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Abstract 
An alternative approaches for a couple of discrete distributions like Binomial and Multinomial, Poisson, 
etc having more general form of sampling method (more than one outcome in one trial) compared to 
tradition sampling heuristics have been suggested and termed as Generalized Binomial, Generalized 
Multinomial, Generalized Poisson, Generalized Geometric respectively. It is evident that the traditional 
existing distributions are the special cases of the proposed generalized distributions. The basic distributional 
properties of the proposed distributions have also been examined including the limiting form. Real life 
examples are cited for the respective distributions. 
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1. Introduction 
 

The discrete distributions are widely used in the diversified field and among them the distribution like 
Binomial, Multinomial, Poisson and Geometric are the most commonly used discrete distributions. The 
other discrete distributions include uniform or rectangular, hypergeometric, negative binomial, power series 
etc. The truncated and censored forms of the different discrete distributions are used as probability 
distribution in statistics literature and real life. The binomial distribution was first studied in connection 
with the games of pure chance but it is not limited within narrow area, where the Multinomial distribution 
is considered as the generalization of the binomial distribution. The number of mutually exclusive outcomes 
from a single trial are 𝑘 in multinomial distribution compared to two outcomes namely success or failure 
of Binomial distribution. 

 
The usual binomial distribution is the discrete probability distribution of the number of successes 0 to n 

resulted from n independent Bernoulli trails each of which yields success with probability p and failure 
with probability q. One of the important assumptions regarding binomial variate representing the number 
of success is that it can take only values in the sequence of 0,1,2, ⋯ , 𝑛. But in real world, the successes of 
binomial may not occur in the usual way rather it may occur in a different sequence such as (i) 0,2,4, ⋯ ,2𝑛, 
(ii) 2,4, ⋯ ,2𝑛, (iii) 0,3,6 ⋯ ,3𝑛, (iv) 3,6,9, ⋯ ,3𝑛 and so on. 

     
In cases (ii) and (iv), truncated distribution is the better option to find the probability of number of success. 
In truncated distribution, it is assumed that the truncated values of the random variable have certain 
probabilities. If it is considered that there is no existence of the truncated values, the truncated distribution 
cannot provide the probability due to the mathematical cumbersome. In the remaining cases, Binomial and 
truncated Binomial are completely helpless.  
 
In this context, we have suggested an alternative approach of Binomial and Multinomial distribution having 
generalized sequence of the values of the random variables. For convenience the distributions are defined 
as relatively generalized distribution. The number of successes of the proposed distributions is represented 
by the arithmetic progression 𝑎 + 𝑛𝑑, where, 𝑎 is non-negative integer and termed as minimum number of 
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success, 𝑑 is positive integer representing the concentration of success and 𝑛 is a non-negative integer 
indicating the total number of trails.       
 
To justify the sequence with real life situation, let us consider an example of number of defective shoes. It 
is well known that the shoes are produced pair wise. That is, if we make 𝑛 attempts to identify the number 
of defective shoes, then it is usual that the number of defective shoes would occur pair wise. In this context, 
the number success in the form 0,2,4, ⋯ ,2𝑛 is justified. If it is known that the minimum number of defective 
items in 𝑛 attempts are 𝑎, then these occurrences are not chance outcome and may be regarded as constant 
and then we are interested to find the probability of chance outcome taking form 𝑎, 𝑎 + 2, 𝑎 + 4, ⋯ ,2𝑛, 
where 𝑎 > 0 and 𝑛 is non-negative integer. That is, number of defective shoes larger than a. The other 
possible sequences are also justifiable in this way by real life examples.   
 
One may confuse the proposed form of the distribution with the usual truncated distribution. The major 
difference is that in our form the probability exists only for the possible number of success shown in the 
sequence. In the example discussed above, the defective number of shoes take the values 0,2,4, ⋯ ,2𝑛. This 
indicates that there is no existence of the number of defective item(s) of the form 1,3,5, ⋯ and thus no 
probabilities. On the other hand, in truncated distribution, there is existence of the number of success which 
is truncated and also they have the probabilities. 
 
A number of authors published their work under the heading of generalized binomial distribution but they 
were different in terms of the key concept of our present work. Altham (1978) showed two generalizations 
of the binomial distribution when the random variables are identically distributed but not independent and 
assumed to have symmetric joint distribution with no second or higher order “interactions”. Two 
generalizations are obtained depending on whether the “interaction” for discrete variables is 
“multiplicative” or “additive”. The distribution has a new parameter 𝜃 > 0 which controls the shape of the 
distribution and flexible to allow for both over or under-disperse than traditional Binomial distribution. 
Whereas, the beta-binomial distribution allows only for over-disperse distribution than the corresponding 
Binomial distribution (Johnson, Kemp and Kotz 2005). Dwass (1979) have provided a unified approach to 
a family of discrete distributions that includes the hypergeometric, Binomial, and Polya distributions by 
considering the simple sample scheme where after each drawing there is a “replacement” whose magnitude 
is a fixed real number. Paul (1985) derived a new three parameter distribution, a generalization of the 
binomial, the beta-binomial and correlated beta-binomial distribution. Further a modification on beta-
correlated binomial distribution was proposed by Raul (1987). In the generalization of the probability 
distribution, Panaretos and Xekalaki (1986) developed cluster binomial and multinomial model and their 
probability distributions. In his study, Madsen (1993) discussed that in many cases binomial distribution 
fails to apply because of more variability in the data than that can be explained by the distribution. He 
pointed out a characterization of sequences of exchangeable Bernoulli random variables which can be used 
to develop models which is more fluxion than the traditional binomial distribution. His study exhibited 
sufficient conditions which will yield such models and show how existing models can be combined to 
generate further models.  

 
A generalization of the binomial distribution is introduced by Drezner and Farnum (1993) that allow the 
dependence between trials, non-constant probabilities of success from trial to trial and which contains usual 
binomial distribution as special case. A new departure in the generalization was carried out by Fu and 
Sproule (1995) by adopting the assumption that the underlying Bernoulli trials take on the values 𝛼 or 𝛽 
where 𝛼 <  𝛽, rather than the conventional values 0 or 1. This rendered a four parameter binomial 
distribution of the form 𝐵(𝑛, 𝑝, 𝛼, 𝛽). In a recent work, Altham and Hankin (2012) introduced two 
generalizations of multinomial and Binomial distributions which arise from the multiplicative Binomial 
distribution of Altham (1978). The forms of the generalized distributions are of exponential family form 
and termed as “multivariate multinomial distribution” and “multivariate multiplicative binomial 
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distribution”. Like the Altham’s generalized distribution, both the distribution has an additional shape 
parameter 𝜃 which corresponds usual distribution if it takes value 1 and over and under-disperse for greater 
and less than 1 respectively.                      
 
