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Abstract 
The asymptotic tests for the equality of several frequency distributions and several markov chains have 
been developed. The tests of the equality of several contingency tables or frequency matrices and several 
transition frequency matrices have been discussed. Examples are cited for all cases. 
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1. Introduction 

 
A frequency table is a summarized grouping of data into mutually exclusive classes and the number of 
occurrences in all cells. Each cell in the table contains the count of the occurrences of values within a 
particular interval or group. A bivariate joint frequency distribution is represented as a two way contingency 
table or matrix where the total row and total column report the marginal frequencies or marginal 
distributions and each cell of the body of the table refers the joint frequencies.  
 
The term contingency table was first coined by Karl Pearson (1904). Numerous authors including Fisher 
(1922, 1925, 1935, 1962), Neyman (1928), Yates (1934, 1984), Wilks (1935), Deming and Stephan (1940), 
Barnard (1945, 1947, 1949, 1979), Pearson (1947, 1900, 1904), Lancaster (1949, 1969), Chernoff (1954), 
Lindley (1956), Bennett and Hsu (1960), Birnbaum (1962), Plackett (1964, 1977), Grizzle (1967), Boschloo 
(1970), Gail and Gart (1973), Kempthorne (1978), Gokhale and Kullback (1978), Berkson (1978), Mehta 
and Patel (1980), Upton (1982), Bartlett (1984), Goodman (1984), Suissa and Shuster (1985), Little (1989), 
Cox and Snell (1989), Agresti (1990, 2002, 2005), Gray (1990), Greenland (1991), Muse (1992), Berger 
and Boos (1994), Berger (1996), Kou and Ying (1996), Behseta (2005), Cheng (2008), Falay (2007), 
Klugkist (2010), Cho (2011) left their research works on contingency tables. No test has been developed so 
far for testing the equality of several contingency tables or joint frequency distributions or marginal 
frequency distributions. The authors aim to develop new asymptotic test statistics for checking the similarity 
or dissimilarity among the individual (cell) frequencies, marginal frequencies and overall discrepancy of 
several populations. Section 2 demonstrates the methods and methodology and the subsequent section 
displays a real life application of the proposed tests. The tertiary section draws the conclusion.  
 
A stochastic process or random process is a collection of random variables that represents the evolution of 
some physical process through the change of time, state or space. There are several (often infinitely many) 
directions in which the process may evolve. In case of discrete time, a stochastic process amounts to a 
sequence of random variables known as a time series (for example Markov chain). And the other is a 
random field, whose domain is a region of space, or random function whose arguments are drawn from a 
range of continuously changing values. One approach to stochastic processes treats them as functions of 
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one or several deterministic arguments whose values (outputs) are random variables: non-deterministic 
(single) quantities which have certain probability distributions. Random variables corresponding to various 
times (or points, in the case of random fields) may be completely different. Although the random values of 
a stochastic process at different times may be independent random variables, in most commonly considered 
situations they exhibit complicated statistical correlations. Assessing these correlations can be evaluated by 
means of knowing transitions which express the changes of state of the system and the probabilities 
associated with various state-changes are called transition probabilities. Markov chain, due to Andrey 
Markov, is a mathematical system that undergoes transitions from one state to another, between a finite or 
countable number of possible states. It is a random process characterized as memoryless stating the 
conditional probability distribution for the sequence in the system at the next step (and in fact at all future 
steps) depending only on the current stat, and not additionally on the state at previous steps. So, a Markov 
Chain is completely characterized by the set of all states and transition probabilities. By convention, we 
assume all possible states and transitions have been included in the definition of the Markov processes in 
such a way that there is always a next state and the process goes on forever. Thus, Markov chains have 
many applications as statistical models of real-life processes.  
 
Checking the discordance of two Markov Chains is a preliminary step of finding the mobility of any system 
over the change of time or place or other dimension(s). It is also a primary stage of comparing multiple 
Markov Chains. Unfortunately, comparison of Makov Chains is due to very few authors. Muse et al (1992) 
proposed a likelihood ratio test for testing the equality of evolution rates. Tan et al (2002) developed a 
Markov-chain-test for time dependence and homogeneity using likelihood ratio test statistic. Dannemann 
et al (2007) proposed a method of testing the equality of transition parameters based on transition 
probabilities and likelihood ratio test statistic that simply gives the significant dissimilarity of the total 
transition but not that of the individual transition. Falay, B. (2007) described intergenerational income 
mobility by testing the equality of opportunity due to knowing the comparison of East and West Germany 
using a transition matrix having positive and negative elements. Bartolucci, F. et al (2009) demostarted the 
use of a multidimensional extension of the latent Markov model using a multidimensional two parameter 
logistic model where they developed likelihood ratio test based on log of the ratio of transition probabilities. 
Cho, J. S et al (2011) expresses a test of equality of two unknown positive definite matrices with an 
application of information matrix testing. Hillary, R. M. (2011) proposed a Bayesian method of estimation 
the growth transition matrices. Altug, S et al (2011) showed the cyclical dynamics of industrial production 
and employment over developed and developing countries using the by Tan et al and first passage time 
analysis. Recently a new statistical method of Pair-wise and Multiple sequence alignment has been 
developed by Adnan et al (2012, 2011). It accomplishes not only an overall decision of the significant 
similarity/dissimilarity but also the similarity/dissimilarity of all possible individual and group wise 
transitions that help the biotechnologists to quickly identify the portion of the total infrastructure of the 
entire transitions that is significantly differing from that of the other sequence(s) and detect the core fact(s) 
for possible differences between bio-organisms.  
 
