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Abstract 
Specific applications of statistical methods for joint analyses of longitudinal and time-to-
event information in the context of studies on aging can benefit from incorporation of 
knowledge and theories about mechanisms and regularities of aging-related changes into 
respective analytic approaches. A conceptual analytic framework for these purposes, the 
stochastic process model of aging (SPM), has been recently developed in the 
biodemographic literature. Here we present two modifications of such models: the latent 
class SPM (LCSPM) and the genetic SPM (GenSPM). The LCSPM allows applications 
to populations consisting of latent subpopulations with distinct patterns of longitudinal 
trajectories of biomarkers that can also have different effects on the time-to-event 
outcome in each subpopulation. The GenSPM aims at applications analyzing genetic 
effects on the longitudinal trajectories and time-to-event outcomes taking into account 
observed characteristics affecting the probability of the presence of an allele/genotype in 
the genome of an individual. This case assumes that genetic information is available for a 
sub-sample of participants of the longitudinal study or for the entire sample. The 
GenSPM allows joint analyses of information from genotyped and non-genotyped 
subsamples which results in an increase in the power compared to analyses of the 
genotyped subsample alone. We present simulation studies and discuss practical 
applications of these approaches. 
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1. Introduction 

 
An important point to consider in applications to research on aging is how to incorporate 
knowledge and theories about mechanisms and regularities of aging-related changes that 
accumulate in the research field into respective analytic approaches. In the absence of 
specific observations of longitudinal dynamics of relevant biomarkers manifesting such 
mechanisms and regularities (which is a typical situation in a contemporary longitudinal 
studies), traditional approaches may have a rather limited utility to estimate respective 
parameters that can be meaningfully interpreted from the biological point of view. A 
conceptual analytic framework that incorporates available knowledge about mechanisms 
of aging-related changes which may be hidden in the individual longitudinal trajectories 
of physiological variables and that allows for analyzing their indirect impact on the risks 
of diseases and death has been recently developed in the biodemographic literature. This 
approach, the stochastic process model (SPM), has its roots in the random walk model by 
Woodbury and Manton (1977). The SPM by Yashin et al. (2007a) incorporates 
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substantive knowledge about different aging-related concepts (such as the notions of 
physiological norm, allostatic adaptation, measures of stress resistance, and adaptive 
capacity) and it has been extended in various ways and applied in different contexts; see, 
e.g., the review paper Yashin et al. (2012). The advantage of the SPM is that it provides 
an approach to work with such “hidden components of aging” indirectly and to estimate 
parameters relevant to research on aging. In this paper, we focus on two aspects of 
developments in the SPM framework. The first deals with incorporation of latent classes 
in the SPM (the latent class SPM, LCSPM). The second deals with extensions to analyze 
genetic data (or, more broadly, any variable with missing observations for a sub-sample 
of participants of the longitudinal study) in the context of SPM (the genetic SPM, 
GenSPM). 
 
The original SPM (Yashin et al. 2007a) assumes that all components of the model have 
similar patterns in all individuals in a population. However, a population may consist of 
latent subpopulations with distinct patterns of longitudinal trajectories with different 
effects on the time-to-event outcome in each such subpopulation. The presence of such 
heterogeneity is a realistic scenario which cannot be simply ignored in statistical analyses 
of longitudinal data. One example could be that carriers of some alleles or genotypes can 
have distinct patterns of aging-related characteristics. If the corresponding genetic marker 
is not available in the data, then evaluation of the true characteristics from the data can be 
performed indirectly in the model that incorporates such hidden heterogeneity. The 
extension of the SPM (Yashin et al. 2007a) to accommodate such hidden heterogeneity 
was suggested in Yashin et al. (2008). In this paper, we present a modified version of this 
model, LCSPM, which includes dependence of the probability of the latent class 
membership and other components of the model on observed covariates. We formulate 
the discrete-time specification of the model. Continuous-time version is presented 
elsewhere, see, e.g., Arbeev et al. (2014). 
 
