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Abstract 
At the present time, researchers are limited in available methods to conduct power analysis for an 
interaction term between two main variables of interest in a study that utilizes logistic regression. We 
propose a method and a SAS macro tool for estimating the power associated with an interaction term in a 
logistic regression model. This method empirically calculates the power for an interaction term, based on 
cell counts from a 2x2x2 table, and several other intuitive input parameters. We illustrate the method with 
an example from a randomized controlled trial (RCT) of tobacco cessation among cancer survivors, 
which investigates interaction between two-level treatment assignment and cancer staging.  
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1. Introduction 
 

Power analysis is most effective when carried out at the study planning stage. When researchers are 
planning a study, they commonly must determine an adequate sample size required for their selected 
statistical test to have the power to detect an effect in the sample population if one exists. Presently there 
are available methods researchers can employ to conduct power analyses when the statistical method of 
choice is logistic regression. However, researchers are currently limited if they want to power a study 
using logistic regression if they suspect a significant interaction, or effect modification, exists between 
two explanatory variables to be collected during the course of the study. 
 
Due to the lack of available methods, the objective of this project was to develop a practical and straight-
forward method of estimating power for a proposed study utilizing logistic regression when researchers 
anticipate a significant interaction in their study results. 
 
The motivating example behind this project originated from a grant proposal in which researchers were 
interested in exploring the effect of cancer stage at diagnosis on the relationship between smoking 
cessation intervention and continuous smoking abstinence. They suspected that there may be an 
interaction between cancer stage and intervention on the smoking abstinence outcome. In other words, 
researchers suspected that those patients with early stage diagnosis might have higher odds of cessation as 
a result of active treatment compared to those patients with the late stage diagnosis. However, no known 
research had investigated this relationship in this exact setting. 
 
In order to conduct this type of study, investigators must determine an appropriate level of power to detect 
the effects of treatment and cancer stage in the presence of the interaction between the two variables. That 
is to say, researchers need to know the power of the statistical method to detect the differential effect of 
stage on smoking abstinence among individuals receiving active treatment.  

JSM 2015 - Biometrics Section

308



A SAS macro has been developed to conduct power analysis for logistic regression models (Northern, 
Williams, & Bursac, 2009; Williams, Bursac, & Wooten, 2010). However, the existing version of the 
macro does not carry out power analysis for an interaction term. We have modified this existing macro to 
incorporate an interaction term within the model and to calculate sufficient power for investigators who 
suspect a significant interactive effect between two study variables.  
 

2. Background 
 
2.1 SAS PROC POWER  
The Power Procedure in SAS (PROC POWER) provides power and sample size analyses for a variety of 
statistical methods. PROC POWER since SASv.9.2 offers power analysis for logistic regression; one can 
execute power and sample size analyses for the chi-square likelihood ratio test. Users also have the option 
of adding covariates or potential confounders to the model. However, this approach allows for only a 
single predictor variable in binary logistic regression. In addition, SAS assumes independence among the 
explanatory variables. Because of this, PROC POWER is not appropriate for studies with some 
correlation between explanatory variables, which characterize most observational studies, i.e., studies that 
are common in the public health setting (SAS Institute, 2015).  
 
The LOGISTIC statement is used to carry out power analysis for a logistic regression. Users specify a 
distribution for the predictor variable, either regression coefficients or odds ratios associated with the 
predictor, an alpha level, the sample size(s), and the power. One selects the desired result, either power or 
sample size, by designating the parameter as a missing value. However, PROC POWER does not have the 
capability to compute power with the addition of an interaction term to a logistic regression model (SAS 
Institute, 2015).  
 
2.2 SAS POWERLOG Macro 
The SAS POWERLOG macro was developed by Michael Friendly (1998) and calculates the sample size 
needed to reach specified power values for a logistic regression model that contains a single predictor 
variable of interest in the presence of one or more covariates. POWERLOG also allows users to specify 
correlation between the predictor and the covariate(s). Results are presented both as a table and a 
graphical display of sample sizes for a range of power values specified in the macro. Friendly’s 
POWERLOG macro works well for calculating power for logistic regression and is relatively simple to 
understand. However, similar to PROC POWER, the POWERLOG macro does not allow for the addition 
of an interaction term to the model (Friendly, 1998).  
 