However, there is no test for the equality of multiple transition probability matrices. The present study aims 
to improve the comparison method of multiple transition probability matrices considering the more analysis 
of transition probabilities of the multiple sampled transition probability matrices. The author addresses an 
idea of using the difference among multiple transition probabilities of the multiple transition probability 
matrices which will ensure three advantages at least. Firstly, it will find the degree of disorderness among 
all possible individual and groupwise transition probabilities of states of multiple Markov chains; and 
secondly, will reduce the incompleteness of comparison among the multiple chains from the several 
unknown populations. Thirdly, it clearly identifies the portion of the total infrastructure of the entire 
transition that is significantly differing from those of the other chains.  
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2. Methods and Methodology for Several Contingency Tables 

 
With an aim of finding a test for comparing several contingency tables, let us demonstrate our method 
assuming that we have m population contingency tables or matrices from m populations and let the 
hypothesis be 

𝐻0: 𝑁1 = 𝑁2 = ⋯𝑁𝑚 
 

⇒𝐻0: (

𝑁111 𝑁121
𝑁211 𝑁221

⋯
𝑁1𝑐1
𝑁2𝑐1

⋮
𝑁𝑟11 𝑁𝑟21 𝑁𝑟𝑐1

) = (

𝑁112 𝑁122
𝑁212 𝑁222

⋯
𝑁1𝑐2
𝑁2𝑐2

⋮
𝑁𝑟12 𝑁𝑟22 𝑁𝑟𝑐2

) = ⋯ = (

𝑁11𝑚 𝑁12𝑚
𝑁21𝑚 𝑁22𝑚

⋯
𝑁1𝑐𝑚
𝑁2𝑐𝑚

⋮
𝑁𝑟1𝑚 𝑁𝑟2𝑚 𝑁𝑟𝑐𝑚

) 

 
∴ 𝐻0: 𝑃1 = 𝑃2 = ⋯ .= 𝑃𝑚 

 

⇒𝐻0: (

𝑃111 𝑃121
𝑃211 𝑃221

⋯
𝑃1𝑐1
𝑃2𝑐1

⋮
𝑃𝑟11 𝑃𝑟21 𝑃𝑟𝑐1

) = (

𝑃112 𝑃122
𝑃212 𝑃222

⋯
𝑃1𝑐2
𝑃2𝑐2

⋮
𝑃𝑟12 𝑃𝑟22 𝑃𝑟𝑐2

) = ⋯ = (

𝑃11𝑚 𝑃12𝑚
𝑃21𝑚 𝑃22𝑚

⋯
𝑃1𝑐𝑚
𝑃2𝑐𝑚

⋮
𝑃𝑟1𝑚 𝑃𝑟2𝑚 𝑃𝑟𝑐𝑚

) . 

 
where, the  Nl  (∀ 𝑙 = 1,2,… ,𝑚) is the population frequency matrix or contingency table of the lth 
population; 𝑃𝑙 is the population probability matrix or contingency table of the lth population such that 𝑃 =
(𝑝𝑖𝑗𝑙)𝑟×𝑐 , , where  𝑝𝑖𝑗𝑙 =

𝑁𝑖𝑗𝑙

𝑁..
  whereas  𝑁𝑖𝑗𝑙  is the population frequency of the (i,j)th element of the 

population frequency matrix 𝑁..𝑙 of the lth population and 𝑁..𝑙 = ∑ ∑ 𝑁𝑖𝑗𝑙
𝑐
𝑗=1

𝑟
𝑖=1 ; ∀ 𝑖 = 1,2, … , 𝑟; 𝑗 =

1,2,… , 𝑐. k sample contingency tables from each of the m population joint frequency distributions (a total 
of k samples are collected from each population) have been collected and on the basis of these samples we 
want to test whether they come from the same population.  After collecting k  sample-frequency matrices 
or tables from each of the m populations, the maximum likelihood estimators of the probability matrices 
are obtained as �̂�𝑙 = (�̂�𝑖𝑗𝑙)𝑟×𝑐    where  �̂�𝑖𝑗𝑙 =

𝑛𝑖𝑗𝑙

𝑛..𝑙
  whereas  𝑛𝑖𝑗𝑙 is the average frequency of the (i,j)th element 

of the average frequency matrix 𝑛..𝑙 constructed from k sample-frequency tables drawn from the lth 
population. Here, 𝑛..𝑙 = ∑ ∑ 𝑛𝑖𝑗𝑙

𝑐
𝑗=1

𝑟
𝑖=1 ;  ∀ 𝑖 = 1,2, … , 𝑟;  𝑗 = 1,2, … , 𝑐. 

 
For large  𝑛..𝑙 the asymptotic distribution of each element of transition probability matrices, according to 
the Central Limit Theorem, are distributed as normal such that  

�̂�𝑖𝑗𝑙   
 𝑛..𝑙 → ∞
~

 𝑁 (𝑝𝑖𝑗𝑙 ,
𝑝𝑖𝑗𝑙   (1 − 𝑝𝑖𝑗𝑙)

𝑘𝑛..𝑙
) . 

∴∑
(�̂�𝑖𝑗𝑙 − �̅�𝑖𝑗.)

2

�̅�𝑖𝑗.(1 − �̅�𝑖𝑗.)
𝑘𝑛..𝑙

𝑚

𝑙=1

~𝝌2(𝑚−1)∀ 𝑖 = 1,2,… , 𝑟; 𝑗 = 1,2,… , 𝑐. 

where  �̅�𝑖𝑗. =
𝑛𝑖𝑗1𝑝𝑖𝑗1+⋯+𝑛𝑖𝑗𝑚𝑝𝑖𝑗𝑚

𝑛𝑖𝑗1+⋯+𝑛𝑖𝑗𝑚
; ∀ 𝑖 = 1,2,… , 𝑟; 𝑗 = 1,2,… , 𝑐.  

However, we obtain an element-chi-square-matrix 𝜒2 of the following form 
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𝜒2 =

(

 
 
 
 
 
 
 
 
 
 
∑

(�̂�11𝑙 − �̅�11.)
2

�̅�11.(1 − �̅�11.)
𝑘𝑛..𝑙

𝑚

𝑙=1

∑
(�̂�12𝑙 − �̅�12.)

2

�̅�12.(1 − �̅�12.)
𝑘𝑛..𝑙

𝑚

𝑙=1

… ∑
(�̂�1𝑐𝑙 − �̅�1𝑐.)

2

�̅�1𝑐.(1 − �̅�1𝑐.)
𝑘𝑛..𝑙

𝑚

𝑙=1

∑
(�̂�21𝑙 − �̅�21.)

2

�̅�21.(1 − �̅�21.)
𝑘𝑛..𝑙

𝑚

𝑙=1

∑
(�̂�22𝑙 − �̅�22.)

