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Abstract
Mixture autoregressive models provide a flexible framework for modelling time series. These

models capture conditional heterogeneity, multi-modality, skewness, kurtosis and heavy tails using
only standard distributions as building blocks. We show that the maximum likelihood estimator
(MLE) of this class of models is consistent and asymptotically normal. We also give applications to
estimation of financial risk.
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1. Introduction

Mixture autoregressive models provide a flexible framework for modelling time series.
They capture conditional heterogeneity, multi-modality, skewness, kurtosis and heavy tails
using only standard distributions as building blocks. A maximum likelihood estimate as-
sociated with a sample of observations is a choice of parameters that maximizes the prob-
ability density function of the sample, called in this context the likelihood function. MLE
is of fundamental importance in the theory of inference and it forms the basis of many in-
ferential techniques in statistics (Myung, 2003). There is vast literature on MLE and it’s
applications as well as it’s properties available among which is (Wald, 1949), (Andersen,
1970) among others. When a model has a higher value of the maximized loglikelihood
than other models, the model becomes more viable for further investigation than the other
models. Various studies have been done on exploring the asymptotic properties of MLE.
(Nguyen and McLachlan, 2015) prove that the ML estimators of the LRC parameters are
consistent and asymptotically normal, like their natural counterparts. They also show that
the LRC allows for simple handling of singularities in the ML estimation of GMMs. Using
numerical simulations in the R programming environment, they demonstrate that the MM
algorithm can be faster than the EM algorithm in various large data situations, where sam-
ple sizes range in the tens to hundreds of thousands and for estimating models with up to
16 mixture components on multivariate data with up to 16 variables.

(Jin et al., 2015) explore properties of pseudo-maximum likelihood (PML) estimators
for pooled data. They compared resulting asymptotic efficiency of the PML estimators of
factor loadings with that of the multi-group maximum likelihood estimators. The effect of
pooling was investigated through a two-group factor model. They found that the variances
of factor loadings for the pooled data are underestimated under the normal theory when
error variances in the smaller group are larger and that underestimation is due to dependence
between the pooled factors and pooled error terms. Small-sample properties of the PML
estimators were also investigated using a Monte Carlo study.

We examine here the asymptotic properties of the Maximum-Likelihood Estimator
(MLE) of the MAR model. We leverage the results of (Douc et al., 2004) whose assump-
tions/proofs are hinged on the paper by (Wald, 1949) which says that there exists a deter-
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ministic asymptotic criterion function l(θ) such that n−1ln(θ, z0) → l(θ) a.s. uniformly
with respect to θ ∈ Θ. We show that the MLE of the MAR model is both consistent and
asymptotically normal. In addition, we propose the mixture autoregressive model (MAR)
model as an alternative approach to evaluating VaR and ES. We do this by considering the
one-step ahead out of sample Value at Risk (VaR) and Expected Shortfall (ES) measures
for the Standard and Poor (S&P500). We then compare the results based on the MAR
models with both Gaussian and Student-t innovations to the results based on Risk metrics,
the Gaussian GARCH, Student-t GARCH, the AR-GARCH with Gaussian innovations, the
AR-GARCH with student-t innovations, the Empirical Quantile, the Traditional Extreme
value theory and the Point over Threshold EVT. We find that the MAR based models per-
form predominantly better than the others. The rest of this paper is structured as follows:
In Section 1.1, we define the Mixture Autoregressive (MAR) model in its variation and
also outline its properties. We give use useful notations and assumptions in Section 1.2.
We present the consistency and asymptotic normality of the MLE of the MAR models in
Sections 2.1 and 2.2 respectively. Then we show the application of the model to estimating
VaR and ES for the S&P500 returns series. Finally, Section 4 concludes.

1.1 The mixture autoregressive model

The mixture autoregressive model of (Wong and Li, 2000) is defined as follows.

Definition 1.1 (Mixture autoregresssive model). A process {yt} is said to be a mixture
autoregressive (MAR) process if the conditional distribution function of yt given past in-
formation is given by

Ft|t−1(x) =

g∑
k=1

πkFk

(
x− ϕk,0 −

∑pk
i=1 ϕk,iyt−i

σk

)
, (1.1.1)

where
g is a positive integer representing the number of components in the model and the kth

component of the model, for k = 1, . . . , g, is specified by its mixing proportion πk > 0,
scale parameter σk > 0, autoregressive order pk, intercept ϕk,0, autoregressive coefficients
ϕk,i, i = 1, . . . , pk, and cumulative distribution function Fk(·). The mixing proportions πk
define a discrete distribution π, so

∑g
k=1 πk = 1.