The LCSPM is designed for applications where the variable defining the latent structure 
is completely unobserved. In the particular case of genetic markers, it may happen that 
respective information is actually available for at least a sub-sample of participants of a 
longitudinal study because many longitudinal studies collecting data on biomarkers 
started including genetic information as well. In this case, such genetic informatio can be 
used and one can apply traditional SPM treating the genetic covariate as any other 
covariate included in the model. Follow-up data on mortality and longitudinal 
measurement of biomarkers for non-genotyped individuals provide an additional source 
of information which can be used in analyses. The group of non-genotyped individuals is 
a mixture of carriers/non-carriers of the same alleles/genotypes collected in the genetic 
data and a similar effect of the alleles/genotypes on the mortality rate and the age 
trajectory of biomarkers can be assumed in both genotyped and non-genotyped parts of 
the entire sample. An approach for joint analysis of longitudinal and time-to-event 
outcomes for genotyped and non-genotyped participants of longitudinal studies has been 
presented recently within the SPM framework (see Arbeev et al. 2009; Arbeev et al. 
2012). As the original SPM, this modification (the GenSPM) is especially relevant in the 
context of research on aging as it incorporates several essential mechanisms of aging-
related changes in organisms and it allows for evaluating genetic effects on such 
characteristics and their influence on mortality or onset of a disease. In this paper, we 
formulate the discrete-time specification of the model modified to include the 
dependence of the probability of having an allele/genotype in the genome of an 
individual and other components of the model on observed covariates. Continuous-time 
version is presented elsewhere, see, e.g., Arbeev et al. (2014). We also describe 
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simulation studies which illustrate the increase in power of joint analyses of genotyped 
and non-genotyped participants in a longitudinal study compared to analyses of 
genotyped participants alone.  
 

2. The Latent Class Stochastic Process Model 

 

2.1 Specification of the Model 

We present a one-dimensional specification of the model here. The situation when 
several longitudinal variables need to be analyzed jointly can be accommodated as well 
(Yashin et al. 2008).  
 
Consider a population of N independent individuals at the baseline that can belong to a 
finite number K of latent subpopulations or latent classes. One specific example of such 
subpopulations could be carriers of some alleles or genotypes at some gene or single 
nucleotide polymorphism (SNP) when the corresponding genetic information is not 
collected in the data. Denote by Zi a random variable identifying the latent class 
membership for ith individual, that is, Zi = k if the individual belongs to the class k = 
1…K. We can specify the probabilities of the latent class membership conditional on 
observed covariates. Following a common practice in the joint latent class models (Lin et 
al. 2002; Proust-Lima et al. 2009; Proust-Lima et al. 2014; Proust-Lima and Taylor 
2009), we represent this probability using a multinomial logistic regression: 
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Here 
k0  and  

k1  are the intercept and the column vector of class-specific regression 

parameters, respectively, for the latent class k, and 0
iX  is the corresponding (column) 

vector of time-independent covariates for ith individual (“T” denotes transposition).  
 
The longitudinal sub-model in the LCSPM specifies the latent-class specific dynamics of 
a longitudinal variable measured in individual i, i = 1…N, at age  i

jt , j = 1… in , i
jt

Y  

(omitting its dependence on k for brevity of notations), similar to Yashin et al. (2007b):  
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assumed fixed). Here )1,0(~ Ni
jt

  and X  is a vector of possibly time-dependent 

covariates (which may include some variables from 0X ).  
 
Equation (3) has some properties useful in applications to research on aging for 
modelling relevant biological mechanisms (see more discussion on this topic in Arbeev et 
al. (2014)). Interpretation of )(1 f  and )(a  in terms of aging-related mechanisms 
(allostatic trajectory and adaptive capacity) is discussed in Yashin et al. (2007a; 2012) 
and Arbeev et al. (2011). 
 
The time-to-event sub-model specifies the latent class-specific probability of death in the 
time interval conditional on observations of i

jt
Y and i

jt
X  and survival until the beginning 

of the interval: 
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The interpretation of )(0  , )(0 f , and )(Q  in applications to research on aging 
(baseline hazard, “physiological norm,” and the quadratic term associated with stress 
resistance) are discussed in Yashin et al. (2007a; 2012) and Arbeev et al. (2011). Note 
that (5) assumes a symmetric U-shape (as a function of Y) so that the same deviation of Y 
from f0 to the smaller or to the larger values causes the same increase in 
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one may expect that this relationship could be non-symmetric. In this case (5) can be 
generalized as  
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where I(.) is the indicator function. 
 
2.2 Likelihood Function 

Let i  be age at death or censoring for ith individual and 1i   if this individual died at 

age i  and 0i   if he/she is censored at that age. Note that in real data applications it is 
possible that follow-up information on some individuals is not available after the age at 
last observation i

ni
t  in which case one can assume 25.365/1 i

ni i
t  (if the unit of 
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measurement for age is years) to accommodate the last observation in the likelihood 
function. 
 
