
A Response-Adaptive Covariate-Balanced Randomization for Multi-Arm 

Clinical Trials 
 

Cassandra Balloua and Yiyi Chena 

1 a OHSU-PSU School of Public Health, Oregon Health & Science University, 3181 SW Sam 

Jackson Park Road, , Portland, OR 97239-3098, USA 

 

Abstract  
Randomization is a key characteristic of clinical trials which makes them the gold standard 

for determining treatment effectiveness. Response-adaptive randomization is desirable 

because it allows more patients to receive the winning treatment; however, compared to 

traditional equal randomization response-adaptive randomization is more likely to allow 

imbalance in prognostic baseline covariates. We propose a simple yet flexible 

randomization for multi-arm trials which marries response-adaptation and covariate-

balancing designs. The operating characteristics of the proposed methods were assessed 

via simulation for a variety of scenarios in which values of treatment success probability 

and patient response delay time were varied. The newly proposed methods consistently 

outperformed equal randomization in terms of reducing the proportion of treatment failures 

for subjects and compared favorably to response-adaptive only randomization while 

significantly improving the balance of prognostic covariates between treatment arms. 
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1. Introduction 

 

In trials with human subjects and particularly when treatment failure may mean serious 

morbidity or mortality there is a strong ethical imperative to treat subjects with the most 

promising treatment available. Response-adaptive randomization designs, which fall under 

the broader category adaptive design, allow the probability of assigning a new patient to a 

particular arm of a trial to be varied over the course of the trial in response to the outcomes 

observed for previously enrolled patients as they become available in a systematic manner 

which does not compromise the validity of the results of the trial [1]. 

 

Interest in response-adaptive randomization stems not only from its ethicality, but also 

from more logistical advantages. Also, a properly implemented response adaptive 

randomization can be expected to provide higher power compared to a static unequal 

allocation allowing a reduction in sample size. It has been suggested that this advantage is 

more pronounced for trials having three or more arms [2].  In addition, recruitment may be 

easier if patients are more willing to enroll knowing their chances of receiving the best 

treatment are higher.  

 

The idea of response-adaptive design dates back as far as Thompson in 1933 [3]; however, 

early attempts suffered from being deterministic. For example, the “play-the-winner” rule 

allocated the next patient to the same treatment if the previous patient’s outcome had been 
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success and to the other treatment if the previous patient had experienced treatment failure 

[4]. More recently, numerous randomized response-adaptive designs, both Bayesian and 

Frequentist, have been proposed in the literature [1].  

 

Among response-adaptive randomization designs using frequentist methods, urn models 

have predominated [1]. They are based on a simple, intuitive model in which assignment 

to each of the k arms is represented by k types of balls contained in an urn. A ball is drawn 

at random from the urn for each subject as they enroll and they are assigned to the arm 

corresponding to the type of ball which was drawn. The composition of balls in the urn is 

varied over time depending on observed successes and failures for previously assigned 

patients. Notable variations on this basic urn model include the randomized “play-the-

winner” strategy [5,6], in which additional balls of type k are added to the urn in response 

to success being observed for a patient on that arm, and the “drop-the-loser” strategy [7,8], 

in which balls of type k are removed from the urn in response to a failure being observed 

for a patient on that arm. The “drop-the-loser” strategy has been shown to be superior in 

terms of having lower variability and, by extension higher power [7], since power is a 

decreasing function of randomization procedure variability [9].  

 

A potential flaw of these response-adaptive randomization procedures is that they many 

have not considered imbalance in baseline covariates believed to be prognostic [10]. 

Particularly for trials with small to medium sample sizes, randomization alone may be 

inadequate to ensure important covariates are balanced across multiple treatment arms. 

Campbell and McPherson found that for a two arm trial as many as 1000 subjects may be 

required before simple randomization provides adequate covariate balance [11]. Covariate 

imbalances, should they occur, may introduce bias into a trial’s estimates of treatment 

success [12]. For example, if older persons have a lower probability of treatment success 

regardless of treatment than younger persons and a substantially larger proportion of older 

persons are assigned to Treatment A, then A might wrongfully be concluded to be inferior. 

