
Study Design and Analysis Issues for 

Diagnostic Monitoring Devices 

Bipasa Biswas
CDRH, FDA, 10903 New Hampshire Avenue, Silver Spring, MD 20993

Abstract 
A variety of diagnostic devices often require a need for detection and localization of 
multiple events within a subject over a time course used mainly for monitoring of events 
e.g. the detection of events like seizures in temporal intervals from a scalp EEG reading. 
It is possible to characterize event detection in the presence of a reference standard and a 
priori time window overlap or proximity criteria, by sensitivity which is the probability of 
detecting the event given that the event has actually occurred. However, specificity, 
which is the probability of a non-event given that the event did not occur, cannot be 
easily estimated. Instead, counting the false positives and reporting the rate of false 
positives is an alternative to evaluate device performance. A method to assess that the 
device is not randomly marking events is presented along with discussions of sample size 
calculations that address the intra-cluster variability due to multiple events per subject.  

Key Words: Event monitoring, sensitivity, false positive rate, sample size, Poisson 
Process.  

1. Event monitoring devices

A general definition of monitoring translates to test or sample, especially on a regular or 
ongoing basis. Monitoring involves repeated examination of subject condition to assess 
potential change in status (e.g. change in treatment response, progression of disease). 
Monitoring can be quantitative (like blood pressure measurement), semi-quantitative or 
ordinal; or binary (e.g. disease status, event monitoring).  

The focus of this paper is event monitoring devices with particular attention to devices 
used to detect and localize multiple events within a subject over a time interval. 
Examples of devices that marks an event of interest for event monitoring devices include 
software’s to detect spikes and seizures on a EEG strip reading; electronic fetal monitors 
that detect specific patterns that are of specific clinical interest like deceleration, 
sinusoidal fetal heart rate pattern; and continuous glucose monitors to detect 
hypoglycemic or hyperglycemic events. Each of these devices involves monitoring over a 
continuous period of time to detect events of interest.  

1.1 Study Design 
To evaluate event monitoring devices that detects and localizes events of interest, it is 
important to have a clear and specific definition of the event. Thus, it is important to 
characterize the actual event by specifying the beginning and the end of the event by the 
clinical reference standard which is discussed in details in De et al (2013). The study to 
evaluate the performance involves the basic design requirements that include firstly a 
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sample of subjects from intent of use population; an independent method to assess truth 
i.e. characterizing the event by a clinical reference standard; masking the output from the 
test device to the reference and vice versa and an application of both the device as well as 
the reference method on same subjects for the same interval of time. An interval 
selection, a priori, to determine localization and detection by the device around the event 
determined by the reference method is essential to pre-specify prior to analysis.  
 
Some known sources of bias in such designs would be bias due to imperfect reference 
method i.e. the method used to characterize the actual event, failure to mask the output 
from the test device and the reference method, use of the test device output to construct 
the “true” event, and selection bias by sampling subjects that do not reflect the intended 
use population of the device. Many other sources of bias are discussed in Begg (1987), 
Pepe (2003), and Zhou et al (2002).  

 

1.2 Performance Measures 
Based on the known locations of all events and the locations of all marks, the accuracy of 
the device can be characterized by the strength of association between the numbers and 
locations of marks and the numbers and locations of the events. For practical purposes, 
the primary interest lies in properties of a set of marks to adequately detect and localize 
the events for purpose of decisions of further management. Thus the information can be 
classified as beneficial information by adequately localized events; missed or 
inadequately localized events leading to detrimental information and false marks that do 
not correspond to any event.  
 
In general, diagnostic devices with a qualitative outcome (with two outcomes) e.g. 
presence or absence of the condition of interest, is evaluated against a reference method 
used to establish the true condition. Generally, a qualitative test with a binary output is 
represented by a 2x2 table:  
 

Study Population 
  Target Condition “Truth” 

  D=1 D=0 
Test Y=1 TP FP 

Y=0 FN TN 
 

The variable D represents the target condition where D=1 means the condition is present 
and D=0 means the condition is absent and the test is represented by the variable Y where 
Y=1 means the test is positive and Y=0 means the test is negative. In the above table, 
“TP” denotes True Positive; “FP” denotes False Positive; “FN” denotes False Negative; 
“TN” denotes True Negative. 
 