Let us first introduce expressions used in the formula of the likelihood function: 
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Consider the conditional probability  
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2.3 Simulations 

We performed a simulation study to illustrate the situation when the latent structure in the 
data is taken into account and the situation when such latent structure is ignored in the 
estimation procedure. We simulated 100 datasets (5,000 individuals in each) using data 
structure resembling the Framingham Heart Study data (Dawber et al. 1951) and chose 
parameters producing realistic mortality rates. We used linear functions of age for 

)(ln 0  , )(Q , )(0 f , )(a , and )(1 f  and constant (i.e., age-independent) )(B  and  

)(2
0  . We did not model dependence on observed covariates in these parameters for 

simplicity. The probabilities of the latent class membership are assumed to be a function 
of two covariates: a binary (with probability of each outcome 0.5) and a continuous one 
assumed to have a standard normal distribution.  
 
Figure 1 (left column) displays estimated trajectories of different components of the 
model in two latent classes for 100 simulated datasets. The results show that the model 
correctly separates all model components for two latent classes. Figure 1 (right column) 
shows estimated components in the model that ignores the latent structure. Although in 
some cases the estimates in the latter model have noticeably smaller standard deviations 
(because in this case the entire sample is used to estimate them), the estimates themselves 
do not correspond to the true trajectories in the latent classes. This is a simplified “toy” 
example and in the reality the situation can be much more complicated and the latent 
classes can have diverse dynamics of the longitudinal process and its relation to the time-
to-event outcome. Therefore, making conclusions based on the “entire sample” or 
“population” estimates can be risky. 
 

Figure 1 about here 
 

3. The Genetic Stochastic Process Model 
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3.1 Specification of the Model 

We present a one-dimensional specification of the model here. The situation when 
several longitudinal variables need to be analyzed jointly can be accommodated as well 
(Arbeev et al. 2009).  
 
Consider a study with N independent individuals at the baseline and let 

nonggen NNN  , where genN  and nongN  are the numbers of genotyped and non-
genotyped individuals in the sample, respectively. Denote by Zi a random variable 
identifying the presence of allele or genotype k in the genome of ith individual, k = 1…K 
(for example, it may be a binary variable coding the presence/absence of minor allele at 
some locus, or it may variable representing minor allele homozygote, heterozygote and 
major allele homozygote). For the genotyped individuals, information on a genetic 
marker is available (i.e., the value k is known) but for the non-genotyped individuals this 
value is unknown (still, the longitudinal and time-to-event information is available for 
them).  
 
We can specify the probabilities of having allele or genotype k conditional on some 
observed (time-independent) covariates as in (1), (2). The longitudinal sub-model in the 
GenSPM specifies the allele- or genotype-specific dynamics of a longitudinal variable 
measured in individual i at age  i

jt , j = 1… in , i
jt

Y  as in (3). The time-to-event sub-model 

specifies the allele or genotype-specific probability of death in the time interval 
conditional on observations of i

jt
Y and i

jt
X  and survival until the beginning of the 

interval as in (4), (5) (or (4), (6)). 
  
Note that here we use exactly the same expressions (1)-(6) as in the LCSPM. 
Nevertheless, construction of the likelihood function is different because in the LCSPM 
the latent classes are not known for any individual whereas in the GenSPM the genetic 
data (i.e., the values k) are assumed to be collected for at least a sub-sample of 
participants of the longitudinal study.  
 
3.2 Likelihood Function 

The likelihood for the genotyped individuals is 
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The likelihood for the non-genotyped individuals is 
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where the respective expressions are given by (1), (2), and (20) – (23). 
 
The total likelihood for the genotyped and non-genotyped individuals is  

nonggenLLL          (25) 

with respective components given by (19) and (24). 
 
Importantly, the likelihood function contains the same parameters for the genotyped and 
non-genotyped sub-samples. Therefore, the joint analysis of available information for the 
non-genotyped participants (such as the longitudinal measurements and time-to-event 
data) along with that for the genotyped sub-sample provides an opportunity for improving 
power compared to analyses based on the genotyped individuals alone. The advantage of 
the genetic SPM in applications to research on aging is that it has different components 
representing specific biological concepts and aging-related mechanisms for which the 
respective parameters have clear biological interpretations. This allows for testing 
different hypotheses on the presence of genetic effect of the alleles/genotypes on 
respective aging-related characteristics (such as stress resistance, adaptive capacity, age-
dependent physiological norms, etc.) which is not possible in the traditional analyses. 
 