2.3 Power Analysis and Sample Size Software (PASS) 
PASS (2013) is interactive software designed for power analysis. It allows the user to solve for power, 
sample size, effect size and alpha level, as well as validate these parameters once data have been 
collected. Output is displayed as text summaries and numeric tables as well as charts and graphs. 
Summary statistics presented are clear, concise and easy to interpret. Output is produced in a portable 
format that is cut and paste compatible with many other programs. PASS can perform power and sample 
size analysis for a logistic regression with a single predictor of interest. Yet, as with the other methods 
mentioned above, PASS cannot compute power for logistic regression with an interaction term in the 
model (Hintze, 2013). 
 
2.4 Demidenko’s Applet (2008) 
Research by Eugene Demidenko (2008) discusses sample size for a logistic regression with interaction 
present. He presents a method of estimating power for proposed studies using a logistic regression model 
with a binary explanatory variable and a covariate, and their interaction.  He has developed an online 
application (an applet) that will carry out power or sample size calculations, based on input parameters, 
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required for a logistic regression with an interaction term in the model. The applet can be accessed at 
http://www.dartmouth.edu/~eugened/power-samplesize.php  (Demidenko, 2008). 
 
The applet allows a user to calculate power (or a sample size) for two binary explanatory variables and 
their interaction. Thus, if researchers anticipate two variables may interact, they can determine the 
appropriate sample size required or the desired power for a specified sample size by accessing this applet 
(Demidenko, 2008).  
 
Figure 1 presents an image of Demidenko’s applet. Users specify the alpha level, the desired power or 
sample size, and the odds ratio they want to detect if an effect is present. If power is specified, the applet 
returns the sample size required to reach the specified power level. If sample size is specified, the applet 
returns the power level that would be attained if a proposed study is conducted and the specified sample 
size and other input parameters are observed (Demidenko, 2008).  
 

 
 
Figure 1. Example of Demidenko’s Applet Calculations of Power for the Interaction Term in 2x2x2 Case 
 
Other input parameters are required to return power for a study with an interaction term. These are the 
estimated probabilities for each of the explanatory variables of interest, the effects of each of the 
explanatory variables on the outcome in the presence of the interaction in the form of odds ratios, the 
association between the two explanatory variables in the form of an odds ratio, and the probability of the 
outcome being a “1” (the outcome of interest) when both explanatory variables are zero. The drawback to 
Demidenko’s method is that these required input parameters, in the form of odds ratios, may be difficult 
to conceptualize and entail some calculations that may be challenging. Therefore, we propose a method to 
estimate power for a logistic regression with interaction that is perhaps more user-friendly than 
Demidenko’s method. Our method will estimate power derived from a sample size and several other input 
parameters within a SAS macro for a specified interaction between two explanatory variables. 
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3. Methods 

3.1 Assessing Model Fit 
In general, there are four groups of statistical tests used to conduct power and sample size analysis for 
logistic regression with interaction (Demidenko, 2008). Two of these methods are discussed here as they 
are the theoretical concepts behind Demidenko’s and our approaches to estimating power for a logistic 
regression with interaction. These are the Wald test and the likelihood ratio test (LRT). 
 
Both power calculation tests use the likelihood to assess the fit of the models being compared. The 
likelihood is a function of the estimates of the beta coefficients and the data. The goal when fitting a 
model is to determine values of the parameter estimates, or beta coefficients, that maximize the value of 
the likelihood function. In other words, it optimizes a set of parameter estimates that yield the most likely 
data. Hosmer, Lemeshow, and Sturdivant (2013) describes this as the “most parsimonious, yet 
biologically reasonable model” that describes a relationship between an outcome and a set of explanatory 
variables.  
 