The Poisson and Geometric distributions and their applications in statistical modeling and in many other 
scientific fields are well recognized. The traditional Poisson variate corresponds to the number of 
occurrences of the rare event in a fixed interval of time or space or other intervals and assumed to lie in 
discrete order between 0 to ∞. On the other hand, the usual Geometric variate is used to present the number 
of failure preceding the first success having the same range of the values of Poisson variate. But, in real 
world the event may occur in different fashions. Consider the sampling scheme where the number of 
occurrences possess the sequence such as (i) 0,2,4, ⋯ , ∞, (ii) 2,4, ⋯ , ∞, (iii) 3,6,9, ⋯ , ∞, (iv) 1,4,7, ⋯ , ∞ 
and so on. For instance, consider the total number of births those who born as twins at a particular hospital 
during a specified time interval. Let us define the number of new births as success and thus the number of 
success possess values 0,2,4, ⋯ , ∞. The usual Poisson distribution is completely helpless to deals with this 
particular sequence of number of success along with others mentioned above. Again, consider the example 
of twin births in geometric sense. In the sampling scheme, let us define the event as success if both the 
twins are male and stopped the sampling and number of births as twins in either combination of girl and 
boy or both girls are considered as failure. With these sequences of the values of the random variable, the 
traditional Geometric distribution cannot be applied to find a certain probability of a particular event.                   
 
In order to deal with the problems where traditional distributions are unaided, our study have suggested 
new generalization of the traditional Poisson and Geometric distributions where the random variable for 
each distribution is expressed by an arithmetic progression 𝑎 + 𝑛𝑑, where 𝑎 is an integer representing the 
minimum values of the random variable, 𝑛 is a pre-assigned non-negative integer indicating the number of 
trails and 𝑑 is also a positive integer representing the concentration of the occurrences.  
 
A series of studies have carried out under the heading generalization of Poisson distribution where the key 
concept our work is completely different. Consul and Jain (1973) first suggested generalization of Poisson 
distribution having two parameters 𝜆1 and 𝜆2 which is obtained as a limiting form of the generalized 
negative Binomial distribution. In usual Poisson distribution, the mean and variance are same, while the 
variance of the suggested generalized distribution is greater than, equal to or smaller than the mean 
depending on whether the value of the parameter 𝜆2 is positive, zero or negative. Later Consul (1989) 
studied more extensively the distribution to cover the diversity of the observed number of occurrences for 
various factors. He also mentioned that proving the sum of all of the probabilities to unity is very difficult. 
In this context, Lerner et al. (1997) provide a more direct proof using the analytic functions. Some remarks 
on generalized negative binomial and Poisson distributions were made by Nelson (1975). Paul (1978) 
proposed a generalized compound Poisson model for panel data analysis on consumer purchase. Lin (2004), 
in his study discussed about the generalized Poisson models and their applications in insurance and finance 
sector. On the basis of gamma function and digamma function a new two-parameter count distribution is 
derived by Hagmark (2012). He unveiled that the derived distribution can attain any degree of over/under 
dispersion or zero-inflation/deflation where the usual Poisson model has no dispersion flexibility.      
 

Several authors have worked on generalization of the Geometric distribution which are also differ from the 
concept of our current work. Mishra (1982) proposed generalized geometric series distribution (GGSD) 
and shown that traditional geometric and Jain and Consul’s (1971) generalized negative binomial 
distribution are the special cases of the proposed distribution. A generalized Geometric distribution and its 
properties was introduced and studied by Philippou et al. (1983) from the motivation of the work by 
Philippou and Muwafi (1982). The distribution was defined under the heading of Geometric distribution of 
order k where the distribution turned into the traditional form if order k = 1. Considering the length-biased 
version of the generalized log-series distributions by Kempton (1975) and Tripathi and Gupta (1985), 
Tripathi et al. (1987) derived two version of two parameter generalized Geometric distribution. Another 
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generalization of the Geometric distribution having two parameters was obtained by Gomez-Deniz (2010) 
obtained. He showed the generalization can be obtained either by using Marshal and Olkin (1997) scheme 
and adding a parameter to the Geometric distribution or from generalized exponential distribution presented 
in the same paper by Marshal and Olkin (1997). Nassar and Nada (2013) discovered a five parameter new 
generalization of the Pareto-geometric distribution by compounding Pareto and Geometric distribution and 
generalized it by logit of the beta random variable.       
 
2.1 New Approach of Binomial Distribution 
In the traditional Binomial sampling each time we draw a sample having either a success or a failure, we 
continue this method up to n trials and we may have number of successes starting from 0 and may ended 
up to n, but in real world, the success of Binomial distribution may not occur in the usual sequences rather 
it may happened as  

i) 0,2,4, ⋯ ,2𝑛 
ii) 2,4, ⋯ ,2𝑛 
iii) 0,3,6 ⋯ ,3𝑛 
iv) 3,6,9, ⋯ ,3𝑛  

and so on. 
 
These indicate that the number of success may follow an arithmetic progression 𝑎 + 𝑛𝑑, where, 𝑎 is a non-
negative integer representing the minimum number of success, 𝑑 is a positive integer representing the 
concentration of success occurring and 𝑛 is a non-negative integer indicating  the total number of trails.       