3.3 Simulations 

We performed a simulation study to illustrate the increase in the accuracy and power in 
joint analyses of genotyped and non-genotyped individuals compared to analyses of 
genotyped individuals alone. We simulated 100 datasets (2,500 individuals in each) using 
data structure resembling the Framingham Heart Study data (Dawber et al. 1951) and 
chose parameters producing realistic mortality rates. We assumed that 25% of the sample 
is genotyped and these individuals have information on some genetic marker 
(carriers/non-carriers of some allele/genotype; the proportion of carriers at birth, p1, is 
supposed to be 0.25). For the rest of the sample, information on the genetic marker is not 
available for the estimation procedure but information on the longitudinal variable and 
follow-up is available for the entire sample. We used linear functions of age for )(ln 0  , 

)(Q , )(0 f , )(a , and )(1 f  and constant (i.e., age-independent) )(B  and  )(2
0  . We 

performed several studies using different specifications of the model’s components aimed 
at testing various null hypotheses on the equality of the components in carriers and non-
carriers of some allele/genotype. For simplicity, we did not model dependence on 
observed covariates in all components except for )(0   in one study. Table 1 summarizes 
parameters used in the studies.  
 
In each study, we estimated parameters in all datasets using two likelihood functions: 1) 
joint likelihood for the genotyped and non-genotyped individuals; 2) likelihood for the 
genotyped sample. As the joint likelihood uses information from non-genotyped 
individuals (follow-up data and longitudinal measurements), the resulting estimates of 
parameters are more accurate than in the case of analysis of the genotyped sample alone. 
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In Study 1, the standard deviations of respective parameters (see highlighted in Table 1) 
computed from the estimates in 100 simulated datasets using the “joint” likelihood are 
about 2.2 – 3.4 times smaller than those from the “genotyped-only” version (denote this 
ratio JG dsds ../.. ). Respectively, the power (for 05.0  and the effect sizes defined 
by the highlighted parameters from corresponding rows in Table 1) differs for the 
“genotyped only” ( Gw ) and the “joint” likelihoods ( Jw ): 34.0Gw  and 81.0Jw . 
Similar results are observed in the other studies: ( JG dsds ../..  ranges 3.1 – 6.9, 

42.0Gw , 95.0Jw  in Study 2; JG dsds ../..  ranges 1.9 – 2.2, 35.0Gw , 
81.0Jw  in Study 3; JG dsds ../..  ranges 1.7 – 2.1, 48.0Gw , 96.0Jw  in Study 

4; JG dsds ../..  ranges 1.4 – 1.8, 73.0Gw , 88.0Jw  in Study 5; and JG dsds ../..  
ranges 1.8 – 2.2, 64.0Gw , 97.0Jw  in Study 6). In some studies (1, 2, and 4) a few 
data sets in the “genotyped-only” version produced estimates at the boundaries set in the 
constrained maximization procedure. This was not observed in any study and any dataset 
when the “joint” likelihood was used.  
 

Table 1 about here 
 

4. Conclusions 

 
We presented two variants of the stochastic process models, the LCSPM and GenSPM. 
Both models can be useful in applications to research on aging as they have components 
that incorporate several aging-related mechanisms and have a clear interpretation relevant 
in the field. The models allow formulating and testing relevant biological hypotheses on 
the presence of these “hidden” components of the process of aging and their impact on 
the risk of death or developing aging-related diseases.  
 
The LCSPM allows one to investigate the effects of unobserved heterogeneity (latent 
structure) that may distort conclusions in joint analyses of longitudinal and time-to-event 
outcomes when such hidden structure is present in the data but ignored in the analyses. 
Thus analyses by the LCSPM can complement the analyses by the original SPM to test 
the hypotheses on the presence of hidden heterogeneity in the data and to appropriately 
adjust the conclusions or analytic approach if such structure is revealed. 
 
The GenSPM can be applied to genetic analyses in the field of research on aging as it 
introduces dependence of major components representing aging-related mechanisms on 
genetic markers. The model can be used to test the hypotheses on the presence of genetic 
effects on different aging-related processed to help determine genetic underpinning of 
longevity and healthy lifespan. The approach also combines data from genotyped and 
non-genotyped individuals. Such joint analyses can increase the power compared to 
analyses based on information from the genotyped subsample alone.   
 