2

�̅�22.(1 − �̅�22.)
𝑘𝑛..𝑙

𝑚

𝑙=1

… ∑
(�̂�2𝑐𝑙 − �̅�2𝑐.)

2

�̅�2𝑐.(1 − �̅�2𝑐.)
𝑘𝑛..𝑙

𝑚

𝑙=1

…

∑
(�̂�𝑟1𝑙 − �̅�𝑟1.)

2

�̅�𝑟1.(1 − �̅�𝑟1.)
𝑘𝑛..𝑙

𝑚

𝑙=1

…

∑
(�̂�𝑟2𝑙 − �̅�𝑟2.)

2

�̅�𝑟2.(1 − �̅�𝑟2.)
𝑘𝑛..𝑙

𝑚

𝑙=1

…

…

∑
(�̂�𝑟𝑐𝑙 − �̅�𝑟𝑐.)

2

�̅�𝑟𝑐.(1 − �̅�𝑟𝑐.)
𝑘𝑛..𝑙

𝑚

𝑙=1

)

 
 
 
 
 
 
 
 
 
 

 

∴ 𝜒2 = (
𝜒11
2 … 𝜒1𝑐

2

⋮ ⋱ ⋮
𝜒𝑟1
2 ⋯ 𝜒𝑟𝑐

2
). 

The above matrix of chi-squares can also be called as element-chi-square-matrix. From this matrix we 
basically can test four types of hypotheses which are as follows: 
 
(i) 𝐻0: 𝑝𝑖𝑗1 = … = 𝑝𝑖𝑗𝑚 ; or, the hypothesis of testing the equality of the each (i,j)th individual probabilities 
of the 𝑚 population probability matrices 𝑃1, 𝑃2 , … , 𝑃𝑚. 
 
(ii) 𝐻0: (𝑝𝑖11 𝑝𝑖21 … 𝑝𝑖𝑐1) = ⋯ = (𝑝𝑖1𝑚 𝑝𝑖2𝑚 … 𝑝𝑖𝑐𝑚);  or, the hypothesis of checking the 
equality of the ith  row probability vector or frequency distribution for all populations. Actually, it tests the 
equity of the frequentness of the ith variable of the first category over all intervals of the second category of 
𝑚 population contingency tables. Indeed the equality of the frequency distribution of the ith variable of the 
1st category is tested over 𝑚 populations. That is, 𝑚 (types of) frequency distributions are being tested 
whether equal or not for same variable. So, over a variable the equity of 𝑚 frequency distributions drawn 
from 𝑚 populations is being tested.  
     
(iii) 𝐻0: [𝑝1𝑗1 𝑝2𝑗1 … 𝑝𝑟𝑗1] = … = [𝑝1𝑗𝑚 𝑝2𝑗𝑚 … 𝑝𝑟𝑗𝑚];  or, the hypothesis of checking the 
equality of the jth  column vector for all populations. Indeed, it tests the equity of the frequentness of the jth 
variable of the second category over all variables of the first category of 𝑚 population contingency tables. 
The frequency distribution of the jth variable of the 2nd category is tested whether equal or not over 𝑚 
populations.     
 
(iv) 𝐻0: 𝑃1 = 𝑃2 = ⋯ .= 𝑃𝑚; or the hypothesis of testing the equity of the total contingency table or matix 
for one population is significantly varying to that of the other populations. It tests the similarity of 𝑚 
populations where each of the 𝑚 populations has joint frequency distributions over rc cells  or whether the 
𝑚 types of sample-joint frequency distributions or matrices or tables are drawn from same population. 
  
For the aforementioned tests for 𝑚 populations, the concern test statistics are given below respectively. 

 
(i) Test of equality of 𝑚 [(i,j)th] cell frequencies: Comparing each  𝜒𝑖𝑗2  with the tabulated  

𝜒(𝑚−1,.∝)
2  of (𝑚− 1) degree of freedom,  

 
(ii) Test of equality of 𝑚 [ith variable’s] marginal frequency distributions: Comparing each ∑ 𝜒𝑖𝑗

2
𝑗  

with the tabulated 𝜒(𝑐(𝑚−1),.∝)2  of 𝑐(𝑚 − 1) degrees of freedom, 
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(iii) Test of equality of 𝑚 [jth variable’s] marginal frequency distributions: Comparing each ∑ 𝜒𝑖𝑗
2

𝑖  
with the tabulated 𝜒(𝑟(𝑚−1),.∝)2  of 𝑟(𝑚 − 1) degrees of freedom, 
 

(iv) Test of equality of 𝑚 joint frequency distributions: Comparing Chi-squares’ matrix sum =
 𝜒11
2 +⋯+ 𝜒1𝑐

2 +⋯+ 𝜒𝑟1
2 +⋯+ 𝜒𝑟𝑐

2  with the tabulated 𝜒(𝑟𝑐(𝑚−1),.∝)2  of  𝑟𝑐(𝑚 − 1) degrees 
of freedom.  
 
 

3. Methods and Methodology for Several Transition Probability Matrix/Markov 

Chains 

 
Now, let the stochastic process is   TttX ; , then for each value of t ,  tX  is a random variable. So, the 
process is a sequence of outcomes for discrete states and time space. These outcomes may be dependent on 
earlier ones in the sequence. A Markov chain is collection of random variables  tX  (where the index runs 
through 0, 1, ...) having the property that, given the present, the future is conditionally independent of the 

past. So, the stochastic process {𝑋𝑛, 𝑛 ≥ 0} is called a Markov chain, if for 1 1, , , ... nj k j j J   

      jknnnnnn PjXkXjXjXjXkX   110121 |Pr...,,|Pr  
The outcomes are called the states of the Markov Chain; if 𝑋𝑛 has the outcome 𝑗 (𝑖. 𝑒., 𝑋𝑛 = 𝑗) the process 
is said to be at state 𝑗 at nth trial. The conditional probability 𝑃[𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖] = 𝑃𝑖𝑗 is known as 
transition probability referring the probability that the process is in stat i  and will be in state 𝑗 in the next 
step and the transition probability ijP  satisfy the properties ( ) 0 ( ) 1ij ij

j

i P and ii P   for the 

transition probability matrix , 1, 2, , .ijP P i j n      

Here, two states 𝑖 and 𝑗 are said to be communicate state if each is accessible from the other, it is denoted 
by 𝑖 ↔ 𝑗 ; then there exist integer 𝑚 and 𝑛 such that 𝑃𝑖𝑗 

(𝑛)
> 0 and𝑃𝑖𝑗 

(𝑚)
> 0. If state  𝑖 communicate with 

state 𝑗 and state 𝑗 communicate with state 𝑘 then state 𝑖 communicate with state 𝑘.  
 
