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Abstract

The asymptotic tests for the equality of several frequency distributions and several markov chains have
been developed. The tests of the equality of several contingency tables or frequency matrices and several
transition frequency matrices have been discussed. Examples are cited for all cases.

Key Words: Chi-square Matrix ; Matrix of p-values ; Multi-level multi-variate vector.

1. Introduction

A frequency table is a summarized grouping of data into mutually exclusive classes and the number of
occurrences in all cells. Each cell in the table contains the count of the occurrences of values within a
particular interval or group. A bivariate joint frequency distribution is represented as a two way contingency
table or matrix where the total row and total column report the marginal frequencies or marginal
distributions and each cell of the body of the table refers the joint frequencies.

The term contingency table was first coined by Karl Pearson (1904). Numerous authors including Fisher
(1922, 1925, 1935, 1962), Neyman (1928), Yates (1934, 1984), Wilks (1935), Deming and Stephan (1940),
Barnard (1945, 1947, 1949, 1979), Pearson (1947, 1900, 1904), Lancaster (1949, 1969), Chernoff (1954),
Lindley (1956), Bennett and Hsu (1960), Birnbaum (1962), Plackett (1964, 1977), Grizzle (1967), Boschloo
(1970), Gail and Gart (1973), Kempthorne (1978), Gokhale and Kullback (1978), Berkson (1978), Mehta
and Patel (1980), Upton (1982), Bartlett (1984), Goodman (1984), Suissa and Shuster (1985), Little (1989),
Cox and Snell (1989), Agresti (1990, 2002, 2005), Gray (1990), Greenland (1991), Muse (1992), Berger
and Boos (1994), Berger (1996), Kou and Ying (1996), Behseta (2005), Cheng (2008), Falay (2007),
Klugkist (2010), Cho (2011) left their research works on contingency tables. No test has been developed so
far for testing the equality of several contingency tables or joint frequency distributions or marginal
frequency distributions. The authors aim to develop new asymptotic test statistics for checking the similarity
or dissimilarity among the individual (cell) frequencies, marginal frequencies and overall discrepancy of
several populations. Section 2 demonstrates the methods and methodology and the subsequent section
displays a real life application of the proposed tests. The tertiary section draws the conclusion.

A stochastic process or random process is a collection of random variables that represents the evolution of
some physical process through the change of time, state or space. There are several (often infinitely many)
directions in which the process may evolve. In case of discrete time, a stochastic process amounts to a
sequence of random variables known as a time series (for example Markov chain). And the other is a
random field, whose domain is a region of space, or random function whose arguments are drawn from a
range of continuously changing values. One approach to stochastic processes treats them as functions of
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one or several deterministic arguments whose values (outputs) are random variables: non-deterministic
(single) quantities which have certain probability distributions. Random variables corresponding to various
times (or points, in the case of random fields) may be completely different. Although the random values of
a stochastic process at different times may be independent random variables, in most commonly considered
situations they exhibit complicated statistical correlations. Assessing these correlations can be evaluated by
means of knowing transitions which express the changes of state of the system and the probabilities
associated with various state-changes are called transition probabilities. Markov chain, due to Andrey
Markov, is a mathematical system that undergoes transitions from one state to another, between a finite or
countable number of possible states. It is a random process characterized as memoryless stating the
conditional probability distribution for the sequence in the system at the next step (and in fact at all future
steps) depending only on the current stat, and not additionally on the state at previous steps. So, a Markov
Chain is completely characterized by the set of all states and transition probabilities. By convention, we
assume all possible states and transitions have been included in the definition of the Markov processes in
such a way that there is always a next state and the process goes on forever. Thus, Markov chains have
many applications as statistical models of real-life processes.