We denote by MAR(g; p1, . . . pg) a g-component MAR model whose components are
of orders p1, . . . , pg. The noise distribution functions Fk, k = 1, . . . , p, are typically taken
to be standard Gaussian (Wong and Li, 2000) or (standardised) Student-t (Wong et al.,
2009). We will denote by fk(·) the corresponding probability density functions. It is also
convenient to set p = max1≤k≤g pk and ϕk,i = 0 for i > pk.

We do not discuss estimation theory in this paper but it can be developed under rela-
tively mild conditions, usually met in practice. The noise probability densities, fk(.), need
to be continuous and positive everywhere, non-periodic and bounded on compacts sets for
all k. Detailed study of the asymptotic theory is given by (Akinyemi, 2013).

A useful interpretation of the MAR model is that at each time t one of g autoregressive-
like equations is picked at random to generate yt. Namely, let {zt} be an i.i.d. sequence of
discrete random variables with distribution π (see Definition 1.1). Then yt can be written
as

yt = ϕzt,0 +

p∑
i=1

ϕzt,iyt−i + σztϵzt(t), (1.1.2)
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where {ϵzt} are jointly independent and independent of past ys and the probability density
of {ϵzt} is fk(.) (Boshnakov, 2009; Boshnakov, 2011, for further details see). Let {zt} be
an iid sequence of random variables with distribution π such that Pr{zt = k} = πk, k =
1, . . . , g, define a vector Zt = [Zt,1, . . . , Zt,g]

′
such that,

Zt,k =

{
1 if zt = k
0 otherwise

Then, the process yt can be written as (Boshnakov, 2009),

yt = µzt(y
′
t) + σztϵzt(t) (1.1.3)

where

µzt(y
′
t) = ϕzt,0 +

p∑
i=1

(ϕzt,iyt−i) (p = max1≤k≤g pk). (1.1.4)

The conditional density of yt given both the past values of yt and zt is,

fθ(yt | y
′
t, zt) =

1

σzt
fzt

(
yt − ϕzt,0 −

∑pzt
i=1 ϕzt,iy(t− i)

σzt

)
, (1.1.5)

{Zt, t > 0} is a simple case of a hidden Markov chain on a finite state space S ∈ [0, 1]
with stationary k-step transition probability matrix. {Zt, t > 0} drives the dynamics of
Yt = (yt, . . . , yt−p+1)

′
. Thus, we can write a chain,

Qt = (Zt, Yt), (1.1.6)

where, Qt is an aperiodic S × Rp-valued Markov chain.
Let A be a non -negative g × g matrix such that A = (aij) and

∑
j aij = 1.

Let θ be the vector of all the free parameters of the model. We assume that θ belongs to a
compact subset of Rd denoted by Θ.

1.2 Notations and assumptions

• Given (Yt, t ≥ 0), Yt = (yt, . . . , yt−p+1)
′

each yt is an MAR process defined by
Equation (1.1.3) with conditional distribution function defined in Equation (1.1.1).

• Denote by θ0 the true value of the parameters to be estimated and θ̂ the maximum
likelihood estimate. Let fθ(· | y, k) denote the conditional density of yt given
yt−1, . . . , yt−p, Zt,k, defined in Equation (1.1.5). We write {Ym, . . . , Yn} = Y (m,n).

• By the markov property, the filtering distribution of the unknown state given past
information is given by,

P(zt = k | zs, Ys, s = 0, . . . , t− 1) = P(zt = k | Y0, Ys, s = 0, . . . , t− 1) (1.2.1)

= P(zt = k | zt−1) for k = 1, . . . , g.

• The conditional likelihood function of Y (1,n) given both Y0 and Z0 = z0 is given as,

pθ(Y
(1,n) | Y0, Z0 = z0) =

g∑
zn=1

· · ·
g∑

z1=1

n∏
t=1

azt−1,ztfθ(Yt | Yt−1, zt) (1.2.2)

where aij is the transition probability matrix such that P (Yt = i | Yt−1 = j).
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• The corresponding conditional log-likelihood function is,

ln(θ, z0) = log pθ(Y
(1,n) | Y0, Z0 = z0) =

n∑
t=1

pθ(Yt | Y (0,t−1)Y0, Z0 = z0).

