆1(Δ2|𝑋1,𝑃 < 𝑐)𝑐𝑜𝑣 (∆̂1, (∆̂2|𝑋1,𝑃 < 𝑐)) +

∆1
2(Δ2|𝑋1,𝑃 < 𝑐)

2
.   Note that the power can alsobe evaluated by viewing ∆̂1 and (∆̂2|𝑋1,𝑃 <

𝑐) as having an asymptotic bivariate normal distribution given by                                  

       1 − 𝛽 = 𝑃(�̂�2 >
(𝑐𝛼,𝑊√1+𝜌1,2

2 +𝑈1
2+𝑈2

2  +𝜌1,2)−𝑈1𝑈2−𝑈2�̂�1

𝑈1+�̂�1
 | 𝐻𝑎,𝑄𝐼𝐴)    

                   = ∫ 𝜑𝑉1
∞

−∞
(𝑥)∫ 𝜑(𝑦)

∞

(𝑐𝛼,𝑊√1+𝜌1,2
2 +𝑈1

2+𝑈2
2 +𝜌1,2)−𝑈1𝑈2−𝑈2𝑥−𝜌1,2𝑥(𝑥+𝑈1)

(𝑥+𝑈1)√1−𝜌1,2
2

𝑑𝑦𝑑𝑥                   
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where 𝑈𝑖 =
∆𝑖
𝜎𝑖

√𝑛𝑖,𝑇𝑅𝑖

, i=1,2 and  ( �̂�1, �̂�2) ~ 𝑵(𝝁𝟏,𝟐, 𝚺𝟏,𝟐𝟐 ) where 𝝁𝟏,𝟐 = (
0
0
) and 𝚺𝟏,𝟐𝟐 =

(
1 𝜌1,2
𝜌1,2 1

) and  𝜌1,2 = 𝑐𝑜𝑟𝑟 (∆̂1, (∆̂2|𝑋1,𝑃 < 𝑐)) = 𝜌∆̂1,(∆̂2|𝑋1,𝑃<𝑐) as derived earlier.  By 

substituting the above expressions for 𝑈𝑖, i=1, 2 and noting that 𝑛2,𝑇 = 𝑛1,𝑇𝛾𝑅12, then one 
can evaluate the above probability integral for the power at a given sample size 𝑛1,𝑇 .  
Conversely, to calculate the sample size, one can simply solve the above equation 
implicitly for 𝑛1,𝑇 at a given power (1 − 𝛽).  Some selected powers and sample sizes are 
given in Table 2 based on the example given in Table 1. 

6. The Joint Test 

As mentioned in the preceding section, both the combination test and the joint test are 
necessary for establishing the effectiveness of a treatment for the intended study 
population  Ω = Ω1 in a DRDS design.  A joint test (�̂�𝑜 > 𝑐0.025, �̂�𝑜 > 𝑐0.05,𝑊) is proposed 
here for simultaneously testing the adjusted treatment null and the consistency null.   

6.1 The Type I Error Control of the Joint Test 

The control of the type I error of the joint test will be investigated in this section.  It 
suffices to show that the type I error of the joint test is controlled at the positive 
(Δ2|𝑋1,𝑃 < 𝑐) – axis.  Let (0, (Δ2|𝑋1,𝑃 < 𝑐)) be a point on the positive (Δ2|𝑋1,𝑃 < 𝑐) – axis 
on the boundary of the joint null.  The point  (0, (Δ2|𝑋1,𝑃 < 𝑐)) is on the boundary of the 
consistency null, but is in the alternative space of the adjusted null.  Hence, the type I 
error for the joint test is given by 

𝛼 = 𝑃(�̂�𝑎 > 𝑐𝛼 −
𝛼2(Δ2|𝑋1,𝑃<𝑐)

√𝛼1
2𝑣𝑎𝑟(Δ̂1)+𝛼2

2𝑣𝑎𝑟(Δ̂2|𝑋1,𝑃<𝑐)+2𝛼1𝛼2𝑐𝑜𝑣(Δ̂1,(Δ̂2|𝑋1,𝑃<𝑐)) 

, �̂�𝑜 > 𝑐𝛼,𝑊)                    

In light of the Eqn. (15), one has (∆2|𝑋1,𝑃 < 𝑐) ≅ ∆1 + (𝜌𝑃𝜎2,𝑃 − 𝜌𝑇𝜎2,𝑇) (
𝜑(𝜏)

Φ(𝜏)
).  Therefore, at 

the boundary point  (0, (Δ2|𝑋1,𝑃 < 𝑐)), since  ∆1= 0, one has (∆2|𝑋1,𝑃 < 𝑐) ≅ (𝜌𝑃𝜎2,𝑃 −

𝜌
𝑇
𝜎2,𝑇) (

𝜑(𝜏)

Φ(𝜏)
).  Since �̂�𝑎 and �̂�𝑜 are asymptotically independent, one has                        

𝛼 ≤ 𝑃

(

 
 
�̂�𝑎 > 𝑐𝛼 −

√𝑛1,𝑇(𝜌𝑃−𝜌𝑇)(
𝜑(𝜏)

Φ(𝜏)
)

√(
𝛼1
𝛼2
)
2 1 

𝑅1
+

1

𝛾𝑅12
(2+((𝜌𝑇

2+𝜌𝑇
2)([1−𝜏

𝜑(𝜏)

Φ(𝜏)
−(

𝜑(𝜏)

Φ(𝜏)
)
2

]𝜎1
2−1)))+2(

𝛼1
𝛼2
)
1

𝑟1
(𝜌𝑃−𝜌𝑇)[1−𝜏(

𝜑(𝜏)

