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Abstract 
For ophthalmic devices intended to provide improvement in uncorrected (without glasses 
or contact lenses) near visual acuity, uncorrected distance visual acuity may be used to 
assess risk, since subjects may be giving up distance vision for some gain in near vision.  
In this situation, one joint analysis of the benefit and risk of the device may be the 
assessment of how much distance vision the subjects give up (risk) for how much 
improvement in their near vision (benefit). We propose a method for assessing this 
benefit and risk that involves calculation of a ratio.  A limitation is that ratios are 
commonly reported in the literature as a point estimates without reporting of the 
confidence intervals around these estimates. We compare the performance of the Delta, 
Fieller, and Bootstrap methods of constructing confidence intervals for our proposed ratio. 
A simulation is carried out to assess the performance of each of the three approaches. 
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1. Introduction 
 

In trials of ophthalmic devices with a main objective of demonstrating improvement in 
uncorrected (without glasses or contact lenses) near or intermediate visual acuity, 
uncorrected distance visual acuity (UCDVA) may be used to assess risk, since subjects 
may be giving up distance vision for some gain in near or intermediate vision. In this 
case, a joint analysis of the benefit and risk of the device may be the assessment of how 
much distance vision the subjects give up for how much near or intermediate vision 
they gain. As a hypothetical example, let’s assume that there is a clinical trial 
investigating a device intended to provide improved near vision in patients with 
presbyopia, loss of the eye’s ability to change focus from distance to near that occurs 
with the normal aging process. Some of the inclusion criteria may include extremely 
low refractive error (an error in the focusing of light by the eye) for distance, 
exceptionally good uncorrected distance visual acuity (20/20 distance vision), and need 
for reading glasses. In this case, the benefit may be defined as clinically significant 
improvement of uncorrected near visual acuity (UCNVA). The investigator may want 
to show the benefit of the device by testing the hypothesis that the percentage of 
subjects with improvement of UCNVA exceeds a certain target value. Another 
objective of such a trial may be preservation of UCDVA, since subjects enrolled in the 
trial have extremely low refractive error and may not require glasses or contact lenses 
to see well for distance. Therefore, loss of UCDVA may be seen as a risk, defined as a 
certain degree of loss of letters read on the visual acuity chart.  This risk of the device 
may be assessed by testing the hypothesis that the percentage of subjects with a certain 
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degree of loss of UCDVA exceeds a certain target value. Alternatively, instead of 
evaluating the benefit and risk separately, we may consider them jointly.  

 
 

2. Joint Evaluation of Benefit and Risk 
 
Using our hypothetical example discussed above, we propose a method of evaluating 
benefit and risk simultaneously.   The goal of therapy for the subjects described above 
may be not to have to wear glasses. Therefore, it is important to know how much 
UCDVA the subjects give up for how much gain in their UCNVA. To begin, let’s look 
at a hypothetical scatter plot of the within-subject change of UCNVA and UCDVA 
from baseline to Month 24 in Figure 1 below. Each dot in this figure represents a 
subject enrolled in the trial.  The scales on the X-axis and Y-axis represent the 
postoperative change in the number of letters of UCNVA and UCDVA from 
preoperatively, respectively. The vertical reference line is drawn at +10 letters of 
change in UCNVA. Any dots appearing to the right of this line represent subjects who 
gained 10 letters or more of UCNVA, which may be considered clinically significant. 
The horizontal reference line is drawn at a -5-letter change in UCDVA, which may be 
considered within the measurement error. Any dots appearing below the horizontal 
reference line represent subjects that lost more than 5 letters of UCDVA from 
preoperative baseline to 24 months postoperatively. 
 
Figure 1. Change in Uncorrected Near Visual Acuity (UCNVA) vs. Change in 
Uncorrected Distance Visual Acuity (UCDVA) from Preoperative Baseline at 24 
Months Postoperatively (in units of letters on the visual acuity chart)     
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The first quadrant (Q1), the top right quadrant of Figure 1, is the most favorable 
benefit/risk quadrant in terms of uncorrected visual acuity outcome, since the subjects 
in this quadrant have clinically significant gain in UCNVA while not losing more than 
5 letters of UCDVA. On the other hand, the third quadrant (Q3), bottom left quadrant, 
is the least favorable, since subjects in this quadrant experienced a loss of UCDVA of 
more than 5 letters while not gaining a clinically significant amount of UCNVA. 
 
Let  denote the proportion of subjects in Q1 who have clinically significant gain in 
UCNVA without losing more than 5 letters of UCDVA.  Let  denote the proportion 
of subjects in Q3 who have no clinically significant gain in UCNVA with loss of 
UCDVA of more than 5 letters.  
 
We are interested in the ratio of  over  (we let This ratio of proportions 
may be a more meaningful description of the effect of the device on the uncorrected 
vision of the subjects than the difference, even though statistical inference is more 
complicated for the ratio than the difference of proportions. One of the difficulties in 
dealing with ratios arises in computing variance estimators. 
 
Despite its popularity as a measure that is used in medical device evaluation, the ratio 
of benefit and risk is often interpreted and reported primarily as a point estimate 
without its confidence interval. However, the inferential conclusion one may draw from 
a sample statistic should reflect uncertainty inherent from the estimation process, and 
appropriate methods that allow proper interpretation of study findings. One way of 
proper analysis is to construct confidence interval around the estimate. 
 
 

3. Calculating the Confidence Interval for the Ratio of Two Proportions 
 
To estimate the confidence interval of the ratio  where  and  are correlated, let 

 be an estimate of . Let’s define the variance covariance matrix by  
 

     11 12

21 22

 (1)
v v
v v
 
 
 

  

 
where 11v and 22v represent the variance of p̂ and q̂ , respectively.  
 
