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Abstract
Extreme weather and climate events such as hot spells, snow storms, and floods
have recently had a major impact on the economy, environment, and human well-
being. Thus, acting as a catalyst for concern about whether or not the climate is
actually changing. One challenge when scientifically trying to determine whether or
not the climate is actually changing is a change-point. A change-point is defined as
any abrupt change or shift in the distribution and is the single most important con-
tributing factor for inaccurate or accurate results. Traditional change-point methods
focus exclusively on detecting an alteration or a shift in the arithmetic mean.

In this paper we present a Bayesian change-point detection algorithm for de-
tecting change-points in climate data. We first develop the theory for a Bayesian
approach using a hierarchical model to estimate the location and number of change-
points within a climatic time series. We then discuss the implementation of our
Gibbs Sampler algorithm to obtain posterior probabilities of the location of multiple
change-points. We finally investigate the performance of our Bayesian change-point
approach through comparison with a standard frequentist method. Both methods
are applied to simulated and real temperature data collected from Chula Vista,
California.

Key words: Change-Point, Change-Point Analysis, Bayesian framework, Climatic
Changes, Bayesian Analysis, Gibbs Sampling

1 Introduction and Background

Recently, countries worldwide have been experiencing unusually hot days and nights
and fewer unusually cold days and nights. Heavy downpours have become more
frequent and intense. Droughts are becoming more serve. Despite the catastrophic
nature of recent weather and climate events, society remains unconvinced that the
climate is actually changing and as a result, fails to understand the affect this change
will have on the economy, environment, and human well-being in the future.

In this paper, our primary focus is on providing an unified and mathematically
justified procedure for detecting change-points within a climatic time series, as they
can drastically alter estimates or predictions made from a statistical model. For
example, Figure 1 below shows how making predictions based on the overall trend
dramatically changes when change-point information is incorporated or neglected.
This example considers annually averaged temperatures recorded at New Bedford,
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Masschusetts, from 1812 to 1999. The figure reports two statistical regression mod-
els: 1) a linear line (red) which has a positive rate of change for the overall trend
from 1812 to 1999 and 2) 4 local linear lines (blue) from (i) 1812 to 1890, (ii) 1890
to 1902, (iii) 1902 to 1950, and (iv) 1950 to 2000 respectively to account for the
four known change-points (1888, 1906, 1951, and 1985) represented by four vertical
dashed purple lines. Observe that within each local segment that the rate of change
is negative. Therefore, if the local lines (blue) are used we would conclude that for
every year that passes the temperature decreases at some constant rate, but if the
overall trend line (red) is used we would conclude that the temperature increases,
a major contradiction caused without a shadow of doubt by the station relocations
during years 1888, 1906, 1950, and 1985 (i.e the change-points in the time series).

Figure 1: Impact of Change-points for a Climate Time Series

 

The example presented above is typical of climate time series in that they have
a time trend and multiple change-points induced by both climatic and nonclimatic
changes such as instrumentation changes, station changes, observer changes, etc.,
that act to influence overall trend inferences. The change-point problem is well
known in the climate literature; numerous authors have presented change-point
tests for the case of a single mean shift when the series has no trends. A partial list
of references for this task includes; Page (1955), Hawkins (1977), Vincent (1998),
Ducre-Robitaille et al. (2003), and Beaulieu et al. (2012).

For reasons described above, our main objective is to implement various Bayesian
methods that can accurately estimate the number and the location of change-points
within a climate time series. A climate time series is a sequence of climate points
(observations) measured at successive points in time (say annual) spaced at uniform
time intervals which is described by an underlying distribution. Intuitively, we can
think of a change-point as a point in time at which unknown quantities (parameters)
of the distribution or model abruptly change. For example, imagine a heart rate
monitor which displays a line that is flat for the first 3 minutes and then begins
to change to a sinusoidal pattern for the next 3 minutes and then all of a sudden