3.1 Proposed method 
With an aim of developing a test procedure of testing the equality of several transition probability matrices 
or several evolutionary rates from several Markov chains or several sequences, let us demonstrate our 
method assuming that we have several population transition frequency matrices or several population 
transition probability matrices or several Markov chains each of which having r states and let the hypothesis 
be 

𝐻0: 𝑁1 = 𝑁2 = ⋯ = 𝑁𝑚 

⇒𝐻0:(

𝑁111 𝑁121
𝑁211 𝑁221

⋯
𝑁1𝑟1
𝑁2𝑟1

⋮
𝑁𝑟11 𝑁𝑟21 𝑁𝑟𝑟1

) = (

𝑁112 𝑁122
𝑁212 𝑁222

⋯
𝑁1𝑟2
𝑁2𝑟2

⋮
𝑁𝑟12 𝑁𝑟22 𝑁𝑟𝑟2

) = ⋯ = (

𝑁11𝑚 𝑁12𝑚
𝑁21𝑚 𝑁22𝑚

⋯
𝑁1𝑟𝑚
𝑁2𝑟𝑚

⋮
𝑁𝑟1𝑚 𝑁𝑟2𝑚 𝑁𝑟𝑟𝑚

) 

𝐻0: 𝑃1 = 𝑃2 = ⋯ .= 𝑃𝑚; 

∴ 𝐻0: (

𝑝111 𝑝121
𝑝211 𝑝221

⋯
𝑝1𝑟1
𝑝2𝑟1

⋮
𝑝𝑟11 𝑝𝑟21 𝑝𝑟𝑟1

) = (

𝑝112 𝑝122
𝑝212 𝑝222

⋯
𝑝1𝑟2
𝑝2𝑟2

⋮
𝑝𝑟12 𝑝𝑟22 𝑝𝑟𝑟2

) = ⋯ = (

𝑝11𝑚 𝑝12𝑚
𝑝21𝑚 𝑝22𝑚

⋯
𝑝1𝑟𝑚
𝑝2𝑟𝑚

⋮
𝑝𝑟1𝑚 𝑝𝑟2𝑚 𝑝𝑟𝑟𝑚

) . 

 
where, 𝑁𝑙 ( ∀ 𝑙 = 1,2,… ,𝑚) )  is the population transition frequency matrix of the lth population such that  
𝑁𝑙 = (𝑛𝑖𝑗𝑙)𝑟×𝑟; 𝑃𝑙 is the population transition probability matrix of the lth population such that 𝑃𝑙 =
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(𝑝𝑖𝑗𝑙)𝑟×𝑟 , where  𝑝𝑖𝑗 =
𝑁𝑖𝑗𝑙

𝑁𝑖.𝑙
  whereas  𝑁𝑖𝑗𝑙  is the population transition frequency of the (i,j)th element of the 

lth population transition frequency matrices 𝑁𝑙 and 𝑁𝑖.𝑙 = ∑ 𝑁𝑖𝑗𝑙
𝑟
𝑗=1 ; ∀ 𝑖, 𝑗 = 1,2,… , 𝑟.  

 
k pairs of sample sequences from m populations (a total of k sample-sequences are collected from each 
population) have been collected and on the basis of these samples we want to test whether they come from 
the same population.  After collecting k sample-sequences we obtain k transition frequency matrices from 
each of the m populations. The maximum likelihood estimators of the transition relative frequency or 
probability matrices are obtained as �̂�𝑙 = (�̂�𝑖𝑗𝑙)𝑟×𝑟   where  �̂�𝑖𝑗𝑙 =

𝑛𝑖𝑗𝑙

𝑛𝑖.𝑙
  whereas  𝑛𝑖𝑗𝑙 is the average 

frequency of the (i,j)th element of the average transition frequency matrix 𝑛𝑙 constructed from k sample-
transition frequency matrices drawn from the lth  population. Here, 𝑛𝑖.𝑙 = ∑ 𝑛𝑖𝑗𝑙

𝑟
𝑗=1 ; ∀ 𝑖, 𝑗 = 1,2,… , 𝑟. 

 
For large  𝑛𝑖.𝑙 the asymptotic distribution of each element of transition probability matrices, according to 
the Central Limit Theorem, are distributed as normal such that  
 

�̂�𝑖𝑗𝑙   ~
 𝑁 (𝑝𝑖𝑗𝑙 ,

𝑝𝑖𝑗𝑙   (1 − 𝑝𝑖𝑗𝑙)

𝑘𝑛𝑖.𝑙
). 

 

∴∑
(�̂�𝑖𝑗𝑙 − �̅�𝑖𝑗.)

2

�̅�𝑖𝑗.(1 − �̅�𝑖𝑗.)
𝑘𝑛𝑖.𝑙

𝑚

𝑙=1

~𝝌2(𝑚−1)∀𝑖, 𝑗 = 1, 2, … , 𝑟; 

where  �̅�𝑖𝑗. =
𝑛𝑖.1𝑝𝑖𝑗1+⋯+𝑛𝑖.𝑙𝑝𝑖𝑗𝑙

𝑛𝑖.1+⋯+𝑛𝑖.𝑙
; ∀ 𝑖, 𝑗 = 1, 2,… , 𝑟.  

 
However, we obtain an element-chi-square-matrix 𝜒2 of the following form 

1   2   r 

𝜒2 =

1

2

𝑟
(

 
 
 
 
 

∑
(𝑝11𝑙−�̅�11.)

2

�̅�11.(1−�̅�11.)

𝑘𝑛1.𝑙

𝑚
𝑙=1 ∑

(𝑝12𝑙−�̅�12.)
2

�̅�12.(1−�̅�12.)