Using the notation above, we now can describe the three approaches that can be used to 
construct a confidence interval for the parameter , namely the Delta, Fieller, and 
Bootstrap methods. We selected these three methods, because Delta requires a strong 
assumption about the distribution of the data, while Bootstrap requires no assumption,  
and, Fieller requires a weak assumption.  
 
 

3.1 The Delta Method 
The Delta method is a classic technique that is based on a Taylor expansion, yielding an 
approximate variance for nonlinear function of a random variable. It assumes that the 
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ratio is normally distributed when the sample size is reasonably large. According to the 
delta method, the variance estimate of θ̂  is estimated by  

2 2
11 12 222

1ˆ ˆ ˆ( 2 )      (2)
ˆ

v pv p v
q

σ = − + . 

For a large sample size, we can assume that   follows a normal distribution. Specifically, 
we can show that:  

3
ˆ  ( , ( )) as      (3)

d p pN p q n
q nq

q → + →∞ . 

 
3.2 The Fieller Method    
Fieller (1954) expressed ratios as linear combination of random variables. He rewrote the 
ratio  as . And, then he considered linear combination,   
A familiar statistical theory says that a linear combination of normally distributed 
random variables is itself normal. Therefore, if p̂ and q̂ have a bivariate normal 

distribution with mean vector ( ),p q ′ and variance-covariance matrix as given in 
equation (2), then 
 , where = + .  A (1 )%α−  Fieller confidence 
interval of θ  can be then obtained by finding the set of values satisfying the inequality 
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It can be rewritten as    0         (4) 

Equation (4) is a quadratic function in the parameter of interest θ , and solving for it leads 
to the confidence limits.  

     
3.3 The Bootstrap Method    
The Bootstrap method has become widely used in statistical inference due to its 
accessibility. It is shown to be successful in many situations, and is accepted as an 
alternative to the asymptotic methods. In our case, the sampling distribution of the 
parameter θ  is simulated by sampling from the trinomial distribution and computing θ̂  
from the “bootstrapped” sample each time. Below are the steps used for computing 
bootstrapped confidence limits for θ : 

Step 1: Generate   from  
Step 2:  numbers from  
Step 3: Generate  number from  

Step 4:   numbers from  

Step 5: Calculate and plot the ratio of    
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Step 6: Repeat step 1 to 5 B times and compute the 0.025 and 0.975 quantiles in the 
simulated distribution.   
 
 

4. Simulation and Results 
 
A simulation study was carried out to investigate the performance of the methods for 
calculating the confidence limits for the ratio. The coverage probabilities were calculated 
and histograms were created for 10,000 simulated ratios.The simulation was conducted 
using the following steps: 
 

1. For each of the following sample sizes (n=50, 100, 300, and 500), 10,000 
samples were generated from where 

 represent the number of subject in Q  1,3i iN i = . 

2. For each sample, the ratio   and confidence intervals (CIs) by the three 

methods were calculated. 
3. The coverage probability (the number of samples that the “true” value is covered 

by the CI divided by 10,000) was calculated for each method, and histograms of 
the coverage probabilities for the CIs were plotted. 

 
    Figure 2. Histograms of simulated ratios 
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Figure 2 provides the histograms of simulated ratios when the sample size is 50, 100, 
300, and 500. We can see that the distribution of ratios is skewed to the right. The 
skewness is very severe when the sample size is 50, and somewhat severe when it is 100. 
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When the sample size is 300, the distribution looks very close to the normal even though 
it is still slightly skewed to the right.  
 

    
Table 1. Coverage Probabilities 

Cov. Prob. n=50 n=100 n=300  n=500 
Delta 92.9% 94.1% 94.8% 94.8% 
Fieller 93.5% 93.8% 94.5% 94.7% 

Bootstrap 93.9% 94.3% 94.6% 94.6% 
   

Table 2. Confidence Intervals 

(LL, UL) n=50 n=100 n=300 n=500 
Delta (0.99, 9.06) (2.23, 7.87) (3.42, 6.64) (3.77, 6.25) 
Fieller (2.61, 15.73) (3.09, 10.43) (3.75, 7.26) (3.98, 6.58) 

Bootstrap (2.58, 14.33) (3.09, 9.75) (3.74, 7.14) (3.97, 6.52) 
 
Table 1 and 2 represent the simulation results. As expected, the coverage probabilities of 
the CIs as calculated by the Delta method are smaller than those as calculated by the 
Fieller and Bootstrap methods when the sample size is 50. This is because the distribution 
of ratios are skewed to the right when n=50. However, the width of confidence intervals 
with Delta method is smaller than those from Fieller and Bootstrap when n=50 and 
n=100. When n=300 or n=500, it appears that the performances of the three methods are 
similar in both coverage probability and confidence interval width.  
 
 

5. Conclusions 
 
The joint analysis of benefit and risk as related to uncorrected visual acuity may be useful 
in some ophthalmic device trials. Based on our simulations, the Delta, Fieller, and 
Bootstrap methods of calculating the CIs around the ratio of the proportions of subjects 
with favorable UCVA benefit/risk outcomes to those with unfavorable benefit/risk 
outcomes, perform well when the sample size is reasonably large (i.e., >300). However, 
when the sample size is small (i.e., ~50), the CIs calculated bv the Fieller and Bootstrap 
methods have better coverage probabilities, but their widths are larger than those 
calculated by the Delta method. One explanation is that Delta method assumes that the 
ratio is normally distributed, and thus symmetric around its mean. Fieller doesn’t assume 
that the ratio is normally distributed, but it requires that proportions are jointly normally 
distributed. The confidence intervals from the Fieller method will not be symmetric 
around the mean in general. Bootstrap doesn’t require any assumptions, and seems to 
perform well even when the sample size is small. 
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