JSM2015 - Section on Bayesian Statistical Science

184



the monitor begins to display an intense up and down motion. The moment when
we observed a sudden change in the heart rate would be described as a change-
point in which the heart rate distribution changed. Finding change-points can also
equivalently be seen as the subdivision of a series into segments characterized by
homogeneous statistical features (e.g. mean and standard deviation). Establishing
the existence, and ultimately the number and locations, of such change-points in
climatic time series can be a extremely difficult task. For example, climate-related
changes, non-climatic factors such as relocation of weather stations and changes of
instrumentation are apt to cause sudden changes and these must be identified to
properly analyze climatic time series; see Kuglitsch et al, (2009).

Up until this point, the method primarily used for detecting change-points within
a climate time series is through an abrupt shift in the mean of the series. Recent work
includes: Beaulieu et al (2012), Li and Lund (2012), Lu and Lund (2010), Toreti
et al, (2012). However, extreme climatic events are relatively more sensitive to the
variability of the climate than to its average and the sensitivity is relatively greater
the more extreme the event. This becomes even more transparent in the discussion
on climate change as performed by Crisci et al. (2002) and Katz and Brown (1992).
The authors conclude that any climate change will first lead to changes in the
frequency and intensity of extreme events. Figure 2 illustrates this point graphically.
Observe how a change in temperature or climate will first be statistical and visually
observed in the tails of the distribution. Statistically speaking, when an observation
falls into the tail of a distribution, we refer to this observation as an extreme value.
From Figure 2 we can visually see how the chances (probability) of an extreme
event occurring, increases when there is a shift in the temperature or climate. This
increase in probability is statistical understood by a shift of area from the center of
the distribution to the tails. This in turns creates a distribution with fatter tails.

Figure 2: Affect a Change in Extreme Values can have on the Distribution

  

The rest of the paper is organized as follows: the development of a simple fre-
quentist approach that uses the Goodness of Fit test to determine possible change-
points is presented in Section 2.1. Section 2.2 contains a Bayesian approach that
uses prior information to estimate the number and location of unknown change-
points. Section 2.3 describes our Gibbs sampler algorithm to obtain probabilities
from our posterior distribution. Finally, in Section 3 we apply our theory developed
in Section 2 to simulated and real temperature data. Both data sets are known to
have three change-points. The performance of methods proposed in this paper are
discussed and future work is introduced.
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2 Methodology

In this section we introduce the theory necessary to implement our proposed
Frequentist and Bayesian method to detect change-points in climate data sets.

2.1 Frequentist Approach

When dealing with a climatic or temperature data set, a typical approach to
detecting change-points is linear functions. We begin by proposing a simple linear
model. The advantage of implementing such a simple model is it does not involve
advance statistical techniques so it is easy to understand and interpret the results.
In addition, it can provide important insight into necessary modifications to existing
methods of detecting change-points. Since this approach is quite standard in the
change-point literature it serves as a base line for comparison with our alternative
Bayesian method. We now begin by defining an indicator function

It(θ) =

{
1 if t ≥ θ
0 if t < θ,

(2.1)

where θ is the unknown change-point for t = 1, . . . n. The purpose of this indicator
function is to partition the time series into two segments and compare the two
distributions. This will allow us to determine statistical which time-point is then
most likely to be a change-point. As described above, typically the mean of the two
distributions are then compared and if there is a significant difference between the
two distributions then the time-point at which the two distributions were partition
is the change-point. We now consider the following simple regression model:

yt = β0 + tβ1 + β2It(θ) + tβ3It(θ) + εt, (2.2)

where we assume that εt ∼ N(0, σ2). Now, in order to determine possible change-
points under this parametric model, we must first fix our unknown change-point
θ and fit n regression models using the ordinary least-square (LSE) method for
parameter estimation. In doing so, we will define the value of θ which maximizes
the coefficient of determination R2 as the change-point in the data set. That is, we
will obtain model estimates for β = (β0, β1, β2, β3) and then compute the Goodness
of Fit (GOF) statistic R2 at each time point t. The GOF essentially determines
how well the data fits the model by measuring the discrepancy between observed
and expected values.