Imbalanced prognostic covariates can, and should, be adjusted for in a post-hoc manner at 

the analysis stage; however, a covariate-balanced design will improve the efficiency of the 

trial.  

 

It is important to distinguish covariate-balanced randomization from another adaptive 

approach involving baseline prognostic factors: covariate-adjusted randomization. 

Covariate-balancing seeks to assign patients with a certain value of some baseline covariate 

more evenly across all treatment arms for the purpose of reducing bias in the results of the 

trial. In contrast, the purpose of covariate-adjusted randomization is to assign more subjects 

to the best treatment for them by increasing the probability of assigning a new subject to a 

given treatment arm in response to subjects with similar baseline covariate profiles 

previously assigned to that treatment achieving treatment success [12]. It should become 

apparent that if there are indeed significant differences in which treatment has the best 

probability of success based on a given covariate then covariate-adjusted randomization 

will result in a greater amount of imbalance between treatment arms in regard to that 

covariate. Covariate-adjusted randomization is appropriate for prognostic factors where an 

interaction between treatment and covariate is expected. For example, treatment A has a 

higher true probability of success for persons with genetic marker A, while treatment B has 

a higher true probability of success for subject with genetic marker B. In contrast, 

covariate-balanced randomization is appropriate for prognostic factors where the effect of 

the covariate would be expected to be consistent across treatments. Our current discussion 

will be restricted to covariate balancing. 
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Simple stratification has been the traditional approach to covariate balancing; however, 

prognostic score based randomization offers a more versatile approach because it allows 

for balancing on continuous covariates and a larger total number of covariates [10]. Pre-

stratification is adequate when only a small number of binary and/or categorical baseline 

variables (resulting in only a few strata) are of interest, but if balance across many 

categorical variables or continuous variables is desired achieving marginal balance on each 

covariate between treatment arms becomes impractical if not impossible. Provided that 

achieving balance on the baseline covariates is only of interest in so far as they are 

predictive of the primary outcome, a potential alternative to pre-stratification based 

methods is to balance on a prognostic score, a linear combination of the covariates 

predictive of the outcome.  

 

Covariate-balanced randomization was first proposed by Taves in 1974 [13]. Taves 

minimization method, so-named for its intent to minimize differences between groups in 

regard to important baseline covariates, suffered from the same short-coming of 

determinism as early attempts at response-adaptive randomization; however, randomized 

versions of the minimization method from Pocock and Simon [14] and Wei [15] soon 

followed. Although they have been known for some time, Scott et al. found in their review 

of the literature that minimization methods of covariate balance are still rarely employed 

with only 4% of randomized trials published in the Lancet and the New England Journal 

of Medicine in 2001 reporting use of this method [16]. The authors cite the perception of 

additional administrative burden and uncertainty about the proper analysis techniques to 

employ in evaluating the results of a trial randomized in this way as major barriers to wider 

use [16].  

 

Compared to the minimization method, the prognostic score approach has two major 

advantages. Firstly, like stratification methods, minimization requires the categorization of 

continuous variables which poses a challenge if optimal cutoff values are unknown. 

Secondly, minimization methods fail in the presence of interactions between covariates 

introducing larger alpha errors, while the prognostic score approach can easily 

accommodate interaction terms in the logistic regression model. The major disadvantage 

to the prognostic score approach; however, is that due to being model-based it may be less 

robust. 

 

We will consider both stratification and a prognostic score approach based on the logistic 

regression model as proposed by Yuan [10] to covariate balancing for a response-adaptive 

clinical trial with a binary outcome.  The goal of this current work is to provide a method 

of response-adaptive covariate-balanced randomization suitable for a three arm superiority 

trial. Possible examples might include two pharmaceutical agents with a placebo control 

arm or a behavioral intervention with two control arms, an active and a passive. 

 

The remainder of this article is laid out as follows. In Section 2, we propose several novel 

designs which combine a response-adaptive and covariate-balanced approach to 

randomization. In Section 3, we evaluate the operating characteristics of our proposed 

designs via simulation. In Section 4, we conclude with a brief discussion. 