 

Definition 2.1.1: A random variable X is said to have a relatively general binomial distribution if it has the 
following probability mass function 

𝑃(𝑥; 𝑎, 𝑛, 𝑑, 𝑝) =
(

𝑎 + 𝑛𝑑
𝑥

) 𝑝𝑥𝑞𝑎+𝑛𝑑−𝑥

∑ (
𝑎 + 𝑛𝑑

𝑥
) 𝑝𝑥𝑞𝑎+𝑛𝑑−𝑥𝑎+𝑛𝑑

𝑥=𝑎

;  𝑥 = 𝑎, 𝑎 + 𝑑, 𝑎 + 2𝑑, ⋯ , 𝑎 + 𝑛𝑑   

=
1

𝑘
(

𝑎 + 𝑛𝑑
𝑥

) 𝑝𝑥𝑞𝑎+𝑛𝑑−𝑥 

where, a ≥ 0 is the minimum number of success, d > 0 is the concentration of occurrence of success, 𝑛 is 
a predefined finite number of non-negative integer represents the number of trials  and p is the probability 
of success such that 𝑝 + 𝑞 = 1 and 𝑘 = ∑ (

𝑎 + 𝑛𝑑
𝑥

) 𝑝𝑥𝑞𝑎+𝑛𝑑−𝑥𝑎+𝑛𝑑
𝑥=𝑎  is a constant. The probability mass 

function  𝑃(𝑥; 𝑎, 𝑛, 𝑑, 𝑝) stands for probability of getting x success out of maximum of 𝑎 + 𝑛𝑑 successes 
in n trials. 
 
Theorem 2.1.1: For the generalized binomial distribution with parameter 𝑎 ≥ 0, 𝑑 > 0, 𝑛 ≥ 0 and p and 

usual binomial distribution with parameter 𝑛 ≥ 0 and , the probability mass function of generalized 

binomial distribution reduces to the probability mass function of usual binomial distribution when 𝑎 = 0.  

 
Theorem 2.1.2: The moment generating function of generalized binomial distribution is  

𝑀𝑋(𝑡) =
∑ (𝑎+𝑛𝑑

𝑥 )(𝑝𝑒𝑡)
𝑥

𝑞𝑎+𝑛𝑑−𝑥𝑎+𝑛𝑑
𝑥=𝑎

∑ (𝑎+𝑛𝑑
𝑥 )𝑝𝑥𝑞𝑎+𝑛𝑑−𝑥𝑎+𝑛𝑑

𝑥=𝑎

. 

 

Theorem 2.1.3: The mean and variance of generalized binomial distribution are (𝑎 + 𝑛𝑑)𝑝 and 

(𝑎 + 𝑛𝑑)𝑝𝑞 respectively. 

 

Theorem 2.1.4: If X follows the generalized binomial distribution then find the 3rd and 4th raw and central 

moments of X respectively are 
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𝜇3
′ = (𝑎 + 𝑛𝑑)3𝑝3 − 3(𝑎 + 𝑛𝑑)2𝑝3 + 2(𝑎 + 𝑛𝑑)𝑝3 + 3(𝑎 + 𝑛𝑑)2𝑝2 − 3(𝑎 + 𝑛𝑑)𝑝2

+ (𝑎 + 𝑛𝑑)𝑝                                                                                                        
𝜇4

′ = (𝑎 + 𝑛𝑑)4𝑝4 − 6(𝑎 + 𝑛𝑑)3𝑝4 + 11(𝑎 + 𝑛𝑑)2𝑝4 − 6(𝑎 + 𝑛𝑑)𝑝4 + 6(𝑎 + 𝑛𝑑)3𝑝3

− 18(𝑎 + 𝑛𝑑)2𝑝3 + 12(𝑎 + 𝑛𝑑)𝑝3 + 7(𝑎 + 𝑛𝑑)2𝑝2 − 7(𝑎 + 𝑛𝑑)𝑝2

+ (𝑎 + 𝑛𝑑)𝑝                                                                                                      
𝜇3 = (𝑎 + 𝑛𝑑)𝑝𝑞(1 − 2𝑝)                                                                                                          
𝜇4 = (𝑎 + 𝑛𝑑)𝑝𝑞[1 + 3((𝑎 + 𝑛𝑑) − 2)𝑝𝑞] 
The special case for 3rd and 4th raw and central moments holds for 𝑎 = 0 and 𝑑 = 1 and turned to the form 

of usual Binomial distributions.    

 
Theorem 2.1.5: The shape charactersitics of generalized binomial distribution are: 

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑠 𝑜𝑓 𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 (𝛽1) =
(1 − 2𝑝)2

(𝑎 + 𝑛𝑑)𝑝𝑞
 , 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 (𝛾1) = √𝛽1  =

1 − 2𝑝

√(𝑎 + 𝑛𝑑)𝑝𝑞
 

From coefficient of skewness, the following conclusion can be drawn and still surprising that the nature of 

skew depends only on 𝑝 only and which is similar to the usual binomial distribution as: 

i) The distribution is positively skewed if 𝑝 <
1

2
. 

ii) On the other hand, the distribution is negatively skewed if 𝑝 >
1

2
. 

iii) And the distribution is symmetric if 𝑝 =
1

2
. 

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑠 𝑜𝑓 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 (𝛽2) = 3 +
(1 − 6𝑝𝑞)

(𝑎 + 𝑛𝑑)𝑝𝑞
, 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 (𝛾2) = 𝛽2 − 3 =

(1 − 6𝑝𝑞)

(𝑎 + 𝑛𝑑)𝑝𝑞
 

These equations tell us that the generalized distribution is  

i) Mesokurtic if =
1

6
 . 

ii) Platykurtic 𝑝𝑞 >
1

6
  and 

iii) Leptokurtic if 𝑝𝑞 <
1

6
. 

 

Theorem 2.1.6: The maximum likelihood estimator of the parameter 𝑝 is 
𝑥

𝑎+𝑛𝑑
, where 𝑥 is the total number 

of success from maximum of 𝑎 + 𝑛𝑑 success in 𝑛 trials. 

 

Theorem 2.1.7: Normal distribution is a limiting form of generalized binomial distribution.  

 

2.2 New Approach of Multinomial Distribution 
Under the sampling scheme described in Section 2.1, consider the situation where one of the 𝑘 mutually 
exclusive outcomes is possible from a single trial other than only success or failure. More specifically, if 
the 𝑘 outcomes are denoted by 𝑒1, 𝑒2, 𝑒2, ⋯ , 𝑒𝑘 and the number of occurrences of the respective outcomes 
are denoted by 𝑥1, 𝑥2, ⋯ , 𝑥𝑘 such that ∑ 𝑥𝑖 = 𝑎 + 𝑛𝑑𝑘

𝑖=1 , where 𝑎 is non-negative integer and termed as 
minimum number of success, 𝑑 is positive integer representing the concentration of success and 𝑛 is a non-
negative integer indicating the total number of trails, then our suggested general form of Binomial as well 
as traditional Multinomial distribution cannot provide the probability that the event 𝑒1 occurred 𝑥1 times, 
the event 𝑒2 occurred 𝑥2 times and so on the event 𝑒𝑘 occurred 𝑥𝑘 times. To overcome this situation, we 
have suggested the new approach of Multinomial distribution and termed as relatively more general 
Multinomial or generalized Multinomial distribution. In this section we would present only the definition 
of the suggested distribution and statement of the theorems that we have derived for our present work to 
keep the paper size standard and other reason is that the derivations are very much similar to the suggested 
Binomial distribution. 
 