Remark: It turns out that this ad-hoc method of searching for the best-fitting
change-point has some nice properties. Due to the fact that we are assuming that
εt ∼ N(0, σ2), the time series of the R2 statistic is proportional to the profile log
likelihood for θ. Hence the time point of maximum R2 is equivalent to the Maximum
likelihood estimate (MLE) for θ.

A few limitations with this approach is the fact that it can only detect a single
change-point and with all parametric models we have to assume the location of a
change-point prior to our analysis. In doing so, this method should not be used
to estimate regression coefficients due to the fact that we have ignored the uncer-
tainty about the location of the change-point. We will now introduce our Bayesian
approach.
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2.2 Bayesian Approach

In the previous section we used a parametric model that assumed the location
of a change-point, in this section we will use another parametric model under a
Bayesian framework. That is, we will treat the location and the change-point as an
unknown parameters to be estimated. This will allow us to obtain its probability
distribution which in turn can then be used to determine the probability of a change-
point at each time point. To obtain such probabilities we will build an Markov Chain
Monte Carlo (MCMC) algorithm which allows us to sample from the conditional
distribution of our unknown parameter θ to determine the location of one single
change-point. Our first proposed Bayesian method is merely an extension of our
frequentist approach presented in Section 2.1. In this section we will use the same
simple linear regression model but use a prior distribution for our change-point θ.
Thus, we begin with our simple regression model:

yt = β0 + tβ1 + β2It(θ) + tβ3It(θ) + εt, where εt ∼ N(0, σ2), (2.3)

and

It(θ) =

{
1 if t ≥ θ
0 if t < θ,

(2.4)

as θ remains our unknown change-point. Using the LSE method we define ŷt =
Xβ̂, where β̂ = (X ′X)−1X ′yt. However, this time we assume that our time series
{yt|θ} ∼ N(Xβ, σ2), where θ follows some prior distribution p(θ) which will be
developed and discussed in section 2.2.1. For interpretation purposes we will work
with the precision parameter τ = 1

σ2 instead of σ2. With the following setup we
can now construct our Gibbs sampler. We begin by deriving the joint posterior
distribution for (θ,β, τ) and then derive the marginal posterior distributions by
conditioning on all other parameters. Using the fact that εt = (yt − ŷt) ∼ N(0, σ2),
the likelihood function is

p(yt|θ) =
1√

2πσ2
e−

(yt−Xβ)
2

2σ2 . (2.5)

With this setup, one key advantage lies in the fact that we are evaluating the
likelihood function p(yt|θ) at discrete points t = 1, . . . , n. Under the frequentist ap-
proach, one must condition on θ to get accurate estimates for β whereas, a Bayesian
framework allows us to account for this uncertainty by simulating draws from a
discrete uniform or geometric distribution and then integrate over θ instead of con-
ditioning on it.

2.2.1 Prior Distribution

Another obvious advantage of a Bayesian model is that it allows us to use prior
information about certain parameters, which in turn will produce more accurate
estimates. To this point we have introduced three parameters that we need to esti-
mate (θ,β, τ); i.e. the unknown change-point, regression coefficients, and precision
respectively. Within a Bayesian framework a very practical prior distribution to use
is called the conjugate distribution. This type of distribution was chosen for com-
putational reasons as it guarantees that the conditional posterior distribution will
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have a closed form. With this being said, we begin by specifying prior distributions.
Observe that the random unknown change-point θ is a discrete time point and thus
we decided to assign a discrete uniform distribution

p(θ) =
1

T − 1
, where θ = 1, . . . T. (2.6)

Remark: Another widely used prior distribution that we could consider for θ is the
geometric distribution.