The discrete-time specifications of the model presented here are simplifications of the 
more comprehensive continuous versions (Arbeev et al. 2014). They, however, have 
important practical advantage as the likelihood optimization in these models takes 
considerably less time than in case of the continuous models which require solutions of 
differential equations at each step of the optimization procedure. Therefore, the discrete-
time counterparts can be used at the initial stage of the analyses when, for example, a 
large number of genetic variants (e.g., SNPs) needs to be analyzed. The continuous 
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versions can be then applied at the second stage when the candidate variants are selected 
for more detailed analyses. The discrete-time models are also convenient for use in 
comprehensive sensitivity analyses when a large number of assumptions should be tested. 
Also they can be used to quickly estimate the initial value for the likelihood optimization 
procedure for the continuous model which, especially in the multidimensional case, can 
significantly improve the speed of convergence to the maximum. Thus, the discrete-time 
versions of the LCSPM and the GenSPM provide convenient and practical alternative for 
extensive applications to data analyses. 
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Figures: 

 
Figure 1. Simulation studies in data with latent structure: latent-class trajectories 
estimated by the LCSPM (left column) and “population” trajectories estimated by the 
original SPM (right column) that ignores this latent structure. Thick lines denote true 
trajectories in two latent classes (k = 1, 2). Thin lines denote estimates in 100 simulated 
datasets either in the latent classes (left column) or in the general sample (“NoLC”, right 
column). 
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Tables: 

 

Table 1: Simulation studies of the GenSPM: Parameters used to generate data in different studies (parameters defining the null hypotheses in each 
specific study are highlighted) 

Study k 
Parameters 

ka
0

ln   
kb

0
 k

X  
k

Qa  
k

Qb  k

Ya  
k

Yb  
k

fa
1

 
k

fb
1

 
k

fa
0

 
k

fb
0

 k

0  kB  1p  

1 1 -9.0 0.080  0.5 0.10 -0.25 1.0 45.00 0.20 45.0 0.1 4.0 4.0 0.25 

 2 -8.5 0.082  0.3 0.10 -0.20 1.0 50.00 0.25 40.0 0.1 4.0 4.0  
2 1 -9.0 0.080 -0.04 0.5 0.10 -0.25 1.0 45.00 0.20 45.0 0.1 4.0 4.0 0.25 

 2 -8.5 0.082 -0.04 0.3 0.10 -0.20 1.0 50.00 0.25 40.0 0.1 4.0 4.0  
3 1 -9.0 0.080  0.5 0.10 -0.25 1.0 45.00 0.20 45.0 0.1 4.0 4.0 0.25 

 2 -8.5 0.082  0.5 0.23 -0.20 1.0 50.00 0.25 40.0 0.1 4.0 4.0  
4 1 -9.0 0.080  0.5 0.10 -0.25 1.0 45.00 0.20 45.0 0.1 4.0 4.0 0.25 

 2 -8.5 0.082  0.3 0.10 -0.23 1.0 50.00 0.25 40.0 0.1 4.0 4.0  
5 1 -9.0 0.080  0.5 0.10 -0.25 1.0 45.00 0.20 45.0 0.1 4.0 4.0 0.25 

 2 -8.5 0.082  0.3 0.10 -0.20 1.0 45.75 0.20 40.0 0.1 4.0 4.0  
6 1 -9.0 0.080  0.5 0.10 -0.25 1.0 45.00 0.20 45.0 0.1 4.0 4.0 0.25 

 2 -8.5 0.082  0.3 0.10 -0.20 1.0 50.00 0.25 40.0 0.1 4.0 4.0  
Notes: 

Some parameters are rescaled for better visibility in the table: k

Qa
 
is multiplied by 104; k

Qb  is multiplied by 105; k

Yb  is multiplied by 103; k = 1, 2 

denotes carriers and non-carriers of some allele/genotype, respectively. Specifications of components: 1) XtbaXkt k

X

kk   
00

ln),,(ln 0 , 

(where 0ccX  , c is year of birth (cohort), 0c  = 1890, and X is uniformly distributed over [1890, 1920]) in Study 2, and 

tbaXkt kk

00
ln),,(ln 0    in the other studies; 2) tbaXktQ k

Q

k

Q ),,( ; 3) tbaXktf k

f

k

f 11
),,(1  ; 4) tbaXktf k

f

k

f 00
),,(0  ; 5) 

tbaXkta k

Y

k

Y ),,( , with 0k

Ya  and 0k

Yb ; 6) kBXktB ),,( ; 7) kXkt 00 ),,(   ; 8) p1 is the proportion of carriers (we do not assume 
its dependence on any covariates). 
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