Definition 2.2.1: k discrete random variable X1, X2, ⋯ , Xk is said to have a generalized multinomial 
distribution if it has the following probability mass function 
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P(x1, x2, ⋯ , xk; a, n, d, p1, p2, ⋯ , pk) =

1
x1! x2! ⋯ xk!

p1
x1p2

x2 ⋯ pk
xk

∑
1

x1! x2! ⋯ xk! p1
x1p2

x2 ⋯ pk
xka+nd

x1,x2,⋯,xk=a

   

                                                                   =

(a + nd)!
x1! x2! ⋯ xk! p1

x1p2
x2 ⋯ pk

xk

∑
(a + nd)!

x1! x2! ⋯ xk!
p1

x1p2
x2 ⋯ pk

xka+nd
x1,x2,⋯,xk=a

   

where, a ≥ 0, d > 0, n ≥ 0 and p1, p2, ⋯ , pk such that ∑ pi
k
i=1 = 1, are the parameters of the distribution. 

And ∑ xi = a + ndk
i=1 .  

 
The defined function is a probability mass function as it holds the conditions of the probability function and 
easily reduces to traditional Multinomial distribution if 𝑎 = 0 and 𝑑 = 1 and thus may be said that the 
traditional Multinomial distribution is a special case of the suggested Multinomial distribution.  
 
Theorem 2.2.1: Generalized Binomial distribution is a special case of generalized Multinomial 

distribution.    
 
Theorem 2.2.2: The moment generating function of generalized Multinomial distribution is  

𝑀𝑋1,𝑋2,⋯,𝑋𝑘
(𝑡1, 𝑡2, ⋯ , 𝑡𝑘) =

∑
(𝑎 + 𝑛𝑑)!
∏ 𝑥𝑖!𝑘

𝑖=1

∏ (𝑝𝑖𝑒𝑡𝑖)𝑥𝑖𝑘
𝑖=1

𝑎+𝑛𝑑
𝑥1,𝑥2,⋯,𝑥𝑘=𝑎

∑
(𝑎 + 𝑛𝑑)!
∏ 𝑥𝑖!𝑘

𝑖=1

∏ 𝑝𝑖
𝑥𝑖𝑘

𝑖=1
𝑎+𝑛𝑑
𝑥1,𝑥2,⋯,𝑥𝑘=𝑎

                                   

 and the mean and the variance of 𝑋𝑖 (𝑖 = 1,2, ⋯ , 𝑘) respectively are 𝐸(𝑋𝑖) =  𝜇1𝑖

′ = (𝑎 + 𝑛𝑑)𝑝𝑖,𝑉(𝑋𝑖) =

(𝑎 + 𝑛𝑑)𝑝𝑖(1 − 𝑝𝑖). 

 

Theorem 2.2.3: The 3rd and 4th raw and central moments of generalized Multinomial distribution are  

𝜇3𝑖

′ = (𝑎 + 𝑛𝑑)3𝑝𝑖
3 − 3(𝑎 + 𝑛𝑑)2𝑝𝑖

3 + 2(𝑎 + 𝑛𝑑)𝑝𝑖
3 + 3(𝑎 + 𝑛𝑑)2𝑝𝑖

2 − 3(𝑎 + 𝑛𝑑)𝑝𝑖
2

+             (𝑎 + 𝑛𝑑)𝑝𝑖                                                                                                                    
𝜇4𝑖

′ = (𝑎 + 𝑛𝑑)4𝑝𝑖
4 − 6(𝑎 + 𝑛𝑑)3𝑝𝑖

4 + 11(𝑎 + 𝑛𝑑)2𝑝𝑖
4 − 6(𝑎 + 𝑛𝑑)𝑝𝑖

4 + 6(𝑎 + 𝑛𝑑)3𝑝𝑖
3  

− 18(𝑎 + 𝑛𝑑)2𝑝𝑖
3 + 12(𝑎 + 𝑛𝑑)𝑝𝑖

3 + 7(𝑎 + 𝑛𝑑)2𝑝𝑖
2 − 7(𝑎 + 𝑛𝑑)𝑝𝑖

2

+ (𝑎 + 𝑛𝑑)𝑝𝑖                                                                                                                      
𝜇3𝑖

= (𝑎 + 𝑛𝑑)𝑝𝑖(1 − 𝑝𝑖)(1 − 2𝑝𝑖)                                                                                                           
and 𝜇4 = (𝑎 + 𝑛𝑑)𝑝𝑖(1 − 𝑝𝑖)[1 + 3((𝑎 + 𝑛𝑑) − 2)𝑝𝑖(1 − 𝑝𝑖)]                                                              
 
For 𝑎 = 0 and 𝑑 = 1, the moments reduces to those of traditional Multinomial distribution.  
 
Theorem 2.2.4: Shape characteristics of generalized multinomial distribution are  

Measure of Skewness 𝛽1𝑖
=

(1−2𝑝𝑖)2

(𝑎+𝑛𝑑)𝑝𝑖(1−𝑝𝑖)
 , Coefficient of Skewness 𝛾1𝑖

= √𝛽1𝑖
=

1−2𝑝𝑖

√(𝑎+𝑛𝑑)𝑝𝑖(1−𝑝𝑖)
 

Measure of Kurtosis 𝛽2𝑖
= 3 +

{1−6𝑝𝑖(1−𝑝𝑖)}

(𝑎+𝑛𝑑)𝑝𝑖(1−𝑝𝑖)
, Coefficient of Kurtosis 𝛾2𝑖

= 𝛽2𝑖
− 3 =

{1−6𝑝𝑖(1−𝑝𝑖)}

(𝑎+𝑛𝑑)𝑝𝑖(1−𝑝𝑖)
                                                                                       

 
Theorem 2.2.5: The maximum likelihood estimator of the parameters of generalized multinomial 

distribution is 𝑝�̂� =
𝑥𝑖

(𝑎+𝑛𝑑)
 , where 𝑥𝑖 is the number of success comprising (𝑎 + 𝑛𝑑 − 𝑥𝑖) is the total number 

of failure subject to condition that maximum number of success is 𝑎 + 𝑛𝑑. 