 

2. Methods 
 

Two methods of response-adaptive randomization were considered: the generalized drop-

the-loser rule as presented by Sun et al. [8] and the Ridit scoring based method presented 

in Bandyopadhyay & De [17] and their performance in combination with simple 
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stratification or prognostic scoring for covariate balance was assessed. Three criteria were 

used in assessing the performance of a given method: the proportion of total subjects 

assigned to the best treatment with a higher proportion being superior, the proportion of 

treatment failures experienced by subjects in the trial with a low value being superior, and 

the imbalance in prognostic scores between the treatment arms at the conclusion of the trial 

which was measured using Kolmogorov–Smirnov (KS) statistics for which smaller values 

indicate better balance between treatment arms. 

 

For both the Ridit and GDL Urn models, probabilities of treatment success, �̂�, were 

estimated as follows, 

  

�̂� = ����.

���� , � = �, �, �       (1) 

 

where NK is the number patients assigned to one of the three treatment arms, A, B, or C, 

and SK is the number of successes observed among those NK subjects. The probabilities of 

treatment failure, ���, are simply the complements of �̂�. 

 ��� = 1 − �̂� , � = �, �, �       (2) 

 

The algorithm for randomization using the Ridit method for three treatment arms is as 

follows, 
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where Rk is the probability of assigning a new patient to treatment arm k at a given point 

in the trial, pk and qk are defined as in Equations 1 and 2. 

 

The GDL urn model proposed by Sun et al. [8] utilizes k+1 types of balls present in the 

urn. The additional type are termed immigration balls and when an immigration ball is 

randomly drawn the composition of balls, Xk, in the urn is updated as follows prior to the 

new subject being randomized, 

 $% = $%�, &ℎ()( $%� > 0  
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where qK is defined as in Equation 2 and XK0 is the number of balls of type k present in the 

urn prior to the most recent immigration ball draw and XI0 is the number of immigration 

balls which is a constant over of the course of the trial. This makes the equivalent 

expressions to RK for the GDL Urn model, UK, the probability of assignment to a given 

treatment arm at a given time, as follows, 
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When prognostic scoring was used as the method of covariate-balancing, the probability 

of assignment to a given treatment arm, RK or UK, was weighted by a factor of 12 as 

follows, 

 

1� = 3 4                     56 78859:(;< <= � :5;5:5>(8 ∑ @A 
�BC
�B�      56 78859:(;< <= � D=(8 ;=< :5;5:5>( ∑ @A    (6) 

 

where 4 is a constant satisfying 1/k < 4 ≤ 1. 

 

In the simple stratification approach to covariate-balancing �̂� was calculated separately 

for each strata with the estimate being based only on data from subjects belonging to the 

same stratum as the new subject to be randomized.  

 

3. Results 

 

Treatment A was fixed as the best treatment in terms of true probability of treatment 

success without loss of generality. Three potential relationships between the true 

probabilities of success for the three treatment arms were considered. In the first case, the 

true probabilities of success for both Treatment B and Treatment C were set to be equal 

and low (both 0.3) and the probability of success for Treatment A was varied from 0.3 to 

0.9 in increments of 0.1. In the second case, there was a small difference between the true 

probability of success for Treatment B and that for Treatment C (0.4 and 0.3 respectively) 

with B being superior to C and the probability of success for Treatment A was varied from 

0.5 to 0.9 in increments of 0.1. In the third case, there was a larger difference between the 

true probability of success for Treatment B and that for Treatment C (0.5 and 0.3 

respectively) with B still being superior to C and the probability of success for Treatment 

A was varied from 0.6 to 0.9 in increments of 0.1. In the figures which follow, these three 

scenarios are presented left to right.  Results presented are for a three arm study with a 

binary outcome and a moderate sample size of 65 patients with 15 of those being equally 

randomized to provide adequate initial estimates of �̂F and 50 being adaptively 

randomized. Results involving the prognostic scoring method assume a standard normal 

distribution of prognostic scores. Results involving stratification assume a single equally 

distributed binary prognostic covariate. This can be thought of as equivalent to 

dichotomizing the prognostic score variable and stratifying based on prognostic score [18]. 