Checking the discordance of two Markov Chains is a preliminary step of finding the mobility of any system
over the change of time or place or other dimension(s). It is also a primary stage of comparing multiple
Markov Chains. Unfortunately, comparison of Makov Chains is due to very few authors. Muse et al (1992)
proposed a likelihood ratio test for testing the equality of evolution rates. Tan et al (2002) developed a
Markov-chain-test for time dependence and homogeneity using likelihood ratio test statistic. Dannemann
et al (2007) proposed a method of testing the equality of transition parameters based on transition
probabilities and likelihood ratio test statistic that simply gives the significant dissimilarity of the total
transition but not that of the individual transition. Falay, B. (2007) described intergenerational income
mobility by testing the equality of opportunity due to knowing the comparison of East and West Germany
using a transition matrix having positive and negative elements. Bartolucci, F. et al (2009) demostarted the
use of a multidimensional extension of the latent Markov model using a multidimensional two parameter
logistic model where they developed likelihood ratio test based on log of the ratio of transition probabilities.
Cho, J. S et al (2011) expresses a test of equality of two unknown positive definite matrices with an
application of information matrix testing. Hillary, R. M. (2011) proposed a Bayesian method of estimation
the growth transition matrices. Altug, S et al (2011) showed the cyclical dynamics of industrial production
and employment over developed and developing countries using the by Tan et al and first passage time
analysis. Recently a new statistical method of Pair-wise and Multiple sequence alignment has been
developed by Adnan et al (2012, 2011). It accomplishes not only an overall decision of the significant
similarity/dissimilarity but also the similarity/dissimilarity of all possible individual and group wise
transitions that help the biotechnologists to quickly identify the portion of the total infrastructure of the
entire transitions that is significantly differing from that of the other sequence(s) and detect the core fact(s)
for possible differences between bio-organisms.

However, there is no test for the equality of multiple transition probability matrices. The present study aims
to improve the comparison method of multiple transition probability matrices considering the more analysis
of transition probabilities of the multiple sampled transition probability matrices. The author addresses an
idea of using the difference among multiple transition probabilities of the multiple transition probability
matrices which will ensure three advantages at least. Firstly, it will find the degree of disorderness among
all possible individual and groupwise transition probabilities of states of multiple Markov chains; and
secondly, will reduce the incompleteness of comparison among the multiple chains from the several
unknown populations. Thirdly, it clearly identifies the portion of the total infrastructure of the entire
transition that is significantly differing from those of the other chains.
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2. Methods and Methodology for Several Contingency Tables

With an aim of finding a test for comparing several contingency tables, let us demonstrate our method
assuming that we have m population contingency tables or matrices from m populations and let the
hypothesis be

Hy: Ny = Ny =Ny,

Nijp Nipp Nicq Nii2 Nigp Nicp Niim  Nigm Nicm
= H.: Nyi1 Nagi Noer | _ [ Naiz Nz Noex | [ Naim Nozm Noem
0- : - : - - :
Nr1i1 Nizi Near Nri2 Nizz  Neez Neim  Neam Neem
'.'HO:P].:PZ ="'.=Pm
Pi11 Pig “_Plcl P11 P12 ._.Pch Piim  Piam .“Plcm
= Ha.: P211 P221 P2c1 — P212 P222 PZcZ — . — P21m P22m PZcm
0- : - : - - :
Pri1 P21 Praa Priz Pra2 Pre Prim  Pram  Brem

where, the N; (VI =1,2,..,m) is the population frequency matrix or contingency table of the I®
population; P, is the population probability matrix or contingency table of the I population such that P =

Pij)rxer » Where pij; = M whereas N;j; is the population frequency of the (i,))* element of the

population frequency matrlx N; of the I™ population and N; = ¥i_; Zj=1 G Vi=12,..,1;) =
1,2, ..., c. k sample contingency tables from each of the m population joint frequency distributions (a total
of k samples are collected from each population) have been collected and on the basis of these samples we
want to test whether they come from the same population. After collecting kK sample-frequency matrices
or tables from each of the m populations, the maximum likelihood estimators of the probability matrices

are obtained as P, = (p; iDrxc Where Py = % whereas n; j; is the average frequency of the (i,j)" element
.1

of the average frequency matrix n ; constructed from k sample-frequency tables drawn from the I®
population. Here, n ; = ZLlezlniﬂ; vi=12,..,rj=12,..,c