 

 

JSM2015 - Section on Statistical Computing

84



 
 

2.3 Proposed Generalized Poisson Distribution 
In the count data model, the traditional Poisson variate representing the number of occurrences takes the 
value ranges from 0 to ∞. Consider the following sequences for the values of the Poisson variate indicating 
the number of occurrence (i) 0,2,4, ⋯ , ∞ ; (ii) 2,4, ⋯ , ∞; (iii) 3,6,9, ⋯ , ∞; (iv) 1,4,7, ⋯ , ∞ and so on. The 
arithmetic progression 𝑎 + 𝑛𝑑 can be used to represent the number of occurrences where, 𝑎 is a non-
negative integer representing the minimum number of occurrence, 𝑑 is a positive integer representing the 
concentration of occurrence and 𝑛 is a non-negative integer indicating the total number of trails. To tackle 
with the situation where the number of occurrences follows an arithmetic progression, we formulate a 
probability function and defined as generalized Poisson distribution. The sequence can easily take the 
traditional sequence 0, 1,2, ⋯ , ∞ of Poisson distribution for the values 𝑎 = 0 and 𝑑 = 1 and then our 
proposed distribution turned into the usual Poisson distribution. Thus, a series of probabilistic problems can 
be solved by the proposed distribution including the problems solved by the traditional one. In this section, 
we define the proposed distribution and provide some of its important properties. 
         
Definition 2.3.1: A random variable X is said to have a Poisson distribution with parameter λ, a, n and d if 
it has the following probability mass function 

P(x; λ, a, n, d) =
λx

x! ∑
λa+nd

(a + nd)!
∞
n=0

      ; x = a, a + d, a + 2d, ⋯ , a + nd 

where, a ≥ 0 is the minimum number of occurrence, d > 0 is the concentration of occurrence, n is a pre-
assigned non-negative integer such that a = 0 if n = 0 and λ ≥ 0 is the mean number of occurrences. 
 
It can be clearly shown that 𝑃(𝑥; 𝜆, 𝑎, 𝑛, 𝑑) ≥ 0 and ∑ 𝑃(𝑥; 𝜆, 𝑎, 𝑛, 𝑑) = 1𝑎+𝑛𝑑

𝑥=𝑎  for different values of X in 
terms of 𝑎 ≥ 0, 𝑑 > 0 and 𝑛 > 0. Hence, the suggested function of generalized Poisson distribution is a 
probability mass function. 
 
The generalized Poisson distribution tends to the traditional Poisson distribution when minimum number 
of occurrence 𝑎 = 0 and concentration of occurrence 𝑑 = 1. Thus, we may conclude that the traditional 
Poisson distribution is a special case of the proposed generalized Poisson distribution. The advantage is to 
give the solution of finding probabilities of the count data where the values of the random variable can take 
infinite number of sequence including the traditional 0, 1, 2, ⋯ , ∞.    
 
Theorem 2.3.1: Generalized Binomial distribution tends to Generalized Binomial Distribution as sample 

size tens to infinity and probability of success tends to zero.  

     
Theorem 2.3.2: The moment generating function of the generalized Poisson distribution and its first four 

raw and central moments.The moment generating function of the generalized Poisson distribution is  

𝑀𝑋(𝑡) =
1

∑
𝜆𝑎+𝑛𝑑

(𝑎 + 𝑛𝑑)!
∞
𝑛=0

∑
(𝜆𝑒𝑡)𝑎+𝑛𝑑

(𝑎 + 𝑛𝑑)!

∞

𝑛=0

                      

Differentiating it with respect to t in first to 4th order and equating 𝑡 = 0, we obtain the first four raw 

moments respectively and which are as follows:  

𝜇1
′ =

∑ (𝑎+𝑛𝑑)
𝜆𝑎+𝑛𝑑

(𝑎+𝑛𝑑)!
∞
𝑛=0

∑
𝜆𝑎+𝑛𝑑

(𝑎+𝑛𝑑)!
∞
𝑛=0

, 𝜇2
′ =

∑ {𝑎+𝑛𝑑}2 𝜆𝑎+𝑛𝑑

(𝑎+𝑛𝑑)!
∞
𝑛=0

∑
𝜆𝑎+𝑛𝑑

(𝑎+𝑛𝑑)!
∞
𝑛=0

 , 𝜇3
′ =

∑ (𝑎+𝑛𝑑)3 𝜆𝑎+𝑛𝑑

(𝑎+𝑛𝑑)!
∞
𝑛=0

∑
𝜆𝑎+𝑛𝑑

(𝑎+𝑛𝑑)!
∞
𝑛=0

, 𝜇4
′ =

∑ (𝑎+𝑛𝑑)4 𝜆𝑎+𝑛𝑑

(𝑎+𝑛𝑑)!
∞
𝑛=0

∑
𝜆𝑎+𝑛𝑑

(𝑎+𝑛𝑑)!
∞
𝑛=0

 . 

 
The corresponding central moments can be obtained by using the relationship between the raw and central 
moments. Consequently, we may find the measures of skewness and kurtosis. The form of the central 
moments and thus measures of skewness and kurtosis are seem to long and complicated equations and not 
in a concrete form, but very much simple to calculate the mentioned properties for specific values of a and 
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d.  All of the raw moments, central moments and measures of skewness and kurtosis derived from the 
generalized Poisson distribution tend to the form of traditional Poisson distribution when 𝑎 = 0 and 𝑑 = 1, 
which again justify that property that the usual Poisson distribution is the special case of the generalized 
Poisson distribution. 
 