According to Demidenko (2008), the statistical test selected to compute power should be the equivalent of 
the type used to test the null hypothesis. He argues that since the Z-test is a common method to test 
significance of beta coefficients or the fit of the model, the same test should be used to conduct power 
analysis or determine sample size. Consequently, Demidenko asserts that the Wald test is the appropriate 
test statistic when estimating power for logistic regression. Demidenko (2008) further asserts that, 
although many maintain that both tests are equivalent in large samples, the Wald and LRT may produce 
comparable results when the null hypothesis is true but yield considerable differences when the 
alternative hypothesis is true.  
 
An advantage of the Wald test is that it entails estimating one model, whereas the likelihood ratio test 
estimates two models. The null hypothesis under the Wald test is that a set of parameters, in this case, 
beta coefficients, is equal to some value, commonly zero. The Wald test assesses how far from zero the 
estimated beta coefficients are in standard errors. The implication is that, if the test fails to reject the null 
hypothesis, the fit of the model is improved without the additional variables in the model. 
 
The null hypothesis being tested using the LRT is that the reduced model produces a better fit of the data 
than the full model. The LRT estimates two models and then compares the fit of one model to the other. 
This is performed by comparing the log-likelihood of both models, that is, by taking the difference 
between the log-likelihood of the full model and the log-likelihood of the reduced model. This difference 
is the LRT test statistic and has an approximate chi-squared distribution, with degrees of freedom equal to 
the number of coefficients being tested to be equal to zero, or the number of parameters removed from the 
model. If the difference is statistically significant, then the full model is believed to fit the data better. 
 
The LRT is commonly recommended when conducting model fit testing for regression. This is indeed the 
approach we utilized in our SAS macro to conduct our power analysis for a logistic regression with 
interaction.  
 
3.2 Theory and Calculations 
In order to determine the correct way to accomplish the power calculations we had to ascertain the theory 
behind the calculations. We set up contingency tables to help us attain what would ultimately be used as 
input parameters for the SAS macro. Tables 1 and 2 illustrate these theoretical contingency tables.  
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Table 1. Relationship between Predictor       Table 2. Relationship between Predictor 
     and Outcome for Effect Modifier at                                  and Outcome for Effect Modifier at        
                             Level 1                                                                                 Level 2 
 

Outcome 

Predictor 

No Yes Total 

No a b a+b 

Yes c d c+d 

Total a+c b+d n 

 
The basic logistic regression model is shown as  
 

Logit = β0 + β1X1 + β2X2 + β3X1X2                                                             (1) 
  
We used the above tables to determine how to calculate the beta coefficients. Results of more lengthy 
derivations are shown below. Calculation of the intercept term is shown at (2). The intercept (β0) is the 
log-odds associated with the outcome when the predictor variables are set to zero. The main adjusted 
effect of the predictor on the outcome (β1) is demonstrated at (3); the main adjusted effect of the effect 
modifier on the outcome (β2) is demonstrated at (4); and the effect of the interaction between the predictor 
and the effect modifier on the outcome (β3) is demonstrated at (5). 
 

β0 = ln (c / a)                                                    (2) 
β1 = ln (ad / bc)                         (3) 
β2 = ln (aC / Ac)                         (4) 
β3 = ln (AD / BC) – ln (ad / bc)                                (5) 

 
As discussed earlier, researchers were interested in planning a study to explore effects of cancer stage at 
diagnosis on the relationship between active treatment and smoking cessation. They suspected that there 
may be an interaction between cancer stage and treatment with respect to smoking cessation. For this 
particular study, the β3 coefficient in the logistic regression model is the effect of the interaction between 
cancer stage and treatment on smoking cessation and is the effect for which power is being computed.  
 