(1.2.3)

• Similarly, the conditional log-likelihood function given Y0 only is,

ln(θ) =
n∑

t=1

pθ(Yt | Y (0,t−1)) (1.2.4)

• where

pθ(Yt | Y (0,t−1), Z0 = z0)

=

g∑
zt−1=1

g∑
zt=1

fθ(Yt | Yt−1, zt)azt−1,ztP(Zt−1 = zt−1 | Y (0,t−1), Z0 = z0) (1.2.5)

• and

pθ(Yt | Y (0,t−1)) =

g∑
zt−1=1

g∑
zt=1

fθ(Yt | Yt−1, zt)azt−1,ztP(Zt−1 = zt−1 | Y (0,t−1))

(1.2.6)

(Douc et al., 2004, Corollary 1) show that the total variation distance between the fil-
tering probabilities Pθ(Zt−1 = zt−1 | Y0) and Pθ(Zt−1 = zt−1 | Y0, Z0 = z0) tends to
zero exponentially fast as t→ ∞ uniformly with respect to z0.

The following assumptions are made on the chain Qt in Equation1.1.6.

Assumptions

1. The true parameter value which we represent by θ0 lies in the interior of Θ.

2. For each k ∈ {1, . . . , g}, {Zt,k : t ≥ 0} is an irreducible, aperiodic Markov chain
on a finite space S with probability distribution π1, . . . , πg and transition probability
matrix A = (aij), so that Zt,k inherits the properties of {Zt}.

3. The chain {Zt} is independent of the ϵt, also, for Ft−1 = σ{Yr, r ≤ t − 1} and all
i, j,

P (zt = j | zt−1 = i,Ft−1) = P (zt = j | zt−1 = i). (1.2.7)

4. {ϵt} are jointly independent and are independent of past ys.

5. {ϵt} has a probability density function that is continuous and positive everywhere.

6. fzt(y) is non periodic and bounded on all compacts sets for all k and zt ∈ S.

Furthermore, we require that the following conditions be satisfied.
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Condition A

• {Yt, t ≥ 0} is geometrically ergodic

• For all y, y
′ ∈ Rp, y′ is a vector of past values of y.

inf
θ
fθ(y | y′

) > 0, sup
θ
fθ(y | y′

) <∞ (1.2.8)

•

b+ = sup
θ

sup
y,y′

fθ(y | y′
, k) <∞ (1.2.9)

and

E| log inf
θ
fθ(Y1 | Y0)| <∞ (1.2.10)

We propose the following Lemma on yt
Lemma 1.1. Let (yt) be an MAR process and Yt = (yt, . . . , yt−p+1)

′
. Then Conditon1.2

holds.

Proof 1.1. The geometric ergodicity of Yt has been established in (Akinyemi, 2013). As-
sume

fk(
yt − ϕk,0 −

∑pk
i=1 ϕk,iyt−i)

σk
≤ 1. (1.2.11)

Choose a positive constant M such that for σ2k > 0, let σ2k ≥M2. Then,

fθ(y | y′
, k) ≤

g∑
k=1

πk
M

=
1

M

g∑
k=1

πk =
1

M
(since

∑g
k=1 πk = 1)

this implies that fθ(y | y′
, k) ≤ 1

M

which then implies that fθ(y | y′
, k) ≤ 1

σk

so that for all y, y
′ ∈ R, we can write fθ(y, | y

′
) ≤ 1

σk
. Furthermore by the compactness of

Θ, we can choose M > 0 such that for k = 1, . . . , g, ϕ2k,0, ϕ
2
k,i, σ

2
k ≤M2. Then,

(y − ϕ2k,0 − ϕ2k,iy
′
)2 ≤ (|y + ϕ2k,0 + ϕ2k,iy

′
)|2 ≤ (|y|+M |y′ |)2, (1.2.12)

and

0 ≤ σk ≤M(1 + |y′ |). (1.2.13)

So that for all θ ∈ Θ,

fθ(y | y′
) ≥ max

k=1,...,g

πk
σk
fk(

yt − ϕk,0 −
∑pk

i=1 ϕk,iyt−i)

σk
(1.2.14)

≥ max
k=1,...,g

πk
M(1 + |y′ |)

fk(
yt − ϕk,0 −

∑pk
i=1 ϕk,iyt−i)

σk

≥ 1

g

1

M(1 + |y′ |)
fk(

|y|+M |y′ |
σk

) > 0.
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maxk=1,...,g πk ≥ 1
g and

∑g
k=1 πk = 1 so that the second part of Condition1.2 follows.