Then the accuracy of the test is evaluated by either the sensitivity-specificity pair, or the 
positive predictive value (PPV) and the negative predictive value (NPV) which are 
defined as follows:.  
 
Sensitivity (TPF) = P(Y=1|D=1) estimated by TP/(TP+FN) 
Specificity (1-FPF) =P(Y=0|D=0) estimated by TN/(TN+FP) 
 
Positive predictive value (PPV) = P(D=1|Y=1) estimated by TP/(TP+FP) 
Negative predictive value (NPV) = P(D=0|Y=0) estimated by TN/(FN+TN) 
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The performance measures PPV and NPV depend on the prevalence of the true target 
condition. 
 
However, unlike a typical qualitative diagnostic device with two outputs, a monitoring 
device which marks the targets of interest i.e. events in this case, specificity is not 
estimable as splitting the temporal interval into sub-intervals is complicated. This is 
illustrated in an example of fetal monitor data readout represented in Figure 1 where 
upper part of the readout represents the fetal heart rate and the lower part of the readout 
represents the mother’s uterine contractions. Say a particular pattern for e.g. deceleration 
of fetal heart rate is the event of interest. Thus to assess this abnormal event location is 
important and hit determination rule is critical component. Additionally, splitting the 
readout into intervals is complicated as depending on how these intervals are determined 
for e.g. Figure 2 versus Figure 3 the event detection and localization gets complicated. 
Thus, in the absence of well-defined interval windows a general determination of true 
negative is complicated and cannot be done for such situations.  
 
 
 

 
 

Figure 1: Readout from a fetal monitor with upper part representing the fetal heart rate 
and the lower part represents uterine activity. 
 

 

 
 

Figure 2: Splitting the readout into intervals. 
 

JSM2015 - Section on Medical Devices and Diagnostics

263



 
Figure 3: Splitting the readout into intervals. 

 
 
Instead the focus is on detection and localization of the events. Thus, it is essential to 
specify the beginning and the end of an event by the reference standard, and a well-
specified interval around the event to determine adequate localization of the mark. To 
determine whether device mark corresponds with an actual event, the mark should lie 
inside the interval of the event also known as proximity criteria or acceptance region.  
 
 

 
Figure 4: Hit determination rule for detection and localization of event (deceleration in 
fetal heart rate). 

 
For most practical purposes a certain limit is acceptable within which a localization error 
can be ignored. Thus in Figure 4 as long as the device marks in the 2 minute interval 
around the event the event will be considered detected and localized. Such a mark is 
called true positive and the localized event is considered detected. Marks that do not have 
a corresponding event within the regions determined by the proximity criteria are called 
false positives and finally events that have no marks closer than determined by the 
proximity criteria is a false negative. The definitions of true positive, false positive and 
false negative depend on the adopted proximity criteria. Classification based on such 
rules can be complicated by establishing correspondence between the marks and the 
events and handling multiple marks that are adequately close to the same event. The 
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statistical framework in this paper assumes for a considered proximity criteria, a single 
event corresponds to a single mark.  
 
The simplest type of data collected is on a single subject. Based on the locations of e 
known events, and applying the proximity criteria (overlapping window length) for 
matching the device marking to an event, one can define which known events are 
detected and adequately localized (true positive marks), and which marks do not 
correspond to any events (False Positive marks). Then True Positive (TP) and False 
Positive (FP) are realization of random variables X and Y where 
 
#TP=X (X ≤ e) 
#FP=Y 
#FN=e-X 
 
Frequencies of TP and FP are characterized by proportion of detected events (TPF) and 
the rate of false responses per subject (FPR) given as: 

TPF =
E(X)

e
;   

 FPR = E(Y) 
 

If the random variable H represents detection and localization of event from a random 
population of events, then the TPF is given by 
  

TPF =
E(X)

e
=

E(∑ I(Hi = 1)e
i=1 )

e
=

e × P(H = 1)

e
= P(H = 1) 