Any time researchers wish to estimate power for a proposed study, they will need to know something 
about the proposed population they are studying before a sufficient sample size or power result can be 
attained. One usually accomplishes this by doing literature reviews in relation to their research topic of 
interest or using some pilot data results. For this situation, the theory behind determining what 
information will ultimately be used to compute power is derived from the proportion of individuals in the 
predictor of interest and the effect modifier, as well as assumed odds ratios for each strata of the effect 
modifier. Following that, one can fill in hypothetical cell counts or frequencies to create 2x2x2 
contingency tables.  
 

Outcome 

Predictor 

No Yes Total 

No A B A+B 

Yes C D C+D 

Total A+C B+D N 
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The following example is a scenario that came from the assumed population proportions from a prior 
research and grant proposal. Thus, the data used are based on known proportions of individuals who are 
going to be randomized to active treatment in a 2:1 fashion, and patients with early cancer stage 
diagnosis. For our scenario, treatment is the explanatory variable of interest, and cancer stage at diagnosis 
is the effect modifier. To obtain the numbers for the tables, we used the assumed proportion of individuals 
in the population who were going to be randomized to active treatment (0.66 or 66%) and the assumed 
proportion who had an early stage diagnosis (0.6 or 60%). If we were to use a hypothetical population of 
809, we could assume some odds ratios and determine our cell sizes. Tables 3 and 4 illustrate the tables 
with data derived from our conjectured scenario.  
 
  Table 3. Relationship between Treatment           Table 4. Relationship between Treatment  
and Smoking Abstinence for Cancer Stage = 3-4              and Smoking Abstinence for Cancer Stage = 1-2 
                           OR ~ 1                OR ~ 4.77 
 

Outcome 

Treatment 

Control Active Total 

No 102 203 305 

Yes 5 10 15 

Total 107 213 320 

        

Again, we assumed a population of 809; however, that can be scaled up or down, or even cell proportions 
can be used. We assumed no relationship between treatment and smoking abstinence for the late stage 
cancer diagnosis (OR=1), and we assumed an odds ratio of 4.77 for the association between treatment and 
smoking abstinence among early stage cancer diagnosis. Using these odds ratios, we were able to 
determine the cell counts shown in Tables 3 and 4. These are the numbers that are used to determine 
assumed beta coefficients for the logistic regression model in (1) above and are ultimately used for power 
computations.  
 
These cell sizes are used in formulas (2) through (5) above to obtain assumed beta coefficients in the 
model.  

 
β0 = ln (c / a) = ln (5 / 102) = ln (0.049)      (6) 
β1 = ln (ad / bc) = ln (1020 / 1015) = ln (1.005)     (7) 
β2 = ln (aC / Ac) = ln (816 / 760) = ln (1.074)      (8) 
β3 = ln (AD / BC) - ln (ad/bc) = ln (4.768) – ln (1.005) = ln (4.745)  (9) 
 

The method we developed to compute power for this study allows users to input the cell sizes from the 
contingency tables along with several other input parameters, and our SAS macro then performs the 
calculations to produce parameter estimates, such as the ones shown above in (6) through (9). These 
calculations of the parameter estimates and study proportions are similar calculations one would have to 
carry out to obtain the parameters required for Demidenko’s (2008) applet (Figure 1).  
 

Outcome 

Treatment 

Control Active Total 

No 152 263 415 

Yes 8 66 74 

Total 160 329 489 
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Tables 3 and 4 also illustrate interaction between cancer stage and treatment assignment. One can see that 
the odds of experiencing a more favorable outcome depend on the cancer stage at diagnosis. A differential 
effect of treatment on smoking cessation exists between individuals that have different cancer staging. 
The objective here is to obtain a sample large enough for the logistic regression model to have sufficient 
power to detect an interaction effect of approximately ln (4.745) = 1.557. 
 