2.4 Proposed Generalized Geometric Distribution 
In this section, we discuss about the generalized Geometric variate having relatively more general form of 
the values represented by an arithmetic progression which is mentioned above in the generalized Poisson 
distribution case and its distribution and the properties. We have proposed the distribution for the random 
variable taking values in the form 𝑎 + 𝑛𝑑 where a is a non-negative integer representing minimum number 
of failure, d is a positive integer indicating how the failures are occur, that is concentration of occurrence 
of failure per trail and 𝑛 > 0 is an integer representing the total number of trails. Clearly, the range of the 
random variable is similar to that of usual Geometric distribution if 𝑎 = 0 and 𝑑 = 1. As we proposed 
generalization of traditional Geometric distribution, it is the necessary condition that it reduces to traditional 
distribution if the random variable posses the range 0 to ∞.  
 
Definition 2.4.1: A random variable X is said to have a generalized geometric distribution if it has the 

following probability mass function 

𝑃(𝑥; 𝑎, 𝑛, 𝑑, 𝑝) = 𝑞𝑥
(1 − 𝑞𝑑)

𝑞𝑎
;  𝑥 = 𝑎, 𝑎 + 𝑑, 𝑎 + 2𝑑, ⋯ , 𝑎 + 𝑛𝑑 

where, 𝑎 is a non-negative integer representing minimum number of failure, d is a positive integer 

indicating concentration of failure per trail and 𝑛 > 0 is an integer representing the total number of trails 

such that 𝑎 = 0 if 𝑛 = 0 and p is the probability of success such that 𝑝 + 𝑞 = 1 are the parameters of the 

distribution. The probability function 𝑞𝑥 (1−𝑞𝑑)

𝑞𝑎  provides the probability of getting the 𝑑 successes following 

maximum of {𝑎 + 𝑛𝑑} failures in n trials.  
 
The function in the above Equation is a probability function as it satisfies the following properties of 
probability function for several values of the parameters. 

i) 𝑃(𝑥; 𝑎, 𝑛, 𝑑, 𝑝) ≥ 0 
ii) ∑ 𝑃(𝑥; 𝑎, 𝑛, 𝑑, 𝑝)𝑎+𝑛𝑑

𝑥=𝑎 = 1 
The probability function reduces to 𝑝𝑞𝑥, where 𝑥 = 0, 1, 2, ⋯ , ∞ if 𝑎 = 0 and 𝑑 = 1. Thus, the name 
generalized Geometric and traditional one is considered as the special case of the suggested distribution. 
The other distributional properties are examined below: 
 
Theorem 2.4.1: Prove that the moment generating function of generalized Geometric distribution is  

𝑀𝑋(𝑡) =
(1 − 𝑞𝑑)𝑒𝑡𝑎

[1 − (𝑞𝑒𝑡)𝑑]
                                                                                                                  

 
Theorem 2.4.2: The first four raw moments of the generalized Geometric distribution are respectively 

𝜇1
′ = 𝑎 +

𝑑𝑞𝑑

(1−𝑞𝑑)
 , 𝜇2

′ = 𝑎2 +
𝑎𝑑

(1−𝑞𝑑)
   +

𝑑(𝑎+𝑑)𝑞𝑑

(1−𝑞𝑑)
+

2(𝑑𝑞𝑑)
2

(1−𝑞𝑑)
2, 𝜇3

′ = 𝑎3 +
2𝑎2𝑑𝑞𝑑

(1−𝑞𝑑)
+

𝑎2𝑑

(1−𝑞𝑑)
+

𝑎𝑑2

(1−𝑞𝑑)
+

2𝑎𝑑2𝑞𝑑

(1−𝑞𝑑)
2 +

2𝑎𝑑2𝑞𝑑

(1−𝑞𝑑)
+

𝑑3𝑞𝑑

(1−𝑞𝑑)
+

4𝑎𝑑2𝑞2𝑑

(1−𝑞𝑑)
2 +

6𝑑3𝑞2𝑑

(1−𝑞𝑑)
2 +

6𝑑3𝑞3𝑑

(1−𝑞𝑑)
3, 𝜇4

′ = 𝑎4 +
𝑎4𝑑𝑞𝑑

(1−𝑞𝑑)
+

𝑎3𝑑𝑞𝑑

(1−𝑞𝑑)
+

𝑎2𝑑2𝑞𝑑

(1−𝑞𝑑)
+

2𝑎2𝑑2𝑞2𝑑

(1−𝑞𝑑)
2 +

𝑎3𝑑

(1−𝑞𝑑)
+

2𝑎2𝑑2

(1−𝑞𝑑)
+

𝑎𝑑3

(1−𝑞𝑑)
+

2𝑎2𝑑2𝑞𝑑

(1−𝑞𝑑)
2 +

2𝑎𝑑3𝑞𝑑

(1−𝑞𝑑)
2 +

𝑎3𝑑𝑞𝑑

(1−𝑞𝑑)
+

3𝑎2𝑑2𝑞𝑑

(1−𝑞𝑑)
+

3𝑎𝑑3𝑞𝑑

(1−𝑞𝑑)
+

𝑑4𝑞𝑑

(1−𝑞𝑑)
+

2𝑎2𝑑2𝑞2𝑑

(1−𝑞𝑑)
2 +

4𝑎𝑑3𝑞2𝑑

(1−𝑞𝑑)
2 +

2𝑑4𝑞2𝑑

(1−𝑞𝑑)
2 +

2𝑎2𝑑2𝑞𝑑

(1−𝑞𝑑)
2 +

4𝑎𝑑3𝑞𝑑

(1−𝑞𝑑)
2 +

6𝑎𝑑3𝑞2𝑑

(1−𝑞𝑑)
3 +

4𝑎2𝑑2𝑞2𝑑

(1−𝑞𝑑)
2 +

14𝑎𝑑3𝑞2𝑑

(1−𝑞𝑑)
2 +

12𝑑4𝑞2𝑑

(1−𝑞𝑑)
2 +

12𝑎𝑑3𝑞3𝑑

(1−𝑞𝑑)
3 +

18𝑑4𝑞3𝑑

(1−𝑞𝑑)
3 +

6𝑎𝑑3𝑞3𝑑

(1−𝑞𝑑)
3 +

18𝑑4𝑞3𝑑

(1−𝑞𝑑)
3 +

24𝑑4𝑞4𝑑

(1−𝑞𝑑)
4 
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Theorem 2.4.3: The first four central moments of the generalized Geometric distribution are respectively 