Φ(𝜏)
)−(

𝜑(𝜏)

Φ(𝜏)
)
2

] 

)

 
 
× 0.05  

Table 3a and Table 3b provide the type I error rates for the joint test at the boundary 
points on the positive (∆2|𝑋1,𝑃 < 𝑐) – axis derived from selected values of the 
parameters 𝜌𝑃, 𝜌𝑇, 𝜎1 = 𝜎1,𝑃, 𝜅 = 𝜎1,𝑇

𝜎1,𝑃
=
𝜎2,𝑇

𝜎2,𝑃
 and 𝜏 with the allocation ratios 𝑟1 = 1,2,3 and 

𝑟2 = 1.  As Table 3a & Table 3b illustrate, under a given scenario, the greatest type I error 
inflation occurs under equal allocation ratios and the type I error starts to decrease as the 
allocation ratio 𝑟1 increases while holding 𝑟2 = 1.  The reason why the type I error starts 
to decrease as the allocation ratio 𝑟1 increases is because for a fixed total sample size N1, 
the sample size 𝑛1,𝑇 allocated to treatment decreases as 𝑟1 increases.  This results in a net 
decrease in the second term inside the power expression of the combination test on the 
right side of the above inequality and a corresponding reduction in the power of the 
combination test.  This fact holds true across all scenarios. Therefore, from Table 3a & 
Table 3b, it suggests that the type I error rate of the joint test is controlled at the one-
sided 0.025 level under most reasonable scenarios where the correlations are not too 
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extreme and the ratio 𝜅 = 𝜎1,𝑇/𝜎1,𝑃 does not deviate too far from 1, while holding the 
allocation ratios fixed at 𝑟1 = 2 and 𝑟2 = 1.  If in a given application, it appears that it may 
fall into a neighborhood of some scenarios where the type I error of the joint test may be 
inflated, one can then consider increasing the allocation ratio 𝑟1 from 2 to a higher level 
so that the type I error will be under control.  This is an interesting and unexpected useful 
property which is a byproduct of the fact that the weights in the adjusted treatment effect 
are independent of the allocation ratios so a DRDS design has the flexibility in the choice 
of the allocation ratios 𝑟1 and 𝑟2 as long as they satisfy the constraint𝑠 1 ≤ 𝑟2 ≤ 𝑟1.  Also 
note that the allocation ratio of 𝑟1 = 1 is unlikely to be adopted in practice, so the increase 
in  𝑟1 should only be evaluated relative to those scenarios where the type I error appears 
to be inflated under a DRDS design with an allocation ratio  𝑟1 = 2 ≥ 𝑟2 ≥ 1. 

 

Figure 5 illustrates the rejection region for the joint test.  The power of the joint test 
(�̂�𝑜 > 𝑐0.025, �̂�𝑜 > 𝑐0.05,𝑊) is displayed in the last column of TABLE 2.  As expected, the 
power will be relatively low. 

7. A Simulated Trial with a DRDS Design 

   
A major depressive disorder trial using the HRDS17 subscale score data from Period 1 of 
Table 1is simulated using a DRDS design with 𝑟1 = 2, 𝜋 = 0.58, 𝛾 = 0.42, 𝑟2 = 1, and 
𝑁1 = 750. For simplicity, it is assumed that the placebo dropout rate is 0 and a correlation 
between ∆̂1 and ∆̂2 of  𝜌1,2 = 0.  This sample size provides 69% power for the combination 
test, 59% for the consistency test and 48% for the joint test.  Thus, the trial is somewhat 
underpowered for the tests.  A summary of the DRDS design and the simulated trial 
outcome statistics are given in Table 4.   
 
The estimate of an adjusted treatment effect of 0.49 given by the combined statistic ∆̂ is 
obtained as a result of adjusting the apparent treatment effect ∆̂1= 0.29 of Period 1for the 
presence of placebo responders by increasing the weight 𝛼𝑁𝑅  placed on ∆𝑁𝑅 from 0.42 to 
the weight 0.53 by an amount 𝛼2𝛼𝑅 = 0.11.  This simulated trial shows that the apparent 
treatment effect ∆1 for Period 1 is estimated to be ∆̂1= 0.29, and the adjusted treatment 
effect ∆ is estimated to be ∆̂= 0.49 with a 95% CI of (0.17, 0.81). The consistency test �̂�𝑜 =
�̂�1 × �̂�2 = 1.55 × 4.34 = 6.72 with a p-value of 0.015 and 95% CI of (4.54, 8.90) shows 
that the estimates ∆̂1= 0.29 and ∆̂2= 1.35 are consistent.  Therefore, the evidence supports 
the adjusted treatment effect of ∆= 0.49 as an appropriate assessment of the true treatment 
effect for the intended study population Ω = Ω1. 
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8. Summary Discussion 
 

A new methodology is introduced in this paper for the design and analysis of a DRDS 
design for investigating the treatment effect in a study population that is expected to have 
a high placebo response rate.  The proposed approach includes a new concept of adjusted 
treatment effect, a new combination test, a new consistency generalizing the general 
monotonicity condition, and their joint test all of which are based on a conditional 
probability structure underlying a DRDS design.  In order to maintain type I error control 
of the joint test, it is recommended that a phase 2 study be first conducted to assess the 
likely scenario for the specific application at hand.  Then, an appropriate choice of the 
placebo-treatment allocation ratios for Period 1 and Period 2 can be made in the DRDS 
design for the confirmatory trial to assure the control of the type I error of the joint test.     
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