 
Thus TPF, the probability of detection and localization of an event, is interpreted as a 
probability and FPR is interpreted as a rate. The evaluation of performance is based on 
both TPF and FPR simultaneously, since one can increase one measure of performance at 
the expense of other. Thus, the frequency of correct decisions should always be assessed 
in conjunction and relative to the number of errors. For a perfect device the device marks 
all events with no error i.e. X=e and Y=0 implying TPF=1 and FPR=0. The poorest 
performing device will yield only erroneous marks i.e. X=0 implying TPF=0. 
 
Generalizing to S subjects the data can be represented as: 

{es, xs, ys}  s = 1,2, … , S 
Where s indicates one of S subjects and  es is the number of events in subject s; xs  is the 
number of TP in subject s and ys is the number of FP in subject s.  
Then the estimates of event specific performance measures are given by 

                               FPR̂ =
∑ ys

S
s=1

S
                 

                              TPF̂ =
∑ xs

S
s=1

∑ es
S
s=1

= ∑
es

∑ es
S
s=1

S
s=1 (

xs

es
) = ∑ wsTPFŝ

S
s=1   (1) 

 
And the estimates of subject specific performance measures are given by 

                             FPR̂ =
∑ ys

S
s=1

S
  

                             TPF̂ = ∑
(

xs
es

)

S
= ∑ wTPFŝ

S
s=1

S
s=1      (2) 

 
The difference between event-specific and subject-specific performance lies in the 
weights associated in calculating the TPF. These weights will be same if each subject 
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contributes equal number of events and then subject-specific TPF is the same as the 
event-specific TPF. But for most practical purposes the subjects may not contribute the 
same number of events and thus it is important to distinguish the measures. 
 
 
1.2 A random test in case of event monitoring 
A simple approach to characterize the random placement of marks is to consider a 
homogeneous Poisson Process with distribution of random number 𝑛 of marks at random 
locations along the temporal interval of a reading with length say 𝐿. Say λ is the average 
number of marks of the Poisson Process and 𝐿 is the total length of interval over which 
events are evaluated. For this paper, multiple marks for an event are counted as one mark 
and say 𝑙  is the length of the interval around the event and for simplicity is located 
entirely inside the reading of length 𝐿, is considered as the proximity criteria. We can 
define the following indicator function: 

𝛿 = {
  1   if the event is marked within interval of length 𝑙

0                                                    if the event is missed
 

 
Then the probability of marking the event by chance is given by 𝑝 =

𝑙

𝐿
 

 
Thus, for a given rate λ, we can express 
 TPF = 1 − P{∑ (δi = 0)𝑛

𝑖=1 }  = 1 − E[(1 − p)n] 

= 1 − ∑(1 − p)k

∞

k=0

λk

k!
e−λ 

= 1 − e−λ ∑
[λ(1 − p)]k

k!

∞

k=0

 

          =  1 − e−λ eλ(1−p) 
           = 1 − e−λp 
 

FPR = E[n − ∑ δi
n
i=1 ]   =E(n) − E(∑ δi

n
i=1 ) = λ − λp = λ(1 − p) 

 
Thus if φ =

p

(1−p)
 then 

 

 TPF = 1 − e−λp = 1 − e
−λp(

(1−p)

(1−p)
) 

          = 1 − e
−λ(1−p)(

p

1−p
) 

          = 1 − e−FPR×φ       (3) 
 
 
As an example if one would like to determine if a software that detects deceleration of 
fetal heart rate in electronic fetal heart rate machine readout in a one hour reading, is 
better than random, then one can use the equation above to determine for a given false 
positive rate and the adopted proximity criteria how much more the TPF has to be. Thus 
for EFM measurements with 1 hour reading per subject we have 𝐿 = 60 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 and 
say for matching the device marking to an actual events the proximity criteria is an 
interval of length 𝑙 = 2 minutes to mark on the EFM strip for event determination. 
Then p =

2

60
=0.0333; φ =

0.0333

1−0.0333
=0.0345 
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Thus if a device marks an event and the matching interval is of length 2 minutes has 
FPR=2.0 then any TPF > 1 − exp(−2 × 0.0345) = 0.067 will be better than random 
markings. 
Now say the FPR=20.0 instead of 2.0 as above then any TPF > 1 − exp(−20 ×

0.0345) = 0.502  will be better than random markings.  
In the above examples, it was implicitly assumed that the TPF-FPR pairs for the tests are 
known without errors. A formal comparison can be made by computing confidence 
intervals of TPF and FPR. 
 