𝜇1 = 𝜇1
′ = 𝑎 +

𝑑𝑞𝑑

(1−𝑞𝑑)
, 𝑉(𝑋) = 𝜇2 = 𝑎𝑑 +

𝑑2𝑞𝑑

(1−𝑞𝑑)
2 , 𝜇3 = −2𝑎2𝑑 +

𝑎𝑑2

(1−𝑞𝑑)
(1 − 2𝑞𝑑) +

𝑑3𝑞𝑑

(1−𝑞𝑑)
3 (1 +

𝑞𝑑), 𝜇4 =
𝑎4𝑑𝑞𝑑

(1−𝑞𝑑)
−

4𝑑2𝑞2𝑑

(1−𝑞𝑑)
2 +

𝑎3𝑑

(1−𝑞𝑑)
(3 − 4𝑞𝑑) −

2𝑎2𝑑2

(1−𝑞𝑑)
2 (1 − 4𝑞𝑑 + 𝑞2𝑑) +

𝑎𝑑3

(1−𝑞𝑑)
2 (1 + 4𝑞𝑑 − 𝑞2𝑑) +

𝑑4𝑞𝑑

(1−𝑞𝑑)
4 (1 + 7𝑞𝑑 + 𝑞2𝑑) 

 
Theorem 2.4.4: Find the MLE estimator of the probability of success after x failure of generalized 

geometric distribution will be �̂� = 1 − �̂� = 1 − (
𝑎−𝑥

𝑎−𝑑−𝑥
)

1

𝑑
.  

 
 

Discussion and Conclusion 
 

We have suggested relatively more general form of two discrete distributions such as Binomial and 
Multinomial for the different sampling scheme which is described above and termed as generalized 
distribution. It is evident from the generalized distribution that if sampling is drawn in the usual manner, 
then our suggested distributions reduces to the traditional form and thus it may conclude that the traditional 
Binomial and Multinomial distribution are the special cases of our proposed generalized Binomial and 
Multinomial distribution. Like the traditional distributions, all of the distributional properties including 
limiting theorems of the suggested distributions have derived. The truncated cases of the traditional 
distribution can be address more accurately by our new approach of the distributions. In general, the new 
approach of the distributions are providing more access and broaden the scope from the theoretical point of 
view as well as from the standpoint of real world problem solving.  Generalized sequence of the number of 
success of the proposed distributions may be considered as an added advantage in the distribution theory. 
 
In probability theory and statistics Poisson distribution and Geometric distribution have great importance. 
In both the distribution, the value of the random variable ranges from 0 to ∞ with a constant increment of 
1 for each trail. We proposed the generalized version of both the distribution where the number of 
occurrences can be expressed by an arithmetic progression 𝑎 + 𝑛𝑑. It is shown that the traditional forms of 
the distributions are the special case of the proposed distributions. Thus, both the generalized Poisson and 
generalized Geometric distribution can be applied in the cases where their traditional distribution is the only 
way. In parallel, the proposed distributions facilitates to solving the probability of the certain value of the 
random variable having infinitely many sequences other than traditional sequence. In this context, the scope 
of the proposed distribution is much wider than their traditional form. In addition, some of the distributional 
properties are derived and examined for both of the suggested distributions. Overall, the generalized 
Poisson and generalized Geometric distributions may play a critical and vital role in the distribution theory 
and thus in the complicated real life problems.       
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Appendix 

 

Proof 2.1.1: We know, the probability mass function of the suggested generalized binomial distribution is  

𝑃(𝑥; 𝑎, 𝑛, 𝑑, 𝑝) =
(

𝑎 + 𝑛𝑑
𝑥

) 𝑝𝑥𝑞𝑎+𝑛𝑑−𝑥

∑ (
𝑎 + 𝑛𝑑

𝑥
) 𝑝𝑥𝑞𝑎+𝑛𝑑−𝑥𝑎+𝑛𝑑

𝑥=𝑎

  ;  𝑥 = 𝑎, 𝑎 + 𝑑, 𝑎 + 2𝑑, ⋯ , 𝑎 + 𝑛𝑑 

𝑃(𝑥; 𝑎, 𝑛, 𝑑, 𝑝) ≥ 0 for all values of X with different values of a, d, n and p. Again, ∑ 𝑃(𝑥; 𝑎, 𝑛, 𝑑, 𝑝)𝑎+𝑛𝑑
𝑥=𝑎  

= ∑
(𝑎+𝑛𝑑

𝑥 )𝑝𝑥𝑞𝑎+𝑛𝑑−𝑥

∑ (𝑎+𝑛𝑑
𝑥 )𝑝𝑥𝑞𝑎+𝑛𝑑−𝑥𝑎+𝑛𝑑

𝑥=𝑎

𝑎+𝑛𝑑
𝑥=𝑎   = 1

∑ (𝑎+𝑛𝑑
𝑥 )𝑝𝑥𝑞𝑎+𝑛𝑑−𝑥𝑎+𝑛𝑑

𝑥=𝑎

∑ (
𝑎 + 𝑛𝑑

𝑥
) 𝑝𝑥𝑞𝑎+𝑛𝑑−𝑥𝑎+𝑛𝑑

𝑥=𝑎  = 1.  

As 𝑃(𝑥; 𝑎, 𝑛, 𝑑, 𝑝) ≥ 0 and ∑ 𝑃(𝑥; 𝑎, 𝑛, 𝑑, 𝑝)𝑎+𝑛𝑑
𝑥=𝑎 = 1, so we may conclude that 𝑃(𝑥; 𝑎, 𝑛, 𝑑, 𝑝) is a 

probability function.  
 
Proof 2.2.1: The form of the probability mass function of generalized Multinomial distribution is  

𝑃(𝑥1, 𝑥2, ⋯ , 𝑥𝑘; 𝑎, 𝑛, 𝑑, 𝑝1, 𝑝2, ⋯ , 𝑝𝑘) =

1
𝑥1! 𝑥2! ⋯ 𝑥𝑘! 𝑝1

𝑥1𝑝2
𝑥2 ⋯ 𝑝𝑘

𝑥𝑘

∑
1

𝑥1! 𝑥2! ⋯ 𝑥𝑘! 𝑝1
𝑥1𝑝2

𝑥2 ⋯ 𝑝𝑘
𝑥𝑘𝑎+𝑛𝑑

𝑥1,𝑥2,⋯,𝑥𝑘=𝑎

 

Considering 𝑘 = 2 such that 𝑥1 + 𝑥2 = 𝑎 + 𝑛𝑑 and 𝑝1 + 𝑝2 = 1, we obtain 

𝑃(𝑥1, 𝑥2; 𝑎, 𝑛, 𝑑, 𝑝1, 𝑝2) =

(𝑎 + 𝑛𝑑)!
𝑥1! 𝑥2! 𝑝1

𝑥1𝑝2
𝑥2

∑
(𝑎 + 𝑛𝑑)!