A common distribution used for the constant variance σ2 is the inverse gamma
distribution. Under a simple transformation Y = 1

X , where X ∼ IV G(α, β) it can

be shown that Y ∼ gamma(α, β−1). Hence, allowing p(σ2) ∼ IV G
(
c0,

1

s0

)
implies

that
p(τ) ∼ Gamma(c0, s0). (2.7)

We then used a non-informative hyper-prior distribution with initial values of c0 =
.007, s0 = .007. Based upon our analysis, (c0, s0) are robust as results did not very
greatly when values for c0 and s0 varied. We now turn our attention to the the prior
distribution for the regression parameters β. Using the fact that the conjugate prior
distribution for the normal distribution is the normal distribution, we have

p(β) ∼ N(β0, ζ0), (2.8)

where we assigned another non-informative distribution with β0 = 0 and ζ0 =(
100 0
0 100

)
.

Remark: While not proven in this section, it can be shown that values for ζ0 larger
than 100 are asymptotically the same.

Now that we have specified all prior distribution for our three parameters we are
ready to present the joint and marginal posterior distributions.

2.2.2 Joint and Marginal Posterior Distributions

Applying Bayes Theorem for Θ = (θ,β, τ) we have

p(Θ|yt) =
p(Θ, yt)

p(yt)

∝ p(yt|Θ)p(Θ)

= p(yt|Θ)p(θ|β, τ)p(β, τ)

= p(yt|θ,β, τ)p(θ|β, τ)p(β|τ)p(τ).

Thus, the Joint Posterior Distribution p(Θ|yt) ∝ is proportional to

exp

(
−
τ
∑T

t=1(yt − ŷt)2 − 2τs0
2

)
·
(
ζ−10

)T/2
exp

(
−
∑T

t=1(β − β0)
2

2ζ0

)
τ (T/2+c0−1) · 1

T − 1
.
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We now derive the marginal distributions for each of the three parameters (θ,β, τ).
We naturally begin with the precision parameter τ . Defining SSE =

∑T
t=1 ε

2
t , where

εt = yt − ŷt and ŷt = Xβ̂, we have

p(τ |θ,β, yt) =
p(θ,β, τ, yt)

p(θ,β, yt)

∝ τT/2exp
(
−τSSE

2

)
τ c0−1exp(−τ/s0)

= τT/2+c0−1e−τ(
SSE
2

+s0).

Thus, p(τ |θ,β, yt) ∼ Gamma(T/2 + c0, SSE/2 + s0). Now using the result proven
in (Gelman 2004) for a normal conjugate prior we have

p(β|θ, τ, yt) =
p(θ,β, τ, yt)

p(θ, τ, yt)
∝ exp

(
−ζ1

(β − ζ1(β0ζ0 + τX ′y))2

2

)
,

Thus, p(β|θ, τ, yt) ∼ MVN(β1, ζ1), where β1 = ζ1(β0ζ0 + τX ′y) and ζ1 = (ζ−10 +
τX ′X)−1. Finally, we derive the marginal distribution for our change-point param-
eter θ. Observe that,

p(θ|β, τ, yt) ∝ exp
(
−τSSE

2

)
.

That is, we draw the change-point from the discrete Likelihood function

p(θ = t|β, τ,y) =
L(θ = t|y)∑T
t=1 L(θ = t|y)

, for t = 1, . . . , T − 1. (2.9)

2.3 Gibbs Sampler (MCMC)

In order to calculate probabilities from the posterior distribution of the change-
point random variable θ, we construct a Markov Chain Monte Carlo algorithm.
In order to implement our Gibbs sampler we used the statistical software R. We
used 10,000 iterations for burn-in and 100,000 iterations for the chain in order to
guarantee that the chain would converge to a stationary posterior distribution. The
convergence was verified by running multiple chains with widely spaced starting
values for the change-point θ. It should be noted that if the chain does not converge
to a stationary distribution, then the change-point that Gibbs sampler produces will
not be accurate. This is due to the fact that the mean of the chain shifts as it moves
over the parameter space of our samples from the marginal posterior distributions.
The following procedure gives a brief outline of our algorithm.
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Step 1: Initial values

We begin by sampling each random variable θ,β, τ from its prior distribution. For θ
we drew an integer between 1 and T from p(θ), where we set T = 200. We initialized
τ by taking samples from Gamma(c0, s0), where c0 = .007 and s0 = .007. Finally
we used the LSE estimates β̂ for β from our linear regression model in (2.2). Based
upon the marginal distributions presented in Section 2.2.2 we perform the following
updating process, where ∗ denotes an updated value.