By the definition of fθ(·) and proof of the second part of Condition1.2 , Equation b+ is
trivially dominated by a positive constant thus the first part of the third part of Condition1.2
holds. To prove the second part,

1

σk
≥ inf

θ
fθ(Y1 | Y0) ≥

1

gM
· 1

1 + |Y0|
fk(

(|Y1|+M |Y0|
σk

) > 0 (1.2.15)

So that

log(inf
θ
fθ(Y1 | Y0)) ≥ log | 1

gM
|+ log(

1

1 + |Y0|
) + log(fk(

|Y1|+M |Y0|
σk

)) > 0

(1.2.16)

= − log |gM | − log(1 + |Y0|) + log(fk(
|Y1|+M |Y0|

σk
))

≥ − log |gM | − 0 + log(fk(
|Y1|+M |Y0|

σk
)) > −∞

using the fact that EY 2
t < ∞, E log(1 + |Y0|) ≤ E|Y0| < ∞, hence the second part of of

the third part of Condition1.2 follows.

2. Main Results: Aymptotic properties of the MAR model

Our first result in this section is concerned with the consistency of the MLE of the MAR
model.

2.1 Consistency of the maximum likelihood estimator of the MAR model

Theorem 2.1. Let Yt = (yt, . . . , yt−p+1)
′
, each yt be an MAR model as defined in Equation

(1.1.3). Under some mild assumptions, for any z0 ∈ 1, . . . , g

lim
n→∞

θ̂n,z0 = θ0 a.s., (2.1.1)

where, θ̂n,z0 = argmaxθ∈Θ ln(θ, z0) is the maximum likelihood estimator of θ.

Proof 2.1. The proof of the above theorem largely uses the results in (Douc et al., 2004).Their
assumptions/proofs are hinged on the paper by (Wald, 1949) which says that there exists
a deterministic asymptotic criterion function l(θ) such that n−1ln(θ, z0) → l(θ) a.s. uni-
formly with respect to θ ∈ Θ.

The conditional form of the log likelihood function that is ln(θ, z0) is considered instead of
l(θ). So that proving consistency of the maximum likelihood estimator of the MAR model
involves checking that the limit of the normalized log-likelihood is only maximized at the
true value of the parameter (θ0) that is, l(θ) ≤ l(θ0).

Now, by the first and second part of Condition1.2 above, for (Yt, t ≥ 0), Yt = (yt, . . . , yt−p+1)
′

each yt being an MAR process. Then the following holds for all θ ∈ Θ.

sup
θ∈Θ

|ln(θ, z0)− ln(θ)| ≤
1

(1− ρ)2
a.s for some 0 ≤ ρ < 1t (2.1.2)

where

ln(θ, z0) = logPθ(Yt | Y (0,t−1), Z0 = z0), ln(θ) = logPθ(Yt | Y (0,t−1)), (2.1.3)
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ρ = 1− µ−
µ+

, 0 ≤ µ− = inf
θ
inf
i,j
ai,j and µ+ = sup

θ
sup
i,j

ai,j < 1.

So that, 1
n ln(θ) =

1
n

∑n
t=1 logPθ(Yt | Y (0,t−1)) can be approximated by 1

n

∑n
t=1 logPθ(Yt |

Y (−∞,t−1)), where 1
n

∑n
t=1 logPθ(Yt | Y (−∞,t−1)) is the sample mean of observations

from a two-sided stationary ergodic sequence of random variables in L
′
. We summarize

this in the following corollary.

Corollary 2.1. Given that the process Yt satisfies Condition1.2. Then for all z0 and θ ∈ Θ,
the following holds,

lim
n→∞

1

n
ln(θ, z0) = l(θ). (2.1.4)

Proof 2.2. We adapt the following notation from (Douc et al., 2004),

∆t,m,z(θ) = logPθ(Yt | Y (−m,t−1), Z−m = z−m) and (2.1.5)

∆t,m(θ) = logPθ(Yt | Y (−m,t−1))

so that

ln(θ) =

n∑
t=1

∆t,0(θ) (2.1.6)

(Douc et al., 2004, Lemma 3) show that ∆t,m,z(θ) and ∆t,m(θ) are uniform Cauchy se-
quence and converge uniformly with respect to θ a.s. They also show that they are uni-
formly bounded in L1 for all m and that limm→∞∆t,m,z(θ) = ∆t,∞(θ).
They say that the inequality does not depend on z and is a stationary ergodic process such
that the following inequalities hold,

sup
θ

sup
z

|∆t,m,z(θ)−∆t,m′ ,z′ | ≤
ρt+(m∧m′

)−1

1− ρ
and (2.1.7)

sup
θ

sup
z

|∆t,m,z(θ)−∆t,m| ≤ ρt+m−1

1− ρ

Setting m = 0 and m
′ → ∞ in the system of Equations (2.1.7) gives

sup
θ

|∆t,0,z(θ)−∆t,∞| ≤ ρt−1

1− ρ
and (2.1.8)

sup
θ

|∆t,0,z(θ)−∆t,0| ≤
ρt−1

1− ρ
.