𝑥1! 𝑥2! 𝑝1
𝑥1𝑝2

𝑥2𝑎+𝑛𝑑
𝑥1,𝑥2=𝑎

 

=> 𝑃(𝑥1; 𝑎, 𝑛, 𝑑, 𝑝1, 𝑝2) =

(𝑎 + 𝑛𝑑)!
𝑥1! (𝑎 + 𝑛𝑑 − 𝑥1)!

𝑝1
𝑥1𝑝2

𝑎+𝑛𝑑−𝑥1

∑
(𝑎 + 𝑛𝑑)!

𝑥1! (𝑎 + 𝑛𝑑 − 𝑥1)!
𝑝1

𝑥1𝑝2
𝑎+𝑛𝑑−𝑥1𝑎+𝑛𝑑

𝑥1=𝑎

 

Letting 𝑥1 = 𝑥, 𝑝1 = 𝑝 and 𝑝2 = 1 − 𝑝1 = 1 − 𝑝 = 𝑞, we have 

𝑃(𝑥; 𝑎, 𝑛, 𝑑, 𝑝) =

(𝑎 + 𝑛𝑑)!
𝑥! (𝑎 + 𝑛𝑑 − 𝑥)!

𝑝𝑥𝑞𝑎+𝑛𝑑−𝑥

∑
(𝑎 + 𝑛𝑑)!

𝑥! (𝑎 + 𝑛𝑑 − 𝑥)!
𝑝𝑥𝑞𝑎+𝑛𝑑−𝑥𝑎+𝑛𝑑

𝑥=𝑎

 

=> 𝑃(𝑥; 𝑎, 𝑛, 𝑑, 𝑝) =
(

𝑎 + 𝑛𝑑
𝑥

) 𝑝𝑥𝑞𝑎+𝑛𝑑−𝑥

∑ (
𝑎 + 𝑛𝑑

𝑥
) 𝑝𝑥𝑞𝑎+𝑛𝑑−𝑥𝑎+𝑛𝑑

𝑥=𝑎

 

Hence, 𝑃(𝑥; 𝑎, 𝑛, 𝑑, 𝑝) =
(𝑎+𝑛𝑑

𝑥 )𝑝𝑥𝑞𝑎+𝑛𝑑−𝑥

∑ (𝑎+𝑛𝑑
𝑥 )𝑝𝑥𝑞𝑎+𝑛𝑑−𝑥𝑎+𝑛𝑑

𝑥=𝑎

  ;  𝑥 = 𝑎, 𝑎 + 𝑑, 𝑎 + 2𝑑, ⋯ , 𝑎 + 𝑛𝑑       

which is the probability mass function of generalized Binomial distribution.  
 
 
Proof 2.3.1: The probability mass function of generalized Binomial variate X with parameter a, n, d, and p 

is 𝑃(𝑥; 𝑎, 𝑛, 𝑑, 𝑝) =
(𝑎+𝑛𝑑

𝑥 )𝑝𝑥𝑞𝑎+𝑛𝑑−𝑥

∑ (𝑎+𝑛𝑑
𝑥 )𝑝𝑥𝑞𝑎+𝑛𝑑−𝑥𝑎+𝑛𝑑

𝑥=𝑎

      ;  𝑥 = 𝑎, 𝑎 + 𝑑, 𝑎 + 2𝑑, ⋯ , 𝑎 + 𝑛𝑑                 
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Under the following assumptions, the generalized Poisson distribution can be derived from generalized 
Binomial distribution. 

i) p, the probability of success in a Bernoulli trail is very small. i.e. 𝑝 → 0. 
ii) n, the number of trails is very large. i.e. 𝑛 → ∞. 
iii) (𝑎 + 𝑛𝑑)𝑝 = 𝜆 is finite constant, that is average number of success is finite. Under this condition, 

we have (𝑎 + 𝑛𝑑)𝑝 = 𝜆   ∴ 𝑝 =
𝜆

(𝑎+𝑛𝑑)
  and 𝑞 = 1 −

𝜆

(𝑎+𝑛𝑑)
.   

 
Proof 2.4.4: The likelihood function of generalized geometric distribution itself is a probability mass 

function and which is  𝐿 = 𝑞𝑥 (1−𝑞𝑑)

𝑞𝑎   

Taking logarithm in both sides of the equation, we have 
𝑙𝑛𝐿 = 𝑥𝑙𝑛𝑞 + 𝑙𝑛(1 − 𝑞𝑑) − 𝑎𝑙𝑛𝑞                                                                                             
Differentiating equation (2.2.12) with respect to q and equating to zero, we have 
𝛿

𝛿𝑞
(𝑙𝑛𝐿) =

𝛿

𝛿𝑞
[𝑥𝑙𝑛𝑞 + 𝑙𝑛(1 − 𝑞𝑑) − 𝑎𝑙𝑛𝑞] = 0 

=>
𝑥

�̂�
−

𝑑�̂�𝑑−1

(1 − �̂�𝑑)
−

𝑎

�̂�
= 0 

=>
𝑥(1 − �̂�𝑑) − 𝑑�̂�𝑑 − 𝑎(1 − �̂�𝑑)

�̂�(1 − �̂�𝑑)
= 0 

=> 𝑥 − 𝑥�̂�𝑑 − 𝑑�̂�𝑑 − 𝑎 + 𝑎�̂�𝑑 = 0 
=> �̂�𝑑(𝑎 − 𝑑 − 𝑥) = 𝑎 − 𝑥 
=> �̂�𝑑 =

𝑎 − 𝑥

𝑎 − 𝑑 − 𝑥
 

=> �̂� = (
𝑎−𝑥

𝑎−𝑑−𝑥
)

1

𝑑
 which is the MLE estimator of probability of failure before first success. 

Hence, the MLE estimator of probability of success after x failure will be �̂� = 1 − �̂� = 1 − (
𝑎−𝑥

𝑎−𝑑−𝑥
)

1

𝑑 
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