For large n ; the asymptotic distribution of each element of transition probability matrices, according to
the Central Limit Theorem, are distributed as normal such that

. n oo pijp (1 = piji)
Diji . N Piij .

m
pl] | — . H—
Z Pij (1 pU) ~X? (m— 1)Vl =12,..,1rj=12,..,c.

t=t kn 1

nz}lpul+ +nl]mpl]m
Nija++nijm

However, we obtain an element-chi-square-matrix Y2 of the following form

where p;; = vi=12,..,rj=12,..,c
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The above matrix of chi-squares can also be called as element-chi-square-matrix. From this matrix we
basically can test four types of hypotheses which are as follows:

(i) Ho: Dij1 = ... = Pijm ; or, the hypothesis of testing the equality of the each (i,j)" individual probabilities

of the m population probability matrices Py, P, , ..., Py,.

(i) Hy: Pi11 Pizz = Pict) == Pitm Pizm - Picm); or, the hypothesis of checking the
equality of the i row probability vector or frequency distribution for all populations. Actually, it tests the
equity of the frequentness of the i™ variable of the first category over all intervals of the second category of
m population contingency tables. Indeed the equality of the frequency distribution of the i variable of the
1* category is tested over m populations. That is, m (types of) frequency distributions are being tested
whether equal or not for same variable. So, over a variable the equity of m frequency distributions drawn
from m populations is being tested.

(iii) Hy: [P1j1 D2j1 = Pritl =..=[Pijm D2jm = Prim]; or, the hypothesis of checking the
equality of the j column vector for all populations. Indeed, it tests the equity of the frequentness of the j
variable of the second category over all variables of the first category of m population contingency tables.
The frequency distribution of the j™ variable of the 2™ category is tested whether equal or not over m
populations.

(iv)Hy: P, = P, = ---.= PBy; or the hypothesis of testing the equity of the total contingency table or matix
for one population is significantly varying to that of the other populations. It tests the similarity of m
populations where each of the m populations has joint frequency distributions over rc cells or whether the
m types of sample-joint frequency distributions or matrices or tables are drawn from same population.

For the aforementioned tests for m populations, the concern test statistics are given below respectively.

(1) Test of equality of m [(i,j)"] cell frequencies: Comparing each )(l-zj with the tabulated
)((Zm_l__o() of (m — 1) degree of freedom,

(i) Test of equality of m [i" variable’s] marginal frequency distributions: Comparing each Y, j )(l-zj
with the tabulated X(zc(m—l),.o() of c(m — 1) degrees of freedom,
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(ili)  Test of equality of m [j" variable’s] marginal frequency distributions: Comparing each }; )(l-zj
with the tabulated )((zr(m—1),.o<) of r(m — 1) degrees of freedom,

(iv) Test of equality of m joint frequency distributions: Comparing Chi-squares’ matrix sum =
X+ xfe + -+ xB o+ xR with the tabulated x¢c -1y, Of Tc(m — 1) degrees
of freedom.

3. Methods and Methodology for Several Transition Probability Matrix/Markov
Chains

Now, let the stochastic process is {X(t);t T}, then for each value of t, X(t) is a random variable. So, the

process is a sequence of outcomes for discrete states and time space. These outcomes may be dependent on
earlier ones in the sequence. A Markov chain is collection of random variables X (t) (where the index runs

through 0, 1, ...) having the property that, given the present, the future is conditionally independent of the

past. So, the stochastic process {X,,,n = 0} is called a Markov chain, if for j, k, jl, jn_l el

Pr[Xn =k[Xpy =0 Xnn =], -« Xo= jn—l]:Pr[xn =k[Xpy = j]: Pik
The outcomes are called the states of the Markov Chain; if X,, has the outcome j (i.e., X;,, = j) the process
is said to be at state j at n" trial. The conditional probability P[X,.4; = j|X,, = i] = P; j is known as
transition probability referring the probability that the process is in stat | and will be in state j in the next

step and the transition probability Pij satisfy the properties (i) B; >0 and (ii) ZP” =1 for the
i

transition probability matrix P = [PU:' Vi, j=12,---,n.
Here, two states i and j are said to be communicate state if each is accessible from the other, it is denoted

by i & j ; then there exist integer m and n such that Pig.n) >0 andPiS.m) > 0. If state i communicate with
state j and state j communicate with state k then state i communicate with state k.