3.3 SAS Macro %LRPowerCorr10Int 
As noted before a SAS macro has been developed that estimates power for logistic regression models 
with two or more predictors of interest in the presence of additional confounders (Northern et al., 2009; 
Williams et al., 2010). However, the existing version of the macro does not carry out a power analysis for 
an interaction term. Therefore, we extended this existing macro into %LRPowerCorr10Int to estimate 
power for a logistic regression model that includes two main predictors of interest and an interaction term. 
This study involved modifying the existing SAS macro to incorporate code that computes beta 
coefficients using inputs for the macro. These inputs (among others) are the cell counts from the tables of 
population proportions and assumed associations discussed above. The existing macro was modified to 
use the calculated beta coefficients for logistic regression models used in the power analysis. The new 
macro empirically calculates the power for an interaction term based on sample size and other parameters 
that are determined by the user. 
 
The algorithm takes a specified number of random samples with replacement from the true underlying 
logit (the logit is based on the beta coefficients calculated from user-specified input cell counts). Two 
logistic regression models are fitted, a full model which includes the coefficients for the main effects and 
the interaction term, and a reduced model with the interaction term removed. An LRT statistic is 
calculated to test the differences between the full model and the reduced model. Each time it is found to 
be significant (correctly rejecting the null), it is recorded as 1, otherwise as 0. As mentioned previously, 
this process is repeated as many times as specified by the user; approximately 1000 simulations are 
usually sufficient. After the simulation process is completed, the proportion of correct rejections is 
tabulated. This proportion is the estimate of the power for the conjectured scenario.  
 
The SAS macro is invoked by using the %LRPowerCorr10Int call. The input parameters are described in 
the paragraph below. The entire macro is available upon request from the authors (see contact 
information). 
  
 
 
 

    
  

 
 
 
 
 
 
 
Line one specifies the sample size that is to be evaluated (n=1,500), the number of simulations to be run 
(1000), and the correlation between the explanatory variables (0 or no correlation in this case, which is 
recommended). Line two specifies the cell counts from the contingency tables discussed above. The 
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macro calculates the beta coefficients based on these numbers and uses them to compute the power. Our 
macro allows the addition of more explanatory variables to be included in the model if desired. These can 
be other covariates of interest or confounders. They are specified in lines three and four and are entered as 
odds ratios. We did not include such covariates in the model, so the odds ratios are designated as one, or 
no association. Line five specifies the full logistic regression model to be tested. Line six specifies the 
reduced model. Line seven specifies the alpha or significance level. Line eight specifies the degrees of 
freedom associated with the likelihood ratio test statistic, designated as one because it is being tested 
whether or not one explanatory variable can be removed from the full model. Line nine specifies the 
probabilities associated with the predictor variable of interest and the effect modifier. In our example, 
these are the proportions of subjects randomized to treatment group (66%), and the proportion of subjects 
with the early stage diagnosis (60%).  
 

4. Results 
 
Below is the main portion of the output generated by the SAS macro.  
 
 

 
 
 
 
 
 
 
 
 
 
This macro has the capability to list certain macro parameters in the output as well as functions of the 
parameter estimates that were computed for each term in the model. The computed beta coefficients 
match the ones detailed in results (6) through (9) above. Additionally, the odds ratios that are specified for 
any additional covariates can be listed in the output. The output can also include the description of the full 
and reduced models. The estimated level of power is displayed along with a computed 95% confidence 
interval. A power of 80% was achieved with a specified sample size of 1,500.  
 

5. Discussion 

This project expands available methods that are currently limited in estimating the power for logistic 
regression with interaction present. Moreover, it does it in a perhaps slightly more intuitive fashion than 
Demidenko’s (2008) method. 
 
Demidenko’s (2008) applet will calculate power for two binary explanatory variables and their 
interaction. Our macro does not limit the power calculation to binary variables. In addition, our macro is 
not limited to two variables and the interaction term. Other predictor variables and/or covariates can be 
added to the model. Correlation between covariates in the model can also be specified, which is likely to 
be present in many observational studies; however, it should be used with caution if this correlation 
becomes large.  
 
A limitation of this project is that we used a simple example to test our macro, basically a 2x2x2 scenario. 
We assumed 0 correlation. Overall, however, this macro has extended capabilities as discussed above and 
offers an additional option to researchers dealing with this or a similar scenario. 
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