All simulation studies were conducted with 1,000 repetitions using R software. 

 

All four designs, Stratified GDL Urn model, GDL Urn model with prognostic scoring, 

Stratified Ridit, and Ridit with prognostic scoring, significantly outperformed equal 

randomization in terms of lowering the proportion of total treatment failures (see Figure 

1). 
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Figure 1: Comparison of proportions of total treatment failures for equal randomization 

versus Ridit and GDL Urn with prognostic scoring (top row) and stratification (bottom 

row). 

 

There was also little or no increase in the proportion of total treatment failures observed as 

a result of incorporating a covariate-balancing component compared to response-adaptive 

randomization alone regardless of whether the baseline covariates chosen to be balanced 

were predictive of the outcome (see Figure 2.) 

 

 

 
Figure 2: Comparison of proportions of total treatment failures for GDL Urn (top row) 

and Ridit (bottom row) response-adaptive randomization alone versus response-adaptive 

randomization with prognostic scoring 
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In terms of proportion of subjects assigned to the best treatment, when prognostic scoring 

was used as the method of covariate balancing, the Ridit method performed as well or better 

than the GDL Urn model when the probability of treatment success for the best treatment 

was below 0.7; however, at higher values of probability of treatment success for the best 

treatment the GDL Urn model dominated; however when stratification was used there was 

no advantage to the GDL urn model until the probability of treatment success for the best 

treatment reached 0.9 (see Figure 3).  

 

 

 
Figure 3: Comparison of proportions of subjects assigned to the treatment with the highest 

true probability of success for Ridit versus GDL Urn with Prognostic Scoring (top row) 

and Stratification (bottom row) 

 

It is important to note that due to the way the composition of balls (and; therefore, the 

probability of assignment to each treatment arm) in the urn model is updated there is a 

built-in delay between ascertainment of the outcome for a patient and the incorporation of 

that information into the assignment of new subjects entering the trial. This has the 

important implications that the GDL urn model would be expected to perform less well 

compared to the Ridit method as the rate of subject recruitment or the delay in obtaining 

patient outcomes increases. Although, in general, the benefit of any response-adaptive 

randomization strategy will be reduced if relatively few patient outcomes will become 

available before the conclusion of recruitment, this effect may be compounded for the GDL 

Urn model. This intuition was found to be correct. When there was a significant delay in 

knowledge of patient outcomes (results shown are for a delay of 25 patients), the advantage 

to the GDL Urn model at high values of probability of treatment success for the best 

treatment observed with prognostic scoring was reduced in magnitude and the Ridit method 

more consistently outperformed the GDL Urn at values below 0.7 (see Figure 4). 
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Figure 4: Comparison of proportions of subjects assigned to the treatment with the highest 

true probability of success for Ridit versus GDL Urn with prognostic scoring with a delay 

of 25 subjects between randomization and knowledge of subject outcome 

 

When simple stratification was used as the method of covariate-balancing, the Ridit method 

outperformed the GDL Urn method in terms of achieving better covariate balance while 

covariate-balancing via prognostic scoring favored the GDL Urn method over the Ridit in 

terms of covariate balance (see Figure 5). 

 

 

 
Figure 5: Comparison of average KS statistic (a measure of baseline covariate imbalance) 

for Ridit versus GDL Urn with prognostic scoring (top row) and stratification (bottom row) 

 

4. Discussion 
 

It was found that, on average, all four designs, Stratified GDL Urn model, GDL Urn model 

with prognostic scoring, Stratified Ridit, and Ridit with prognostic scoring, significantly 

outperformed equal randomization in terms of lowering the proportion of total treatment 

failures. In addition, there was little or no increase in the proportion of total treatment 

failures as a result of incorporating a covariate-balancing component compared to 

response-adaptive randomization alone regardless of whether the baseline covariates 

chosen to be balanced were predictive of the outcome while achieving significant 

improvement in covariate balance. The choice of the Ridit or GDL Urn model as the better 
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method of response-adaptive randomization was found to depend on the choice of 

covariate-balancing method, the true probability of success for the most successful 

treatment, and the delay between patient randomization and knowledge of the treatment 

outcome. Prognostic scoring, true probability of success for the most successful treatment 

above 0.6, and short delays favored the GDL Urn. Stratification, true probability of success 

for the most successful treatment at or below 0.6, and long delays favored the Ridit method 

(see Table 1). 