 

2.Sample Size and Reporting 
If the goal is to evaluate a diagnostic event monitoring device explained in this paper 
against a known performance goal then a sample size can be based on evaluating the 
performance against the performance goal with adequate power and alpha (the 
probability of type 1 error).  Say (TPF0, FPR0) are the minimally required performance 
goals for TPF and FPR then the null hypothesis is 
H0 = {TPF ≤ TPF0,  or  FPR ≥ FPR0}  
The sample size for number of events and number of false positive marks is determined 
for size= α/2 and power (1 − β)  at an alternative 
hypothesis  H1: TPF = TPF1 and FPR = FPR1.  

nTPF = 
(σTPF)𝟐(𝐳𝛂/𝟐−𝐳(𝟏−𝛃))

𝟐

(TPF1−TPF0)𝟐  

Where (σTPF)2=duTPF1(1 − TPF1)  
du  = m̅−1 {1 + (

m̿

m̅
− 1) ρ}   m̅ = E(m) and m̿ = E(m2).   Where m is the number of 

events per subject and m̅ is average number of events and m̿ is the average of square of 
the events and ρ is the intra-cluster correlation. The details of the sample size calculation 
can be found in Jung et al (2001). 
 

nFPR =
(FPR1

1
m

̅
+ σC

2)(zα/2 − z(1−β))
2

(FPR1 − FPR0)2
 

where σC
2 =between cluster variance. The details of the sample size calculation can be 

found in Hayes and Bennett (1999). 
 
The sample size can also be based on comparing to a predicate in the same study and the 
details are not considered further in this paper. The above sample size derivation is for a 
single case when the evaluation of performance is set against a performance goal.  
 
While reporting performance of such event monitoring devices, with focus on localizing 
and detecting events of interest, both TPF and FPR are reported simultaneously along 
with 95% confidence intervals. The nonparametric estimation of these measures can be 
given by (1) above and the 95% confidence intervals should take the correlation into 
account due to multiple events and multiple marks from the same subject. Thus in 
particular the variance of the point estimates of TPF and FPR should include the 
correlation due to clusters. Variance estimation of these point estimates can be assessed 
using the variance estimators for clustered proportions (Rao and Scott 1992; Donner and 
Klar 2000). 
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3. Conclusion 

For practical purposes the primary interest in evaluating diagnostic monitoring devices 
which mainly detects and localizes events of interest in temporal intervals, the primary 
interest often lies in properties of the marks to adequately detect and localize the events 
for purposes of making decisions for further management.  Simplest way to characterize 
the performance can be based on the association of the number and the location of marks 
by the device and the number and location of the actual events which have been 
independently determined by the reference standard. Unlike typical diagnostic devices 
with binary outcomes (presence or absence), the true negative determination for such 
event detection and localization devices is generally not definable and thus the usefulness 
of the device marking is characterized by true event detection and localization (true 
positives), false markings (false positives) and missed events (false negatives).  
 
Thus to evaluate performance, there is a need to specify a clinical reference standard, a 
priori window of practical interval length as proximity criteria for detecting and 
localizing events by a mark, and report both true positive fraction (TPF) and false 
positive rate (FPR) along with 95% confidence intervals of the point estimate. Usefulness 
of the device lies if the true positive markings are significantly greater than the false 
positive marks but unlike a typical diagnostic device with binary outcome it is not a 
straight forward assessment whether the markings are random or informative.  
 
Sample size is based on clustered data as same subjects provide multiple targets and the 
correlation needs to be accounted due to clustered data while reporting results.  
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