Pulling them together and summing over all t we have,

n∑
t=1

sup
θ

|∆t,0(θ)−∆t,∞| ≤ 2

(1− ρ)2
a.s. (2.1.9)

Thus by Equation (2.1.9) 1
n ln(θ) can be approximated by the sample mean of a stationary

ergodic sequence, uniformly with respect to θ ∈ Θ ((Douc et al., 2004)), so that by the
ergodic theorem we can write,

1

n
ln(θ) → l(θ) = E∆0,∞(θ) a.s. (2.1.10)
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This together with Equation 2.1.3 imply that for θ ∈ Θ,

lim
n→∞

1

n
ln(θ, z0) = l(θ) a.s. (2.1.11)

For the MAR process, at any initial point z0, 1
n(ln(θ, zθ)− ln(θ)) → 0 uniformly with

respect to θ ∈ Θ due to the uniform forgetting of the conditional Markov chain ((Douc
et al., 2004)).

Hence, θ̂n,z0 and θ̂n are asymptotically equivalent and are the maximum of l(θn,z0) and
l(θn) respectively.

By Condition1.2 above, we can have

sup
θ

sup
1≤z0≤k

∣∣∣∣ 1nln(θ, z0)− l(θ)

∣∣∣∣→ 0 as n→ ∞ (2.1.12)

So that given the following conditions,

Condition B

• The equality

θ = θ0implies that E

[
log

Pθ(y
(1,p) | y0)

Pθ0(y
(1,p) | y0)

]
= 0 for all p ≥ 1 (2.1.13)

.

• The expectation

E

[
Eθ0

[
log

Pθ(y
(1,p) | y0)

Pθ0(y
(1,p) | y0)

| y0

]]
= 0 for all p ≥ 1 (2.1.14)

.

We are able to show that the stationary laws of the observed process associated with
two different values of the parameters (say PY

θ ,PY
θ0 ) do not coincide unless the parameters

do ((Douc et al., 2004)).
Hence for Yt = (yt, . . . , yt−p+1)

′
, by Condition1.2 and Condition2.1, we can write

PY
θ = PY

θ∗ implies E

[
log

Pθ0(y
(1,p) | y0)

Pθ0(y
(1,p) | y0)

]
= 0 for all p ≥ 1 (2.1.15)

Then

l(θ) = l(θ0) implies that θ = θ0 (2.1.16)

For the MAR model, at any initial point z0, 1
n(ln(θ, z0) − ln(θ)) → 0 uniformly with

respect to θ ∈ Θ this follows from Proposition 2.1.12. The proposition also establishes
the consistency of the conditional log-likelihood of the model. Furthermore, the geomet-
ric ergodicity of the chain Yt (and by implication the process yt) establishes the β-mixing
property and hence absolute regularity of the process yt so that Equation (??) is established.
This together with Propositions 2.1.12 and Proposition?? as well as the identifiably con-
dition established by Condition2.1 and Lemma ?? prove the consistency of the maximum
likelihood estimators of the MAR model.
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2.2 Asymptotic normality of the maximum likelihood estimator of the MAR model

Theorem 2.2. Let Yt = (yt, . . . , yt−p+1)
′
, each yt be an MAR model as defined in Equation

(1.1.3). Given the theorem above holds and assume that E(ϵ4t ) < ∞ and that the Fisher
information matrix (I(θ0)) is positive definite, then for all z0 ∈ 1, . . . , g then,

√
n(θ̂n,z0 − θ0) → N (0, (I(θ0))−1) (2.2.1)

where

I(θ0) = −Eθ0
∂2 log pθ0(Yt | Y−∞, . . . , Yt−1)

∂θ∂θ′
. (2.2.2)

Proof 2.3. The proof of asymptotic normality makes use of the following,

• A central limit theorem (CLT) for the Fisher score function 1√
n
∂ln(θ0,z0)

∂θ .

• A local uniform law of large numbers for the observed Fisher information 1
n
∂2ln(θ0,z0)

∂θ∂θ
′ in

the neighborhood of θ0.