𝑘𝑛1.𝑙

𝑚
𝑙=1 … ∑

(�̂�1𝑟𝑙−�̅�1𝑟.)
2

�̅�1𝑟.(1−�̅�1𝑟.)

𝑘𝑛1.𝑙

𝑚
𝑙=1

∑
(𝑝21𝑙−�̅�21.)

2

�̅�21.(1−�̅�21.)

𝑘𝑛2.𝑙

𝑚
𝑙=1 ∑

(𝑝22𝑙−�̅�22.)
2

�̅�22.(1−�̅�22.)

𝑘𝑛2.𝑙

𝑚
𝑙=1 … ∑

(�̂�2𝑟𝑙−�̅�2𝑟.)
2

�̅�2𝑟.(1−�̅�2𝑟.)

𝑘𝑛2.𝑙

𝑚
𝑙=1

…

∑
(𝑝𝑟1𝑙−�̅�𝑟1.)

2

�̅�𝑟1.(1−�̅�𝑟1.)

𝑘𝑛𝑟.𝑙

𝑚
𝑙=1

…

∑
(𝑝𝑟2𝑙−�̅�𝑟2.)

2

�̅�𝑟2.(1−�̅�𝑟2.)

𝑘𝑛𝑟.𝑙

𝑚
𝑙=1 …

…

∑
(𝑝𝑟𝑟𝑙−�̅�𝑟𝑟.)

2

�̅�𝑟𝑟.(1−�̅�𝑟𝑟.)

𝑘𝑛𝑟.𝑙

𝑚
𝑙=1

)

 
 
 
 
 

, 

∴ 𝜒2 = (
𝜒11
2 … 𝜒1𝑟

2

⋮ ⋱ ⋮
𝜒𝑟1
2 ⋯ 𝜒𝑟𝑟

2
). 

The above matrix of chi-squares can also be called as element-chi-square-matrix. From this matrix we 
basically can test three types of hypotheses which are as follows: 
(i) 𝐻0: 𝑝𝑖𝑗1 = 𝑝𝑖𝑗2 = … = 𝑝𝑖𝑗𝑚 ; or, the hypothesis of testing the equality of the each individual ((i,j)th) 
transition probability of the multiple (m) population transition probability matrices 𝑃1, 𝑃2 , … . , 𝑃𝑚 for all 
values of  𝑖, 𝑗 = 1, 2, … , 𝑟. 
(ii)𝐻0: (𝑝𝑖11 𝑝𝑖21 … 𝑝𝑖𝑟1) = (𝑝𝑖12 𝑝𝑖22 … 𝑝𝑖𝑟2) = ⋯ = (𝑝𝑖1𝑚 𝑝𝑖2𝑚 … 𝑝𝑖𝑟𝑚);  or, the 
hypothesis of checking the equality of the i-th  row vector of all population transition probability matrices 
𝑃1, 𝑃2 , … . , 𝑃𝑚 for all values of  𝑖 = 1, 2, … , 𝑟.. Actually, it tests the equity of the frequentness of the 
transition of the random movement of multiple population sequences from each state to all states.  
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(iii) 𝐻0: 𝑃1 = 𝑃2 = ⋯ .= 𝑃𝑚; or the hypothesis of testing the equity of the total transitions for all 
population sequences. It tests the similarity of multiple population sequences or whether the m sample 
sequences are drawn from same population.  
 
For the aforementioned tests the concern test statistics are given below respectively. 

 
(i) Comparing each  𝜒𝑖𝑗2  ( ∀ 𝑖, 𝑗 = 1, 2, … , 𝑟) with the tabulated  𝜒(𝑚−1,.∝)2  of (m-1) degree of 

freedom, 
 

(ii) Comparing each ∑ 𝜒𝑖𝑗
2𝑟

𝑗=1  (∀ 𝑖 = 1, 2, … , 𝑟) with the tabulated 𝜒[r(m−1)−1,.∝]2  of [r(m-1)-1] 
degrees of freedom, 

 
(iii) Comparing Chi-squares’ matrix sum = 𝜒112 +⋯+ 𝜒1𝑟2 +⋯+ 𝜒𝑟12 +⋯+ 𝜒𝑟𝑟2  with the 

tabulated 𝜒(𝑟(𝑟m−r−1),.∝)2  of [𝑟(𝑟m − r − 1)] degrees of freedom.  
 
 

4. Real Life Examples for Contingency Tables 
 

Suppose we have two contingency 2 × 2 tables as those in the example of the page 521 of the book entitled 
“Handbook of Parametric and Nonparametric Statistical Procedures” by David. J. Sheskin are given as                                                              

                     𝑁𝑜𝑡 𝑎 𝑏𝑖𝑡𝑒𝑟 𝑀𝑖𝑙𝑑 𝑏𝑖𝑡𝑒𝑟 𝐹𝑙𝑎𝑔𝑟𝑎𝑛𝑡 𝑏𝑖𝑡𝑒𝑟

𝑀𝑖𝑐𝑒               20 16 24
𝐺𝑢𝑖𝑛𝑒𝑎 𝑝𝑖𝑔𝑠 19 11 50

                          

 

  
                     𝑁𝑜𝑡 𝑎 𝑏𝑖𝑡𝑒𝑟 𝑀𝑖𝑙𝑑 𝑏𝑖𝑡𝑒𝑟 𝐹𝑙𝑎𝑔𝑟𝑎𝑛𝑡 𝑏𝑖𝑡𝑒𝑟

𝑀𝑖𝑐𝑒               100 56 44
𝐺𝑢𝑖𝑛𝑒𝑎 𝑝𝑖𝑔𝑠 19 11 50

 

 
The problem is to gauge whether the two contingency tables show significant dissimilarity, to assess, for 
example, whether they have a common joint distribution or bivariate distribution that is whether two 
bivariate samples come from same population bivariate distribution. If the samples were generated at 
random from two populations, we like to use our proposed statistical method for assessing the similarity of 
two population joint frequency distributions. Due to a quick unavailability of the replicates of two types of 
bivariate samples from the book of Sheskin, we are assuming that, after observing 30 pairs of bivariate 
samples (30 bivariate samples have been drawn from each population bivariate population) from two 
population bivaraite populations, we have obtained the two average frequency tables or average frequency 
matrices. So, the sample bivariate mean frequency tables or matrices are  
 