 

Table 1: Factors Influencing Choice of Ridit or GDL Urn for Response-Adaptive Design 

 

 True Probability of 

Success for Most 

Successful 

Treatment 

Covariate 

Balancing Method 

Delay in 

Availability of 

Treatment 

Outcomes1 

Favors GDL Urn >0.6 Prognostic Scoring ≤1/5 

Favors Ridit ≤0.6 Stratification >1/5 
1 Defined as the faction of the total number of patients in the trial whose outcome is still unknown when the last patient is randomized 

 

Because, in reality, only one study can be performed, the variability in, as well as the 

average values of, the three performance criteria (proportion of total subjects assigned to 

the best treatment, the proportion of treatment failures, and the covariate imbalance 

between treatment arms) is of interest. When stratification was used as the method of 

covariate balancing, the GDL Urn showered lower variability than the Ridit method; 

however, when prognostic scoring was used, the Ridit method showed lower variability for 

all three measures when the true success probability of the best treatment was 0.7 or higher 

and the GDL Urn showed lower variability when the true success probability for the best 

treatment was lower (see Table S1 in the supplemental materials).  Differences between 

the two methods of response-adaptive randomization can be attributed to the inherent 

differences in the algorithms by which Uk and Rk values are calculated. Of particular note 

is the fact that Uk updates at random intervals in response to the drawing immigration balls 

while Rk is consistently updated after each patient outcome is observed. 

 

Ideal values for the parameters n0 and  4 were also investigated. Values of 3 or 5 were 

considered for n0 (see Table S2 in the supplemental materials.). Although, in most cases, 

estimates of the true treatment success probabilities were found to be stable with only 3 

patients equally randomized to each treatment arm, we have chosen and generally 

recommend the more conservative value of 5. If limiting sample size is a major concern 

and delays in outcome availability are expected to be short, such as in an emergency 

medicine setting [19], 3 will be adequate (see Table S2 in the supplemental materials). For 

the prognostic scoring parameter, 4, values considered were 1/2 and 2/3 with 2/3 being 

selected as optimal because it yielded a significant improvement in covariate balance with 

only minor losses in terms of proportion of patients assigned to the best treatment and 

proportion of total treatment failures compared to 1/2 (see Table S3 in the supplemental 

materials). If covariate-balance is of only secondary concern 1/2 is the superior choice. An 

example for which this might be the case is that of a study with a larger total number of 

subjects than that considered here, as covariate imbalance decreases with increasing sample 

size even for a response-adaptive design with no covariate-balancing component [12]. 

 

In conclusion, a response-adaptive covariate-balanced randomization provides a 

significant gain in ethicality over an equal randomization and also a significant gain in 
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efficiency over a response-adaptive only randomization while sacrificing little in terms of 

ethicality compared to the response-adaptive only randomization. 
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Supplemental Materials  
 

Table S1: Standard deviations of operating characteristics (i-iii) for Ridit versus GDL Urn 

(i) S.D. of Proportion of Subjects Assigned to Treatment A 

(ii) S.D. of Proportion of Total Treatment Failures 

(iii) S.D. of Measure of Prognostic Score Imbalance Between Arms  

 