Step 2: Sample for τ∗

τ∗ ∼ Gamma(T/2 + c0, SSE
∗/2 + s0), where the initial values θ = θ∗ and β = β̂

∗
.

Step 3: Sample for β∗

β∗ ∼MVN(β1, ζ1), where β1 = ζ1(τ
∗X ′y) and ζ1 = (ζ−10 + τ∗X ′X)−1.

Step 4: Sample for θ∗

θ∗ ∼ exp
(
−τ
∗SSE∗

2

)
, with draws from p(θ|β, τ,y∗) =

L∗(θ = t|y∗)∑T
t=1 L

∗(θ = t|y∗)
.

In Sections 2.1 and 2.2 we used simplistic algorithms that could only find a single
change-point. To find multiple change-points we modify our Gibbs sampler by
conditioning on the previous change point. We begin by adding a prior onto the
mean of the segment from time point (i + 1) to time point (j). Then the prior
distribution is

p(µij) ∼ N
(
µ0,

σ20
j − i

)
, where µ0 = Xβ0.

Now let p represent the probability of a change-point at time point i and θ =
(θ1, θ2, . . . , θc), where c denotes the maximum number of possible change-points.
We define a potential change-point as any point where the posterior probability is
greater than .10. Within a certain interval, we consider all potential change-points
and define a change-point as the time point with the maximum posterior probability.
The transition probability in our Markov chain is

p(θi) =
pi

1− pi
=
P (θi = 1|θj 6=i, yt)
P (θi = 0|θj 6=i, yt)

.

That is, at each step in the Markov chain we draw θi+1 ∼ P (θi+1 = 1|θi, yt).
Therefore, we can compute the odds of a change-point at time point i+ 1 using the
conditional probability of a change-point at time point j. The addition to our joint
posterior distribution is

P (θi = 1|θj 6=i, yt)
P (θi = 0|θj 6=i, yt)

=

∫ a
0 p

(b+2)/2(1− p)(T−γ−3)/2dp∫ b
0 p

(γ+1)/2(1− p)(T−γ−2)/2dp
·
∫ ξ
0 p

γ(1− p)(T−γ−1)/2dp∫ ξ
0 p

(γ−1)(1− p)(T−γ)/2dp
.
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3 Results

In this section we apply our Frequentist and Bayesian method for detecting
change-points to both simulated and climatic data sets.

3.1 Simulations

To assist the quality of each method we generate data with known change-points
positions, with various signal to noise ratio. For each simulation we take 10,000
simulations from the posterior distribution of change-points. In both cases we used
a constant function. For case 1: Let Zi ∼ N(0, .3) for i = 1, . . . , 100 such that

yt =


−1 + Zi 1 ≤ i ≤ 25,

1 + Zi 26 ≤ i ≤ 50,

3 + Zi 51 ≤ i ≤ 75,

10 + Zi 76 ≤ i ≤ 100.

This gives us quite a strong signal to noise ratio with three obvious change-points
at t = 25, 50, and 75.

Figure 3: Three known Change-points with strong to noise ratio
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Figure 4: Case 1: Zi ∼ N(0, .3)

(a) Frequentist

 

(b) Bayesian

 

As expected both methods had no problems of detecting these change-points. In our
final case we increased the variance to .8, reducing the signal to noise ratio. Case 2:
Let Zi ∼ N(0, .8) for i = 1, . . . , 100 such that

yt =


−1 + Zi 1 ≤ i ≤ 25,

1 + Zi 26 ≤ i ≤ 50,

3 + Zi 51 ≤ i ≤ 75,

10 + Zi 76 ≤ i ≤ 100.