(Douc et al., 2004) express the score function and the observed fisher information as func-
tions of conditional expectations of the complete score function and the complete Fisher
information.

2.2.1 A central Limit theorem for the score function

The method here for the Fisher identity is due to (Louis, 1982) (see also (Tanner, 1993)).
The Louis Missing Information Principle says that,

Observed Information=Complete Information - Missing Information.
Now, for all z0 and θ ∈ Θ,

1√
n

∂ln(θ
0, z0)

∂θ
=

1√
n

n∑
t=1

∂ log pθ0(Yt | Y (0,t−1), Z0 = z0)

∂θ
(2.2.3)

=
1√
n

∂
∑n

t=1∆t,0,z0(θ
0)

∂θ
.

Using the notation in the proof of Corollary 2.1, write,

∂∆t,0,z0(θ)

∂θ
= Eθ

[
t∑

i=1

ϕ(θ,Qi−1, Qi) | Y (0,t), Z0 = z0

]
(2.2.4)

− Eθ

[
t−1∑
i=1

ϕ(θ,Qi−1, Qi) | Y (0,t−1), Z0 = z0

]

where

ϕ(θ,Qi−1, Qi) = ϕ(θ, (Zi−1, Yi−1), (Zi, Yi)) (2.2.5)

=
∂ log(aZi−1,Zifθ(Yi | Yi−1, Zi))

∂θ

is the conditional score function of (Zi, Yi) given (Zi−1, Yi−1).
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Similarly, for m ≥ 0,

∂∆t,m(θ)

∂θ
= Eθ

[
t∑

i=1

ϕ(θ,Qi−1, Qi) | Y (−m,t)

]
(2.2.6)

− Eθ

[
t−1∑
i=1

ϕ(θ,Qi−1, Qi) | Y (−m,t−1)

]
,

consider the filtration Ft = σ(Ys, s ≤ t) for all, t ∈ Z. By the dominated convergence
theorem, we can write,

Eθ0

[ t−1∑
i=−∞

(
Eθ0

[
ϕ(θ0, Qi−1, Qi

)
| Y (−∞,t)

]
(2.2.7)

− Eθ0

[
ϕ(θ0, Qi−1, Qi) | Y (−∞,t−1)

]
) | Y (−∞,t−1)

]
= 0,

where

Eθ0

[
ϕ(θ0, Qi−1, Qi) | Y (−∞,t−1)

]
(2.2.8)

= Eθ0

[
Eθ0

[
ϕ(θ0, Qi−1, Qi) | Y (−∞,t−1), Zt−1

]
) | Y (−∞,t−1)

]
= 0

So that {∂∆t,∞(θ0)
∂θ }∞t=−∞ is an Ft = σ(Ys, s ≤ t)− adapted, stationary, ergodic and square

integrable martingale increment sequence for which the CLT for sums of such sequences
(see (Durrett, 1996)) can be applied to show that,

1√
n

n∑
t=1

∂∆t,∞(θ0)

∂θ
→ N (0, I(θ0)), (2.2.9)

where

I(θ0) = Eθ0 [
∂∆0,∞(θ0)

∂θ

∂∆0,∞(θ0)

∂θ

T

] (2.2.10)

is the asymptotic Fisher information matrix defined as the covariance matrix of the asymp-
totic score function ((Douc et al., 2004)).

So that

lim
n→∞

E

∣∣∣∣∣
∣∣∣∣∣ 1√
n

n∑
t=1

(
∂∆t,0(θ

0)

∂θ
− ∂∆t,∞(θ0)

∂θ
)

∣∣∣∣∣
∣∣∣∣∣
2

= 0 (2.2.11)

and

lim
n→∞

E

∣∣∣∣∣
∣∣∣∣∣ 1√
n

n∑
t=1

(
∂∆t,0,z(θ

0)

∂θ
− ∂∆t,0(θ

0)

∂θ
)

∣∣∣∣∣
∣∣∣∣∣
2

= 0 (2.2.12)

Hence,

1√
n

n∑
t=1

∂∆t,0(θ
0)

∂θ
and 1√

n

∑n
t=1

∂∆t,0,z(θ0)
∂θ have the same limiting distribution.