(pA, pB, pC)  GDL Urn 

With 

Prognostic 

Scoring 

n0=5 

Ridit 

With 

Prognostic 

Scoring 

n0=5 

GDL Urn 

With 

Stratification 

n0=5 

Ridit 

With 

Stratification 

n0=5 

(0.3, 0.3, 0.3) (i) 0.0497 0.0720 0.0409 0.0703 

(ii) 0.0546 0.0565 0.0573 0.0580 

(iii) 0.0274 0.0309 0.0491 0.0425 

(0.4, 0.3, 0.3) (i) 0.0588 0.0761 0.0472 0.0756 

(ii) 0.0584 0.0605 0.0575 0.0593 

(iii) 0.0254 0.0302 0.0527 0.0450 

(0.5, 0.3, 0.3) (i) 0.0629 0.0775 0.0525 0.0754 

(ii) 0.0603 0.0643 0.0606 0.0628 

(iii) 0.0266 0.0316 0.0579 0.0464 

(0.6, 0.3, 0.3) (i) 0.0754 0.0785 0.0591 0.0813 

(ii) 0.0676 0.0628 0.0635 0.0661 

(iii) 0.0283 0.0311 0.0597 0.0512 

(0.7, 0.3, 0.3) (i) 0.0835 0.0780 0.0652 0.0790 

(ii) 0.0710 0.0642 0.0669 0.0646 

(iii) 0.0287 0.0324 0.0618 0.0578 

(0.8, 0.3, 0.3) (i) 0.0893 0.0788 0.0656 0.0780 

(ii) 0.0777 0.0621 0.0683 0.0628 

(iii) 0.0341 0.0353 0.0651 0.0586 

(0.9, 0.3, 0.3) (i) 0.0896 0.0791 0.0637 0.0750 

(ii) 0.0764 0.0599 0.0648 0.0570 

(iii) 0.0478 0.0401 0.0667 0.0656 

(0.5, 0.4, 0.3) (i) 0.0654 0.0745 0.0519 0.0778 

(ii) 0.0613 0.0595 0.0647 0.0615 

(iii) 0.0247 0.0307 0.0567 0.0451 

(0.6, 0.4, 0.3) (i) 0.0750 0.0774 0.0592 0.0795 

(ii) 0.0648 0.0629 0.0628 0.0641 

(iii) 0.0258 0.0313 0.0619 0.0488 

(0.7, 0.4, 0.3) (i) 0.0852 0.0796 0.0657 0.0777 

(ii) 0.0710 0.0631 0.0635 0.0601 

(iii) 0.0274 0.0310 0.0646 0.0539 

(0.8, 0.4, 0.3) (i) 0.0928 0.0760 0.0721 0.0791 

(ii) 0.0742 0.0620 0.0660 0.0626 

(iii) 0.0378 0.0340 0.0683 0.0602 

(0.9, 0.4, 0.3) (i) 0.0947 0.0766 0.0679 0.0728 

(ii) 0.0764 0.0550 0.0613 0.0544 

(iii) 0.0451 0.0380 0.0698 0.0658 

(0.6, 0.5, 0.3) (i) 0.0780 0.0762 0.0577 0.0784 
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(ii) 0.0643 0.0623 0.0607 0.0652 

(iii) 0.0271 0.0306 0.0642 0.0527 

(0.7, 0.5, 0.3) (i) 0.0896 0.0803 0.0698 0.0794 

(ii) 0.0670 0.0619 0.0644 0.0652 

(iii) 0.0283 0.0323 0.0693 0.0545 

(0.8, 0.5, 0.3) (i) 0.0977 0.0753 0.0753 0.0772 

(ii) 0.0726 0.0630 0.0630 0.0613 

(iii) 0.0298 0.0337 0.0700 0.0606 

(0.9, 0.5, 0.3) (i) 0.0964 0.0790 0.0723 0.0764 

(ii) 0.0707 0.0540 0.0625 0.0559 

(iii) 0.0423 0.0400 0.0710 0.0674 

 

Table S2: Averages of operating characteristics (i-iii) for Ridit versus GDL Urn with 

increasing delay in knowledge of subject outcomes (delay is measure in terms of number 

of subjects who will be randomized between when a given subject is randomized and  when 

that subject’s treatment outcome is known) 

(i)     Proportion of Subjects Assigned to Treatment A 

(ii)    Proportion of Total Treatment Failures 

(iii)   Measure of Prognostic Score Imbalance Between Arms  

(pA, pB, 

pC) 