3.1 Proposed method

With an aim of developing a test procedure of testing the equality of several transition probability matrices
or several evolutionary rates from several Markov chains or several sequences, let us demonstrate our
method assuming that we have several population transition frequency matrices or several population

transition probability matrices or several Markov chains each of which having r states and let the hypothesis
be

HO: Nl = NZ = e = Nm
Nii1 Nizp Nir1 Nii2  Nip Nirp Niim  Nizm Nirm
= H. Na11 Nazi Nopp | _ [ N1z Nazz Nopp Noim  Nozgm  Nopm
0- : - : :
erl NTZ]. NTTl NT12 NTZZ NTT2 erm Ner NTT‘)TL
HO:P1: Pz :"'.:Pm;
Pi11 Pi21 P11 Pi12 P12z Pir2 Piim Pizm _ Pirm
“ Hy: P211 P221 P2r1 | _ [ P212 P222 P2rz | _ . _|P21m P2z2m P2rm
Pri1 Pr21 Prr Pri2 Pr22 Prr2 Prim Pram Prrm

where, N; (V1 =1,2,...,m) ) is the population transition frequency matrix of the I population such that
N; = (nyj1)rxr; Py 1s the population transition probability matrix of the I" population such that P, =
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(Pij)rxr » Wwhere p;; = N— whereas N;j; is the population transition frequency of the (i,j)™ element of the

I® population transition frequency matrices N; and N;; = Y =Ny ViLj=12,..,r.

Kk pairs of sample sequences from m populations (a total of k sample-sequences are collected from each
population) have been collected and on the basis of these samples we want to test whether they come from
the same population. After collecting k sample-sequences we obtain K transition frequency matrices from
each of the m populations. The maximum likelihood estimators of the transition relative frequency or
J . . = A N nij .
probability matrices are obtained as Py = (Pyj;)rxr Where pyj; = nil whereas n;; is the average
il
frequency of the (i,j)™ element of the average transition frequency matrix n; constructed from k sample-
transition frequency matrices drawn from the I population. Here, n;; = Z§=1 ng; Vi j=12,..,r.

For large n;; the asymptotic distribution of each element of transition probability matrices, according to
the Central Limit Theorem, are distributed as normal such that

piji (1— pijl))

Piji N(Pijb kg,
L.

_n11p1]1+ +nllpl]l
niq+-+n;;

;ViLj=1,2,.

However, we obtain an element-chi-square-matrix y2 of the following form

1 2 r
1 P111-D 2 A= 2
m  B1u-P11) m  (Di21-P12) B1ri—D )2
it P11.(1-P11) it P12.(1-P12) ... Z;nl p11:(1 p11rr)
knq g kngg kny |
2 ym (D211—P21)° P21)* m  (D221—P22)2 @ 2
e m  \P2ri—Par)” Par)
X2 = I 1=1"p1.(0=P21) Zl—l P22.(1-D22) Zl 1 D2r.A-DP2r) I’
kna g kny g k"zl
m (prll prl) Zm (ﬁrzl_ﬁrz.)z Zm (prrl prr)
l 1 pr1.(0-Pr1) =1 Dr2.(1-Pr2) 1=1"prr.(0—Prr)
kng kng.p kng.p
2 2
X111 - Xir
XZ = : :
2 2
Xr1i 0 Xrr

The above matrix of chi-squares can also be called as element-chi-square-matrix. From this matrix we
basically can test three types of hypotheses which are as follows:

(i) Ho: pij1 = Dijz = - = Pijm ; or, the hypothesis of testing the equality of the each individual ((1,)™)
transition probability of the multiple (m) population transition probability matrices Py, P, , ...., B, for all
valuesof i,j =1,2,..,r