                     𝑁𝑜𝑡 𝑎 𝑏𝑖𝑡𝑒𝑟 𝑀𝑖𝑙𝑑 𝑏𝑖𝑡𝑒𝑟 𝐹𝑙𝑎𝑔𝑟𝑎𝑛𝑡 𝑏𝑖𝑡𝑒𝑟

𝑀𝑖𝑐𝑒               20 16 24
𝐺𝑢𝑖𝑛𝑒𝑎 𝑝𝑖𝑔𝑠 19 11 50

               

 

  
                     𝑁𝑜𝑡 𝑎 𝑏𝑖𝑡𝑒𝑟 𝑀𝑖𝑙𝑑 𝑏𝑖𝑡𝑒𝑟 𝐹𝑙𝑎𝑔𝑟𝑎𝑛𝑡 𝑏𝑖𝑡𝑒𝑟

𝑀𝑖𝑐𝑒               100 56 44
𝐺𝑢𝑖𝑛𝑒𝑎 𝑝𝑖𝑔𝑠 19 11 50

 

 
Therefore the average relative frequency tables or average probability tables or matrices are  
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                     𝑁𝑜𝑡 𝑎 𝑏𝑖𝑡𝑒𝑟 𝑀𝑖𝑙𝑑 𝑏𝑖𝑡𝑒𝑟 𝐹𝑙𝑎𝑔𝑟𝑎𝑛𝑡 𝑏𝑖𝑡𝑒𝑟

𝑀𝑖𝑐𝑒               0.14 0.11 0.17
𝐺𝑢𝑖𝑛𝑒𝑎 𝑝𝑖𝑔𝑠 0.14 0.08 0.36

                          

 

  
                     𝑁𝑜𝑡 𝑎 𝑏𝑖𝑡𝑒𝑟 𝑀𝑖𝑙𝑑 𝑏𝑖𝑡𝑒𝑟 𝐹𝑙𝑎𝑔𝑟𝑎𝑛𝑡 𝑏𝑖𝑡𝑒𝑟

𝑀𝑖𝑐𝑒               0.36 0.20 0.16
𝐺𝑢𝑖𝑛𝑒𝑎 𝑝𝑖𝑔𝑠 0.07 0.04 0.18

 

 
The averages transition probability matrices result as follows 

The chi square matrix =  (
144.64 21.71 0.57
14.50 4.86 100.45

) , 

𝑝 value matrix =  (2.57 × 10
−33 3.16 × 10−6 0.45

0.13 × 10−3 0.027 1.22 × 10−23
) . 

 
The tabulated value of Chi – square at 1% level of significance with 1 degree of freedom is 6.634897. There 
is one calculated value for each of the 6 chi-square test statistics for 6 types of cells in the matrix of chi-
squares. For the first cell (mice, not a biter), the calculated value (= 144.64) of chi-square test statistic is 
greater than the tabulated value ( = 6.634897) which means the null hypothesis 

𝐻0: 𝑝𝑚𝑖𝑐𝑒,   𝑛𝑜𝑡 𝑎 𝑏𝑖𝑡𝑒𝑟 = 𝑞𝑚𝑖𝑐𝑒,   𝑛𝑜𝑡 𝑎 𝑏𝑖𝑡𝑒𝑟  
is rejected at 1 percent level of significance with p value 2.57 × 10−33. So, we conclude that the joint 
probability of two populations for the joint occurrence of mice with not a biter is dissimilar and we denote 
the dissimilarity by a notation “DS”. Again for the joint frequentness (mice and flagrant biter), the null 
hypothesis 

𝐻0: 𝑝𝑚𝑖𝑐𝑒,   𝑓𝑙𝑎𝑔𝑟𝑎𝑛𝑡 𝑏𝑖𝑡𝑒𝑟 = 𝑞𝑚𝑖𝑐𝑒,   𝑓𝑙𝑎𝑔𝑟𝑎𝑛𝑡 𝑏𝑖𝑡𝑒𝑟 
 

is not rejected at the same level of significance. It can be inferred that the frequentness of contemporarily 
happening of mice with no biter for two population joint distributions is similar and we denote similarity 
by a notation “S”. So the resultant decision matrix for the 6 various cells is given below: 

the resultant decision matrix =  (𝐷𝑆 𝐷𝑆 𝑆
𝐷𝑆 𝑆 𝐷𝑆

). 
 
Moreover, the calculated value of overall chi – square, the sum of all individual chi-squares of the chi-
squares’ matrix sum, is obtained as 286.74. Therefore, the null hypothesis 𝐻0: 𝑃2×3 = 𝑄2×3 of the equality 
of joint probability matrix of two population joint probability distribution is rejected at 1 % level of 
significance (since the tabulated value of the chi-squares matrix sum with 5 degrees of freedom is 15.09). 
So, with an overall point of view it can be concluded that the two population joint distributions are dissimilar 
or do not belong to the same bivariate distribution. Even though, the row similarity and column similarity 
can be measured here. The sum of chi- squares for the 1st, 2nd and 3rd columns are calculated as 159.15, 
26.58 and 101.02 respectively. The tabulated value of the column wise sum of chi-squares with 2 degree of 
freedom is 9.21 at 1 % level of significance.  So, all columns are dissimilar for two population joint 
distributions, that is, 1st column of the one category and that of the same category for the two populations 
are dissimilar and so forth. Similar results have been found in case of marginal probabilities for all (two) 
rows over two populations. So, the marginal frequencies of one category over various intervals in one 
population is dissimilar to those of the same category over the same intervals in the another population. The 
dissimilarity between all row-wise marginal probabilities, column-wise marginal probabilities and 
maximum cell probabilities of the two joint frequency  matrices is also a potential evidence of ensuring the 
conclusion that the two bivariate populations  are dissimilar.      
 