 GDL 

Urn 

n0=3 

Delay=0 

Ridit 

n0=5 

Delay=0 

GDL Urn 

n0=3 

Delay=10 

Ridit 

n0=5 

Delay=1

0 

GDL Urn 

n0=3 

Delay=25 

Ridit 

n0=5 

Delay=25 

(0.3, 0.3, 

0.3) 

(i) 0.3306 0.3356 0.3316 0.3373 0.3326 0.3304 

(ii) 0.6999 0.6973 0.7001 0.7031 0.6999 0.7015 

(iii) 0.2626 0.2520 0.2675 0.2500 0.2742 0.2533 

(0.4, 0.3, 

0.3) 

(i) 0.3799 0.3752 0.3774 0.3709 0.3758 0.3717 

(ii) 0.6606 0.6646 0.6642 0.6649 0.6614 0.6624 

(iii) 0.2665 0.2531 0.2685 0.2520 0.2701 0.2544 

(0.5, 0.3, 

0.3) 

(i) 0.4192 0.4131 0.4163 0.4135 0.4093 0.4069 

(ii) 0.6145 0.6167 0.6180 0.6175 0.6177 0.6160 

(iii) 0.2706 0.2568 0.2717 0.2568 0.2754 0.2571 

(0.6, 0.3, 

0.3) 

(i) 0.4605 0.4587 0.4625 0.4549 0.4571 0.4488 

(ii) 0.5640 0.5618 0.5617 0.5627 0.5624 0.5666 

(iii) 0.2742 0.2628 0.2760 0.2611 0.2787 0.2620 

(0.7, 0.3, 

0.3) 

(i) 0.5122 0.4920 0.5016 0.4936 0.4965 0.4890 

(ii) 0.4954 0.4996 0.5028 0.5014 0.5002 0.5025 

(iii) 0.2889 0.2674 0.2873 0.2685 0.2891 0.2641 

(0.8, 0.3, 

0.3) 

(i) 0.5551 0.5375 0.5479 0.5357 0.5306 0.5275 

(ii) 0.4239 0.4306 0.4272 0.4332 0.4352 0.4376 

(iii) 0.2963 0.2762 0.2923 0.2786 0.2944 0.2760 

(0.9, 0.3, 

0.3) 

(i) 0.5976 0.5798 0.5955 0.5738 0.5769 0.5654 

(ii) 0.3446 0.3514 0.3412 0.3540 0.3524 0.3610 

(iii) 0.3104 0.2876 0.3099 0.2871 0.3096 0.2883 

(0.5, 0.4, 

0.3) 

(i) 0.3976 0.3946 0.3908 0.3905 0.3863 0.3881 

(ii) 0.5881 0.5880 0.5901 0.5896 0.5865 0.5891 

(iii) 0.2698 0.2561 0.2722 0.2544 0.2754 0.2586 

(0.6, 0.4, 

0.3) 

(i) 0.4409 0.4276 0.4408 0.4245 0.4297 0.4266 

(ii) 0.5346 0.5391 0.5411 0.5425 0.5425 0.5377 
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(iii) 0.2726 0.2570 0.2758 0.2594 0.2778 0.2595 

(0.7, 0.4, 

0.3) 

(i) 0.4816 0.4730 0.4793 0.4685 0.4743 0.4624 

(ii) 0.4760 0.4824 0.4799 0.4837 0.4864 0.4885 

(iii) 0.2782 0.2643 0.2816 0.2650 0.2812 0.2654 

(0.8, 0.4, 

0.3) 

(i) 0.5314 0.5140 0.5218 0.5098 0.5100 0.5055 

(ii) 0.4068 0.4163 0.4161 0.4204 0.4200 0.4210 

(iii) 0.2945 0.2722 0.2921 0.2730 0.2893 0.2697 

(0.9, 0.4, 

0.3) 

(i) 0.5756 0.5537 0.5661 0.5517 0.5529 0.5380 

(ii) 0.3309 0.3438 0.3366 0.3472 0.3440 0.3521 

(iii) 0.3025 0.2799 0.3066 0.2822 0.3028 0.2808 

(0.6, 0.5, 

0.3) 