(iDHo: Pin1 Piz1 + Pir1) = Pirz Pizz - Pirz) == @um DPizm - Pirm); or, the
hypothesis of checking the equality of the i-th row vector of all population transition probability matrices
Py, P, ,...., B, for all values of i =1,2,...,r.. Actually, it tests the equity of the frequentness of the
transition of the random movement of multiple population sequences from each state to all states.
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(iii) Hy: P, = P, =---.= Py,; or the hypothesis of testing the equity of the total transitions for all
population sequences. It tests the similarity of multiple population sequences or whether the m sample
sequences are drawn from same population.

For the aforementioned tests the concern test statistics are given below respectively.

)] Comparing each )(l-zj (Vi j=1,2,..,r) with the tabulated X(zm—1,.o<) of (m-1) degree of
freedom,

(ii) Comparing each Z§:1 )(l-zj (Vi=1,2,...,r) with the tabulated X[Zr(m—1)—1,.oc] of [r(m-1)-1]
degrees of freedom,

(i) ~ Comparing Chi-squares’ matrix sum = y7; + -+ y2. + -+ x4 + -+ x4 with the
tabulated )((Zr(rm_r_l)'.(,() of [r(rm — r — 1)] degrees of freedom.

4. Real Life Examples for Contingency Tables

Suppose we have two contingency 2 X 2 tables as those in the example of the page 521 of the book entitled
“Handbook of Parametric and Nonparametric Statistical Procedures” by David. J. Sheskin are given as
Not a biter Mild biter Flagrant biter

Mice 20 16 24

Guineapigs 19 11 50
Not a biter Mild biter Flagrant biter

Mice 100 56 44

Guineapigs 19 11 50

The problem is to gauge whether the two contingency tables show significant dissimilarity, to assess, for
example, whether they have a common joint distribution or bivariate distribution that is whether two
bivariate samples come from same population bivariate distribution. If the samples were generated at
random from two populations, we like to use our proposed statistical method for assessing the similarity of
two population joint frequency distributions. Due to a quick unavailability of the replicates of two types of
bivariate samples from the book of Sheskin, we are assuming that, after observing 30 pairs of bivariate
samples (30 bivariate samples have been drawn from each population bivariate population) from two
population bivaraite populations, we have obtained the two average frequency tables or average frequency
matrices. So, the sample bivariate mean frequency tables or matrices are

Not a biter Mild biter Flagrant biter

Mice 20 16 24

Guinea pigs 19 11 50
Not a biter Mild biter Flagrant biter

Mice 100 56 44

Guinea pigs 19 11 50

Therefore the average relative frequency tables or average probability tables or matrices are
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Not a biter Mild biter Flagrant biter

Mice 0.14 0.11 0.17
Guinea pigs 0.14 0.08 0.36

Not a biter Mild biter Flagrant biter
Mice 0.36 0.20 0.16
Guinea pigs 0.07 0.04 0.18

The averages transition probability matrices result as follows
The chi square matrix = (144'64 2171 0.57 )
1450 4.86 100.45/’
2.57x1073% 3.16 x 107° 0.45 )

p value matrix = (0.13 % 103 0.027 1.22 x 10723

The tabulated value of Chi — square at 1% level of significance with 1 degree of freedom is 6.634897. There
is one calculated value for each of the 6 chi-square test statistics for 6 types of cells in the matrix of chi-
squares. For the first cell (mice, not a biter), the calculated value (= 144.64) of chi-square test statistic is
greater than the tabulated value ( = 6.634897) which means the null hypothesis

HO: pmice, not a biter — Qmice, not a biter
is rejected at 1 percent level of significance with p value 2.57 X 10733, So, we conclude that the joint
probability of two populations for the joint occurrence of mice with not a biter is dissimilar and we denote
the dissimilarity by a notation “DS”. Again for the joint frequentness (mice and flagrant biter), the null
hypothesis