 
 
 
 

JSM2015 - Government Statistics Section

35



 
5. An Application of Several Markov Chains to Multiple DNA Sequence Alignment 

 
Since it is stated that in a Markov process all possible states and transitions have been assumed in such a 
way that there is always a next state and the process goes on forever; the characteristics of the DNA, the 
basic genetic material in living organisms and having a double standed-helical structure each of which is 
consisting of very long sequence from four letters/alphabets (nucleotides), a, g, c, and t (for adenine, 
guanine, cytosine, and thymine, respectively); sequence that undergoes the change within any population 
over the course of many generations, as random mutations arise and become fixed in the population can 
easily be treated as a Markov Chain. It is useful for discovering functional, structural, and evolutionary 
information in biological sequences. Obtaining the best possible or so-called optimal alignment is important 
to discover this information. Sequences that are very much alike, or “similar” in the parlance of sequence 
analysis, probably have the same function, be it a regulatory role in the case of similar DNA molecules, or 
a similar biochemical and three dimensional structure in the case of proteins. Additionally, if two sequences 
from different organisms are similar, there may have been a common ancestor sequence, and the sequences 
are then defined as being homologous. The alignment indicates the changes that could have occurred 
between the two homologous sequences and a common ancestor sequence during evolution. So, a common 
gauge is to check whether the two sequences show significant similarity, to assess, for example, whether 
they have a remote common ancestor. As a result, sequence alignment is one of the most important 
techniques to analyze biological system.  
 
Suppose we have three small DNA sequences such as those in the book of ‘Statistical Methods in 
Bioinformatics’ by Ewens, W. et al  (2004), 30  pairs of sample sequences from same species have been 
considered. The average transition frequency matrices cum average transition probability matrices (one 
average transition probability matrix has been obtained from the 30 sample sequences accessed first 
population, another average transition probability matrix form 30 sample sequences of second population 
and the third average transition probability matrix from 30 sample sequences collected from the third 
population) are estimated as follows:  
 

      a         t        c       g                          a       t        c       g                 a        t      c       g 

 �̂�1 =

𝑎
𝑡
𝑐
𝑔

(

0.19 0.17 0.16 0.47
0.20 0.03 0.22 0.56
0.38
0.27

0.34
0.11

0.19
0.29

0.09
0.33

) ; �̂�2 =

𝑎
𝑡
𝑐
𝑔

(

0.34 0.21 0.26 0.19
0.11 0.15 0.26 0.49
0.22
0.18

0.39
0.25

0.28
0.13

0.11
0.45

) ; �̂�3 =

𝑎
𝑡
𝑐
𝑔

(

0.09 0.29 0.32 0.30
0.14 0.13 0.33 0.40
0.27
0.14

0.32
0.14

0.32
0.30

0.10
0.42

) 

 
We first want to observe the properties of three average transition probability matrices to judge the 
comparability of them as well as the samples. As such the following calculations have been performed.  

 

5.1 Comparability of the three Matrices 

From the transition probability graphs of the matrix �̂�1 we can conclude that it’s all the states are recurrent 
because all the states are accessible to each other and they are communicating class and the number of states 
is finite. The matrices  �̂�2 , �̂�3 give the same result. The random walks for the three types of sequences have 
been observed from where the suspect of the difference among the sequences is evident. The Eigen values 
and vectors of the transition probability matrices have been observed. One of the Eigen values of the 2nd 
matrix and two of the Eigen values of the 1st as well as 3rd matrices are negative whereas the maximum 
Eigen values of the three matrices are 1.010, 0.944 and 0.922 respectively. So we can say that there is 
difference among the transition probabilities of the tree types of samples. Determinant of the matrices are -
0.002, -0.007 and 0.001. The ranks of them are same (loosely 4) which is a sign of justification of comparing 
the three matrices. The stationary probabilities are given as the solution of the equations 𝜋1 = 0.19𝜋1 +
0.20𝜋2 + 0.38𝜋3 + 0.27𝜋4,  𝜋2 = .17𝜋1 + 0.03𝜋2 + 0.34𝜋3 + 0.11𝜋4,  𝜋3 = 0.16𝜋1 + 0.22𝜋2 +
0.19𝜋3 + 0.29𝜋4,  𝜋4 = 0.47𝜋1 + 0.56𝜋2 + 0.09𝜋3 + 0.33𝜋4 and  𝜋1 + 𝜋2 + 𝜋3 + 𝜋4 = 1.  

JSM2015 - Government Statistics Section

36



 
Similarly for the second sample we get five equations solving those we obtain the solutions of the stationary 
probabilities. For the first types of samples the limiting probabilities are 0.26, 0.16, 0.22, 0.35; for the 
second types of samples 0.20, 0.25, 0.22, 0.33 and for the third types of samples 0.17, 0.22, 0.32, 0.29 
respectively. To test the hypothesis of equality of the stationary probabilities for the samples the null 
hypothesis can be expressed as 

𝐻0: 𝜋𝑖1 = 𝜋𝑖2 = 𝜋𝑖3 
where, 𝜋𝑖1, 𝜋𝑖2and 𝜋𝑖3 (∀ 𝑖 = 1, 2, 3,4 ) are the stationary probabilities of ith state for the 1st , 2nd and 3rd  
average transition probability matrices respectively. The test statistic for the aforementioned test is  

∑
(�̂�𝑖𝑙 − �̅�𝑖.)

2

�̅�𝑖.(1 − �̅�𝑖.)
𝑘𝑛𝑖.𝑙

3

𝑙=1

;  

∀𝑖 = 1, 2, 3, 4; where  �̅�𝑖. =
𝜋𝑖1𝑛𝑖.1+𝜋𝑖2𝑛𝑖.2+𝜋𝑖3𝑛𝑖.3

𝑛𝑖.1+𝑛𝑖.2+𝑛𝑖.3
 . 

which is distributed as chi-square with (3-1) degree of freedom. The result of equality tests gives the p-
values of the aforementioned chi-square statistic as 0.133, 0.248, 0.048 and 0.392.  As such at 1% level of 
significance the limiting probabilities for the same state for the three types of samples are similar. So, for 
the long run the randomness visit of the population sequence to the individual state or nucleotide is similar 
for all states over the three populations. Therefore, from the aforementioned results it seems to us that the 
three matrices are compare able. 
 