Figure 5: Three known Change-points with increased noise
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Figure 6: Case 1: Zi ∼ N(0, .8)

(a) Frequentist

 

(b) Bayesian

 

Figure 7 shows that the last change-point (t = 75) is found with probability one,
as expected. However, our Bayesian method was not as confident with the first
change-points, which we expect with the small signal to noise ratio. Interestingly,
the second change-point was detected with certainty, despite the step size the same
as the second. This is the result of random variability as verified in Figure 8.

Figure 7: Case 2: Zi ∼ N(0, 1)

(a) Frequentist

 

(b) Bayesian
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3.2 Chula Vista Data Set

In this section we will apply the theory developed in section 2.1 and 2.2 to a
real temperature data set collected from Chula Vista, California. The data set came
from the United States Historical Climatology Network (USHCN). In this section we
perform our change-point analysis to determine the number and location of possible
site changes at the Chula Vista station. This data set contains 936 data points
recorded monthly over the years 1919 - 1996. The first observation was in January
1919 and the last observation was December 1996. The upper subplot of Figure 9
displays a time series plot of the data set. The lower subplot of Figure 9 displays
the location of the three known change-points represented in red lines provided by
(USHCN) located at t = 582, (July 1966), t = 708, (Dec 1981), and t = 760, (April
1985).

Figure 8: Chula Vista Time Data Set

(a) Actual Data Set

 

(b) Known Change Points
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The green line located at t = 701 in the upper plot of Figure 10 shows our Frequentist
change-point estimate. For such a simple method, it appears to find the most
significant change-point with fairly high confidence (R2 = .68). The lower plot
of Figure 10 displays the posterior mean. Observe that our Gibbs sampler after
running 100,000 iterations estimated three change-points at t = 482 (yellow line),
t = 701 (green), t = 765 (purple), whereas the USHCN determined the true change-
point to occur at t = 582, t = 708, and t = 760. Estimates for the second and third
change-points appear to be very close to the truth.

Figure 9: Chula Vista Change-Point Estimates

(a) Frequentist

 

(b) Posterior Mean
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Using the statistical software R we were able to implement our modified Gibbs
sampler to compute the posterior probabilities of change-points for the Chula Vista
data set using both a non-informative prior and bootstrap approach. Figure 11 dis-
plays our results for our bootstrap and non-informative approach. In both cases, we
were able to estimate with high accuracy the location of all three change-points. The
green vertical lines display USHCN belief for the location of the actual three change-
points. Comparing our results with the results in Figure 10 (b) it appears that our
Bayesian method was significantly closer to the known change-points. However, a
draw back with our method was that many neighboring time points near our esti-
mated change-point had small probabilities, which in turn forced probabilities for
our estimated change-points down. This is known as leakage and was corrected by
implementing Richen’s (2007) peak algorithm to converge neighboring time points
to one single change-point.

Figure 10: Location of Change-points for Chula Vista Data Set

(a) Bootstrap

 

(b) Non-Informative Prior

 

4 Conclusion

In conclusion, change-points reflect occurrences of important events that can
drastically alter estimates or predictions from a statistical model. In this paper,
theory for a bayesian method was developed with the ability of detecting multi-
ple change-points for climatic data. We considered both a bootstrap and non-
informative prior approach to compute posterior probabilities of a change- point.
Difficulties with estimating the location of a change-point with precision was handled
by adding neighboring probabilities to the time point with the relative maximum
within the interval. Both the simulated data and Chula Vista data set demonstrated
that even when there is subtle changes within the distribution that we are able to
estimate the location(s) of the change-point(s) with high accuracy. Compared with
the standard frequentist approach, multiple advantages in terms of flexibility, sen-
sitivity, accuracy, and certainly where observed in favor of our Bayesian method.
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