HO: Pmice, flagrant biter = Amice, flagrant biter
is not rejected at the same level of significance. It can be inferred that the frequentness of contemporarily
happening of mice with no biter for two population joint distributions is similar and we denote similarity
by a notation “S”. So the resultant decision matrix for the 6 various cells is given below:
DS DS S )

the resultant decision matrix = ( DS S DS

Moreover, the calculated value of overall chi — square, the sum of all individual chi-squares of the chi-

squares’ matrix sum, is obtained as 286.74. Therefore, the null hypothesis Hy: P,x3 = Q,y«3 of the equality
of joint probability matrix of two population joint probability distribution is rejected at 1 % level of
significance (since the tabulated value of the chi-squares matrix sum with 5 degrees of freedom is 15.09).
So, with an overall point of view it can be concluded that the two population joint distributions are dissimilar
or do not belong to the same bivariate distribution. Even though, the row similarity and column similarity
can be measured here. The sum of chi- squares for the 1%, 2" and 3™ columns are calculated as 159.15,
26.58 and 101.02 respectively. The tabulated value of the column wise sum of chi-squares with 2 degree of
freedom is 9.21 at 1 % level of significance. So, all columns are dissimilar for two population joint
distributions, that is, 1% column of the one category and that of the same category for the two populations
are dissimilar and so forth. Similar results have been found in case of marginal probabilities for all (two)
rows over two populations. So, the marginal frequencies of one category over various intervals in one
population is dissimilar to those of the same category over the same intervals in the another population. The
dissimilarity between all row-wise marginal probabilities, column-wise marginal probabilities and
maximum cell probabilities of the two joint frequency matrices is also a potential evidence of ensuring the
conclusion that the two bivariate populations are dissimilar.
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5. An Application of Several Markov Chains to Multiple DNA Sequence Alignment

Since it is stated that in a Markov process all possible states and transitions have been assumed in such a
way that there is always a next state and the process goes on forever; the characteristics of the DNA, the
basic genetic material in living organisms and having a double standed-helical structure each of which is
consisting of very long sequence from four letters/alphabets (nucleotides), a, g, ¢, and t (for adenine,
guanine, cytosine, and thymine, respectively); sequence that undergoes the change within any population
over the course of many generations, as random mutations arise and become fixed in the population can
easily be treated as a Markov Chain. It is useful for discovering functional, structural, and evolutionary
information in biological sequences. Obtaining the best possible or so-called optimal alignment is important
to discover this information. Sequences that are very much alike, or “similar” in the parlance of sequence
analysis, probably have the same function, be it a regulatory role in the case of similar DNA molecules, or
a similar biochemical and three dimensional structure in the case of proteins. Additionally, if two sequences
from different organisms are similar, there may have been a common ancestor sequence, and the sequences
are then defined as being homologous. The alignment indicates the changes that could have occurred
between the two homologous sequences and a common ancestor sequence during evolution. So, a common
gauge is to check whether the two sequences show significant similarity, to assess, for example, whether
they have a remote common ancestor. As a result, sequence alignment is one of the most important
techniques to analyze biological system.

Suppose we have three small DNA sequences such as those in the book of ‘Statistical Methods in
Bioinformatics’ by Ewens, W. et al (2004), 30 pairs of sample sequences from same species have been
considered. The average transition frequency matrices cum average transition probability matrices (one
average transition probability matrix has been obtained from the 30 sample sequences accessed first
population, another average transition probability matrix form 30 sample sequences of second population
and the third average transition probability matrix from 30 sample sequences collected from the third
population) are estimated as follows:

a t ¢ g a t ¢ g a t ¢ g
a /019 017 0.16 047 a /034 021 026 0.19 a 4009 029 032 0.30
p —t[020 003 022 056|.5 _t[011 015 026 049).p _t(014 013 033 040
17¢1038 034 019 009)’°2 €¢€\022 039 028 011)°°3~€l0.27 0.32 032 0.10
9\0.27 011 029 033 9\0.18 025 0.13 045 9\0.14 0.14 030 0.42

We first want to observe the properties of three average transition probability matrices to judge the
comparability of them as well as the samples. As such the following calculations have been performed.