(2.2.13)
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Therefore , ∂∆t,0(θ0)
∂θ can be approximated in L2 by a stationary martingale increment

sequence.
Thus

1√
n

n∑
t=1

∂∆t,0,z(θ
0)

∂θ
→ N (0, I(θ0)). (2.2.14)

and

1√
n

∂ln(θ
0, z0)

∂θ
→ N (0, I(θ0)). (2.2.15)

2.2.2 Uniform Law of Large numbers for the observed Fisher information

A locally uniform law of large numbers is explored for the observed Fisher information
that is, for all possibly random sequences {θ0n} such that θ0n

a.s.−−→ θ0 and

− 1

n

∂2ln(θ
0
n, z0)

∂θ∂θ′
(2.2.16)

converges a.s. to the Fisher information matrix at θ0.
First express the observed Fisher information in terms of the hessian of the complete

log-likelihood, we do this by leaning on the Louis missing information principle [see
(Louis, 1982),(Tanner, 1993), (Wong and Li, 2000)]. The basic idea in the principle leads
to,

∂2 log pθ(Y
(1,n) | Y0, Z0 = z0)

∂θθ′

= Eθ

[
n∑

i=1

ψ(θ,Qi−1, Qi) | Y (0,n), Z0 = z0

]

+ varθ

[
n∑

i=1

ϕ(θ,Qi−1, Qi) | Y (0,n), Z0 = z0

]
, (2.2.17)

where

ψ(θ,Qi−1, Qi) = ψ(θ, (Zi−1, Yi−1)(Zi, Yi)) (2.2.18)

=
∂2 log(aZi−1,Zifθ(Yi | Yi−1, Zi))

∂θ∂θ′
.

Also,

Eθ

[
n∑

i=1

ψ(θ,Qi−1, Qi) | Y (0,n), Z0 = z0

]

=

n∑
t=1

(
Eθ

[
t∑

i=1

ψ(θ,Qi−1, Qi) | Y (0,t), Z0 = z0

]

− Eθ

[
t−1∑
i=1

ψ(θ,Qi−1, Qi) | Y (0,t−1), Z0 = z0

])
(2.2.19)
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and

varθ

[
n∑

i=1

ϕ(θ,Qi−1, Qi) | Y (0,n, Z0 = z0

]

=

n∑
t=1

(
varθ

[
t∑

i=1

ϕ(θ,Qi−1, Qi) | Y (0,t), Z0 = z0

]

− varθ

[
t−1∑
i=1

ϕ(θ,Qi−1, Qi) | Y (0,t−1), Z0 = z0

])
. (2.2.20)

As t→ ∞ the initial condition on Y0 becomes more trivial.
Thus for t ≥ 1 and m ≥ 0,define,

∂∆t,m(θ)

∂θ
= Eθ

[
t∑

i=−m+1

ψ(θ,Qi−1, Qi) | Y (−m,t)

]

− Eθ

[
t−1∑

i=−m+1

ψ(θ,Qi−1, Qi) | Y (−m,t)

]
(2.2.21)

and

Γt,m(θ) = varθ

[
t∑

i=−m+1

ϕ(θ,Qi−1, Qi) | Y (−m,t)

]

− varθ

[
t−1∑

i=−m+1

ϕ(θ,Qi−1, Qi) | Y (−m,t−1)

]
(2.2.22)

Now, ∂∆t,m(θ)
∂θ and Γt,m(θ) both converge to ∂∆t,∞(θ)

∂θ and Γt,∞(θ) respectively in L1 as
m→ ∞. It also follows that {∂∆t,m(θ)

∂θ }∞t=1 and {Γt,∞(θ)}∞t=1 are stationary and ergodic.
Thus, the observed Fisher information will converge to

−Eθ0

[
∂∆t,m(θ0)

∂θ
+ Γt,∞(θ0)

]
(see (Douc et al., 2004).) (2.2.23)

For all z0, the Fisher Information identity implies that

1

n
Eθ

[
∂ln(θ, z0)

∂θ

∂ln(θ, z0)
T

∂θ
| Y0, Z0 = z0

]
= − 1

n
Eθ

[
∂2ln(θ, z0)

∂θ∂θ′
| Y0, Z0 = z0

]
(2.2.24)

Finally, the Louis missing information principle ((Louis, 1982) and (Tanner, 1993)) show
that the limits in n of the two quantities in Equation (2.2.24) both coincide with the Fisher
information at θ0 which completes the proof.