5. 2 Proposed Approach 
According to the alternative approach, the chi-square matrix and the p-value matrix for obtained from three 
average transition probability matrices will be:  

   a             t        c            g 

𝜒2 =

𝑎
𝑡
𝑐
𝑔

(

24.92 7.10 10. 72 28.46
4.70 10.38 5.06 6.60
10.89
13.00

2.11
19.33

7.49
27.19

0.51
7.56

) 

 
The tabulated value of chi – square at 1% level of significance with 2 degree of freedom is 9.21. There is 
one calculated value for each of the 16 chi-square test statistics for 16 types of transitions in the matrix of 
chi-squares. For the first transition (from adenine to adenine), the calculated value (= 24.92) of chi-square 
test statistic is greater than the tabulated value ( = 9.21) which means the null hypothesis  𝐻0: 𝑝𝑎𝑎1 =
𝑝𝑎𝑎2 = 𝑝𝑎𝑎3  is rejected at 1 percent level of significance. So, we conclude that the probability of three 
population sequences for the transition from adenine to adenine is not similar and we denote the 
dissimilarity by a notation “DS”. Again for the transition (from thymine to adenine), the null hypothesis 
𝐻0: 𝑝𝑡𝑎1 = 𝑝𝑡𝑎2 = 𝑝𝑡𝑎3   is accepted at the same level of significance with a p- value of 0.10. It can be 
inferred that the frequentness of three population sequences for the transition from thymine to adenine is 
similar and we denote the similarity by a notation “S”. So the resultant decision matrix for the 16 various 
transitions is given below: 

the resultant decision matrix =  (
𝐷𝑆   𝑆
𝑆     𝐷𝑆

       
𝐷𝑆 𝐷𝑆
𝑆 𝑆

𝐷𝑆 𝑆
𝐷𝑆   𝐷𝑆

    
 𝑆   𝑆
  𝐷𝑆  𝑆

). 

Moreover, the calculated value of overall chi – square, the sum of all individual chi-squares of the chi-
squares’ matrix sum, is obtained as 186.009. Therefore, the null hypothesis 𝐻0: 𝑃1 = 𝑃2 = 𝑃3 of the 
equality of the entire transition probability matrices of three population sequences is rejected at 1 % level 
of significance (since the tabulated value of the chi-squares matrix sum with 27 degrees of freedom is 
46.96). So, with an overall point of view it can be concluded that the two population sequences are 
dissimilar or do not belong to the same ancestor. Moreover, the row similarity can be found here. The sum 

JSM2015 - Government Statistics Section

37



of chi- squares for the 1st, 2nd 3rd and 4th rows are calculated as 71.19, 26.73, 21.01 and 76.09 respectively. 
The tabulated value of the row wise sum of chi-squares with 7 degree of freedom is 18.48 at 1 % level of 
significance.  So, all rows are significantly varying among themselves for the three population sequences. 
The dissimilarity among all of the rows of the three transition probability matrices is also a potential 
evidence of ensuring the conclusion that the three population sequences are dissimilar.       

 
 

6. Advantages 

 
The credence of the proposed tests for the equality of several population joint frequency distributions are 
evident from the given real life examples. The p values of the proposed tests for the equality of the marginal 
row frequency distributions or column frequency distributions over several populations are 0. This certain 
difference is very much due to the difference among row-wise marginal probability distributions and the 
column wise marginal probability distributions. The results seem to be appreciating since maximum of the 
cell frequencies vary among populations. Besides, the test for comparing the several population joint 
frequency distributions prescribed a p value of 0 which means that several population joint distributions are 
not similar and the given samples are not drawn from the same population.       
 
Besides, the credence of the proposed test for the equality of multiple transition probability matrices are 
evident from the given real life example, since it is observed that the p - value of the proposed test is close 
to zero (since the p-values for the chi-square test is 10-25) indicating bold rejection of the null hypothesis of 
the equality of the transition probability matrices whereas the samples were really drawn from three 
different populations. Therefore, the performance of the proposed method seems to be better.  
 
The proposed approach for comparing multiple transition probability matrices gives not only an overall 
decision of the significant dissimilarity/ similarity of the individual paired transitions but also the significant 
dissimilarity/similarity of all possible transitions. It clearly identifies the possible similarity or dissimilarity 
among multiple population sequences. The current method specifically detects for which transition(s) the 
overall dissimilarity for the multiple population Markov chains is being evident. This idea of more 
specification can help the biotechnologist to quickly detect the core fact of the possible difference among 
bio-organisms more easily and more efficiently.    
 
Maximum literature in multiple sequence alignment for quantifying the disorderness of multiple sequences 
in case of alignment algorithm has been suffering from either calculating superficial gap penalty or 
obtaining unsatisfactory accuracy. There is no requirement of the treatment of the gaps in the sequence in 
this method. The accuracy of the proposed method is also satisfactory enough due to its assurance of the 
optimum p-value.  
 
The authors also checked the results of the proposed test with those obtained by combining the 3 tests of 
equality of two transition probability matrices (3 pair for three populations) for the aforementioned samples 
(30 sample sequences drawn from each of the three populations). The 3 pair-wise tests test better (since the 
equality of the entire transition probability matrices of the three population sequences is rejected with a 
lower p-value of 10-36). However, the proposed multiple test will be more amiable since it requires relatively 
less effort and time.  
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Concluding Remarks 
 

Joint frequency distributions or contingency tables have been widely being studied by numerous authors 
since the early ages of statistics. Unfortunately, the discordance of them has not yet been studied so far with 
any test. The proposed tests ensemble the individual, group wise and overall pattern of the frequencies of 
one population whether significantly differing from those of other population of any discipline. It has 
extensive applications in many disciplines like agricultural, biological, pharmaceutical, business and 
environmental statistics. Advanced multiple test for the equality of bivariate frequency distributions for the 
several populations can be the further scope of the proposed heuristic.  

 
Transition Probability Matrices have been widely being studied by numerous authors since the childhood 
of evolutionary statistics. Unfortunately, the discordance of them has not yet been studied with greater 
effort. The proposed test ensembles the individual, group wise and overall pattern of the transition 
frequencies of one population whether significantly differing from those of other populations.  
 
Any inquiry and proof(s) of the mathematical development of the tests can be accessible from the authors.  
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