5.1 Comparability of the three Matrices

From the transition probability graphs of the matrix P; we can conclude that it’s all the states are recurrent
because all the states are accessible to each other and they are communicating class and the number of states
is finite. The matrices P, , P; give the same result. The random walks for the three types of sequences have
been observed from where the suspect of the difference among the sequences is evident. The Eigen values
and vectors of the transition probability matrices have been observed. One of the Eigen values of the 2™
matrix and two of the Eigen values of the 15 as well as 3™ matrices are negative whereas the maximum
Eigen values of the three matrices are 1.010, 0.944 and 0.922 respectively. So we can say that there is
difference among the transition probabilities of the tree types of samples. Determinant of the matrices are -
0.002, -0.007 and 0.001. The ranks of them are same (loosely 4) which is a sign of justification of comparing
the three matrices. The stationary probabilities are given as the solution of the equations m; = 0.197m; +
0.20m, + 0.38m3 + 0.27m,, m, =.17my + 0.037, + 0.3473 + 0.11m,, 3 = 0.16m; + 0.221, +
0.19m3 + 0.29my, m, = 047wy + 0.561, + 0.0973 + 0.33m, and 7wy + 71y + 713 + 114 = 1.
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Similarly for the second sample we get five equations solving those we obtain the solutions of the stationary
probabilities. For the first types of samples the limiting probabilities are 0.26, 0.16, 0.22, 0.35; for the
second types of samples 0.20, 0.25, 0.22, 0.33 and for the third types of samples 0.17, 0.22, 0.32, 0.29
respectively. To test the hypothesis of equality of the stationary probabilities for the samples the null
hypothesis can be expressed as
Hy:myp = myp =T33

where, 7,1, T,and 3 (Vi = 1,2,3,4) are the stationary probabilities of ith state for the 1, 2" and 3™
average transition probability matrices respectively. The test statistic for the aforementioned test is

(i — )%
T, (1—m)’
= kn;,

Ti1Nj1+TiaNj2+Ti3N;3

Vi=1,2,3,4; where 7; =

Ni1+Ni+Nn;3
which is distributed as chi-square with (3-1) degree of freedom. The result of equality tests gives the p-
values of the aforementioned chi-square statistic as 0.133, 0.248, 0.048 and 0.392. As such at 1% level of
significance the limiting probabilities for the same state for the three types of samples are similar. So, for
the long run the randomness visit of the population sequence to the individual state or nucleotide is similar
for all states over the three populations. Therefore, from the aforementioned results it seems to us that the
three matrices are compare able.

5. 2 Proposed Approach
According to the alternative approach, the chi-square matrix and the p-value matrix for obtained from three
average transition probability matrices will be:
a t c g
a (2492 7.10 10.72 28.46

,_t[ 470 1038 506 6.60
X2=cl1089 211 749 051

9 \M3.00 19.33 27.19 7.56

The tabulated value of chi — square at 1% level of significance with 2 degree of freedom is 9.21. There is
one calculated value for each of the 16 chi-square test statistics for 16 types of transitions in the matrix of
chi-squares. For the first transition (from adenine to adenine), the calculated value (= 24.92) of chi-square
test statistic is greater than the tabulated value ( = 9.21) which means the null hypothesis Hy: pgq1 =
Paa2 = Paa3 1s rejected at 1 percent level of significance. So, we conclude that the probability of three
population sequences for the transition from adenine to adenine is not similar and we denote the
dissimilarity by a notation “DS”. Again for the transition (from thymine to adenine), the null hypothesis
Hy: Pra1 = Praz = Praz 18 accepted at the same level of significance with a p- value of 0.10. It can be
inferred that the frequentness of three population sequences for the transition from thymine to adenine is
similar and we denote the similarity by a notation “S”. So the resultant decision matrix for the 16 various