3. Applications

3.1 An MAR approach to measuring VaR and ES

We apply the MAR (3;2,2,1) models with both Gaussian and Student-t innovations to es-
timating 1% and 5% one step ahead out of sample VaR and ES for the Standard and Poor
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(S&P500) log returns. The data covered the period between 2002-06-24 and 2012-06-22.
Descriptive statistics computed gave a Kurtosis and skewness of 1.3761 and 8.4558 respec-
tively indicating that the data is far from Gaussian. The MAR(3;2,2,1) model is a MAR
model with three AR components. The first two AR components are of order two and the
third one is of order one, that is, p1 = p2 = 2, p3 = 1 and k = 3. The model is such that,

yt =


ϕ1,0 + ϕ1,1yt−1 + ϕ1,2yt−2 + σ1ϵ1(t) with probability π1
ϕ2,0 + ϕ2,1yt−1 + ϕ2,2yt−2 + σ2ϵ2(t) with probability π2
ϕ3,0 + ϕ3,1yt−1 + σ3ϵ3(t) with probability π3,

with conditional distribution

Ft|t−1(x) = π1F1

(
yt − ϕ11yt−1 − ϕ12yt−2

σ1

)
(3.1.1)

+ π2F2

(
yt − ϕ21yt−1 − ϕ22yt−2

σ2

)
+ π3F3

(
yt − ϕ31yt−1

σ3

)
.

3.1.1 The approach

• The parameters of the model is estimated by the Maximum (conditional) likelihood
method using the EM algorithm of (Dempster et al., 1977). The standard errors of
this parameter estimates can be computed using (Louis, 1982) (see (Wong and Li,
2001) for a more detailed description).

• One step ahead predictive distribution is then computed for the returns series based
on the MAR model (see (Boshnakov, 2009)).

• VaR is computed as the 100α% quantile of the predictive distribution and ES is com-
puted as, E[rt | rt > V aRα].

3.1.2 VaR and ES estimation results

Table 3.1.2 below shows the results of the estimated VaR and ES. The results as interpreted
thus; an investor that holds a long position worth 100,000GBP in S&P500, then estimates
1-day VaR based on the MAR(3;2,2,1) model with Gaussian innovations at 1% is computed
as, 100,000X0.0349 =3,490GBP with corresponding ES as 5,490GBP.

The results were compared to the Empirical Quantile method, celebrated Riskmetrics
method, the AR(2)-GARCH(1,1) models with both Gaussian and students t-innovations.

1% and 5% VaR/ES for daily S&P500 log returns (returns are in percentages)

3.2 Interpretation of the results

Leveraging (Tsay, 1997)’s suggestion that for daily returns, the empirical quantiles of 5%
and 1% are decent estimates of the quantiles of the return distribution, we treat the results
based on empirical quantiles as conservative estimates of the true VaR (i.e., lower bounds,
We do not backtest) in this literature, we simply comment on the range of values across all
the methods considered. We find that the approaches based on MAR models give values
close to the empirical quantiles, while the approaches based on AR-GARCH models tend
to underestimate VaR and ES, these results agree with the results in (Tsay, 1997).
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VaR ES
1% 5% 1% 5%

Riskmetrics 0.0254 0.0180 0.0291 0.0226
GARCH(1,1)-norm 0.0264 0.0187 0.0302 0.0234

AR(2)-GARCH(1,1)-norm 0.0261 0.0184 0.0299 0.0231
GARCH(1,1)-t 0.0265 0.0187 0.0302 0.0235

AR-GARCH(1,1)-t 0.0263 0.0186 0.0302 0.0234
Empirical Quantile 0.0409 0.0216 0.0573 0.0341

EVT Threshold (0.019) 0.0391 0.0192 0.0541 0.0319
EVT -GEV 0.0411 0.0217 0.0579 0.0341

MAR(3;2,2,1)-norm 0.0358 0.0215 0.0455 0.0306
MAR(3;2,2,1)-t 0.0349 0.0169 0.0549 0.0294

4. Summary

We have considered the asymptotic properties of the MLE of the MAR process. We con-
sidered a vector of MAR processes (Yt) as a markov regime autoregressive process with a
compact and finite hidden space.

We considered the conditional form of the log likelihood function that is ln(θ, z0) in-
stead of l(θ) and show that the Maximum Likelihood Estimate of the MAR model is both
consistent and asymptotically normal.

We also considered the out of sample VaR and ES measures, at tail probabilities α =
1% and α = 5% for each of S&500,PWe treated the results based on empirical quantiles
as conservative estimates of the true VaR (i.e., lower bounds), and find that the approaches
based on EVT and MAR models give significantly better results as they give values close
to the empirical quantiles while the approaches based on GARCH models tend to underes-
timate VaR and ES.

We found that the MAR(3;2,2,1) models with Gaussian and Student-t innovations con-
sistently perform well at both α = 5% and α = 1%.
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