(i) 0.4227 0.4073 0.4096 0.4066 0.4083 0.4021 

(ii) 0.5045 0.5095 0.5074 0.5092 0.5062 0.5132 

(iii) 0.2714 0.2592 0.2725 0.2554 0.2760 0.2581 

(0.7, 0.5, 

0.3) 

(i) 0.4557 0.4470 0.4592 0.4473 0.4529 0.4401 

(ii) 0.4529 0.4559 0.4521 0.4608 0.4530 0.4564 

(iii) 0.2774 0.2654 0.2796 0.2656 0.2856 0.2610 

(0.8, 0.5, 

0.3) 

(i) 0.5050 0.4843 0.5022 0.4862 0.4865 0.4780 

(ii) 0.3880 0.3970 0.3917 0.3971 0.3964 0.3994 

(iii) 0.2931 0.2683 0.2891 0.2687 0.2932 0.2718 

(0.9, 0.5, 

0.3) 

(i) 0.5418 0.5276 0.5344 0.5270 0.5256 0.5129 

(ii) 0.3198 0.3322 0.3235 0.3315 0.3298 0.3351 

(iii) 0.2970 0.2808 0.3021 0.2789 0.2968 0.2801 

 

Table S3: Averages of operating characteristics (i-iii) for different values of 4  

(i) Proportion of Total Treatment Failures 

(ii) Measure of Prognostic Score Imbalance Between Arms  

(pA, pB, pC)  GDL Urn 

n0=5 4 =2/3 

GDL Urn 

n0=5 4 =1/2 

(0.3, 0.3, 0.3) (i) 0.3301 0.3347 

(ii) 0.6991 0.6964 

(iii) 0.1513 0.1809 

(0.4, 0.3, 0.3) (i) 0.3537 0.3628 

(ii) 0.6618 0.6649 

(iii) 0.1499 0.1811 

(0.5, 0.3, 0.3) (i) 0.3834 0.3935 

(ii) 0.6276 0.6183 

(iii) 0.1511 0.1813 

(0.6, 0.3, 0.3) (i) 0.4234 0.4293 

(ii) 0.5739 0.5722 

(iii) 0.1526 0.1851 

(0.7, 0.3, 0.3) (i) 0.4740 0.4825 

(ii) 0.5099 0.5051 

(iii) 0.1557 0.1904 

(0.8, 0.3, 0.3) (i) 0.5354 0.5478 

(ii) 0.4331 0.4250 

(iii) 0.1632 0.1991 

(0.9, 0.3, 0.3) (i) 0.6278 0.6386 

(ii) 0.3233 0.3164 
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(iii) 0.1867 0.2215 

(0.5, 0.4, 0.3) (i) 0.3712 0.3764 

(ii) 0.5944 0.5919 

(iii) 0.1494 0.1800 

(0.6, 0.4, 0.3) (i) 0.4128 0.4172 

(ii) 0.5451 0.5435 

(iii) 0.1505 0.1840 

(0.7, 0.4, 0.3) (i) 0.4562 0.4675 

(ii) 0.4885 0.4843 

(iii) 0.1540 0.1869 

(0.8, 0.4, 0.3) (i) 0.5203 0.5373 

(ii) 0.4146 0.4061 

(iii) 0.1612 0.1976 

(0.9, 0.4, 0.3) (i) 0.6112 0.6276 

(ii) 0.3132 0.3030 

(iii) 0.1799 0.2200 

(0.6, 0.5, 0.3) (i) 0.3984 0.3973 

(ii) 0.5180 0.5124 

(iii) 0.1523 0.1841 

(0.7, 0.5, 0.3) (i) 0.4434 0.4511 

(ii) 0.4597 0.4595 

(iii) 0.1548 0.1871 

(0.8, 0.5, 0.3) (i) 0.5060 0.5123 

(ii) 0.3920 0.3888 

(iii) 0.1617 0.1942 

(0.9, 0.5, 0.3) (i) 0.5927 0.6040 

(ii) 0.2995 0.2931 

(iii) 0.1811 0.2172 
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