transitions is given below:
DS S DS DS

S DS S S
DS S S S

DS DS DS S
Moreover, the calculated value of overall chi — square, the sum of all individual chi-squares of the chi-
squares’ matrix sum, is obtained as 186.009. Therefore, the null hypothesis Hy: P, = P, = P; of the
equality of the entire transition probability matrices of three population sequences is rejected at 1 % level
of significance (since the tabulated value of the chi-squares matrix sum with 27 degrees of freedom is
46.96). So, with an overall point of view it can be concluded that the two population sequences are
dissimilar or do not belong to the same ancestor. Moreover, the row similarity can be found here. The sum

the resultant decision matrix =
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of chi- squares for the 1%, 2" 3™ and 4™ rows are calculated as 71.19, 26.73, 21.01 and 76.09 respectively.
The tabulated value of the row wise sum of chi-squares with 7 degree of freedom is 18.48 at 1 % level of
significance. So, all rows are significantly varying among themselves for the three population sequences.
The dissimilarity among all of the rows of the three transition probability matrices is also a potential
evidence of ensuring the conclusion that the three population sequences are dissimilar.

6. Advantages

The credence of the proposed tests for the equality of several population joint frequency distributions are
evident from the given real life examples. The p values of the proposed tests for the equality of the marginal
row frequency distributions or column frequency distributions over several populations are 0. This certain
difference is very much due to the difference among row-wise marginal probability distributions and the
column wise marginal probability distributions. The results seem to be appreciating since maximum of the
cell frequencies vary among populations. Besides, the test for comparing the several population joint
frequency distributions prescribed a p value of 0 which means that several population joint distributions are
not similar and the given samples are not drawn from the same population.

Besides, the credence of the proposed test for the equality of multiple transition probability matrices are
evident from the given real life example, since it is observed that the p - value of the proposed test is close
to zero (since the p-values for the chi-square test is 10?°) indicating bold rejection of the null hypothesis of
the equality of the transition probability matrices whereas the samples were really drawn from three
different populations. Therefore, the performance of the proposed method seems to be better.

The proposed approach for comparing multiple transition probability matrices gives not only an overall
decision of the significant dissimilarity/ similarity of the individual paired transitions but also the significant
dissimilarity/similarity of all possible transitions. It clearly identifies the possible similarity or dissimilarity
among multiple population sequences. The current method specifically detects for which transition(s) the
overall dissimilarity for the multiple population Markov chains is being evident. This idea of more
specification can help the biotechnologist to quickly detect the core fact of the possible difference among
bio-organisms more easily and more efficiently.

Maximum literature in multiple sequence alignment for quantifying the disorderness of multiple sequences
in case of alignment algorithm has been suffering from either calculating superficial gap penalty or
obtaining unsatisfactory accuracy. There is no requirement of the treatment of the gaps in the sequence in
this method. The accuracy of the proposed method is also satisfactory enough due to its assurance of the
optimum p-value.

The authors also checked the results of the proposed test with those obtained by combining the 3 tests of
equality of two transition probability matrices (3 pair for three populations) for the aforementioned samples
(30 sample sequences drawn from each of the three populations). The 3 pair-wise tests test better (since the
equality of the entire transition probability matrices of the three population sequences is rejected with a
lower p-value of 10¢). However, the proposed multiple test will be more amiable since it requires relatively
less effort and time.
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Concluding Remarks

Joint frequency distributions or contingency tables have been widely being studied by numerous authors
since the early ages of statistics. Unfortunately, the discordance of them has not yet been studied so far with
any test. The proposed tests ensemble the individual, group wise and overall pattern of the frequencies of
one population whether significantly differing from those of other population of any discipline. It has
extensive applications in many disciplines like agricultural, biological, pharmaceutical, business and
environmental statistics. Advanced multiple test for the equality of bivariate frequency distributions for the
several populations can be the further scope of the proposed heuristic.

Transition Probability Matrices have been widely being studied by numerous authors since the childhood
of evolutionary statistics. Unfortunately, the discordance of them has not yet been studied with greater
effort. The proposed test ensembles the individual, group wise and overall pattern of the transition
frequencies of one population whether significantly differing from those of other populations.

Any inquiry and proof(s) of the mathematical development of the tests can be accessible from the authors.
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