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Abstract
We consider a recurrent event wherein the inter-event time distribution F is assumed to belong to

some parametric family of the distributions F , where the unknown parameter θ is q-dimensional.
This work deals with the problem of goodness-of-fit test for F. We develop a chi-square type test
where the k nonoverlapping cell boundaries are randomly chosen. Our test used a Kaplan Meier type
nonparametric maximum likelihood estimator (NPMLE) of F to obtain the observed frequencies.
The minimum distance estimator of θ is obtained by minimizing the quadratic form that resulted
from the properly scaled vector of differences between the observed and expected cell frequencies.
The proposed chi-square test statistic is constructed by using the NPMLE of F and the minimum
distance estimator. We show that the proposed test statistic is asymptotically chi-square with k−q−1
degrees of freedom. Results for specific families of distributions such as Weibull is presented. We
also discuss results of a simulation study as well as application to a biomedical data set.

Key Words: Recurrent events; Random cells boundaries; Chi-square test; Minimum distance
estimator; Goodness-of-fit

1. Introduction

Consider a recurrent event process for i = 1, ..., n units where the jth event occur at calen-
dar time Si,j . Suppose that for unit i, the recurrent event is observed over a random interval
[0, τi] where the τis are independent and identically distributed (i.i.d.) with an absolutely
continuous distribution function G(t) = P (τ ≤ t). Let Ti,j = Si,j −Si,j−1 be the time be-
tween two occurrences of the event, the so called gap time or inter-event time-and these are
assumed to be i.i.d. with absolutely continuous distribution function F (t) = P (Ti,j ≤ t).
For the ith unit, the Ti,js could be viewed as the time elapsed between the (j − 1)th and
the jth occurrences in an experimental unit in a reliability or engineering study or that of
a subject in a biomedical study. If Ki is the total number of occurrences per unit, then the
observable for n units is n i.i.d. copies O1, O2,...,On with

Oi = (Ki, τi, Ti,1, . . . , Ti,Ki , τi − Si,Ki , [Xi(s) : s ≤ τi]), (1)

where τi − Si,Ki is the right censoring random variable for the inter-event time Ti,Ki+1,
and Xi(s) is a possibly m-dimensional time dependent covariates vector.

Data of the type in (1) are prevalent in a variety of disciplines and settings including
the biomedical, engineering, and social sciences-to only name those. In reliability, the data
often represent successive failures of a repairable system. In biomedical studies, the data
could be successive occurrence of a chronic disease, the recurrence of tumors in cancer
patients etc. In sociology, absenteeism rate of employees and the recurrence of war and
conflict in geographical regions are potential example of these type of data. Due to its high
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prevalence and importance in many diverse areas, it is essential there exists appropriate sta-
tistical methodology to analyze them. These analysis include, but not limited to: estimation
of model parameters such as the survivor function F̄ (t) = 1−F (t), the cumulative hazard
rate function Λ(t) =

∫ t
0 λ(w)dw, where λ(t) is the hazard rate function of F , or quantiles

of Ti,j . Other major inferential problems include goodness of fit tests pertaining to the dis-
tribution function F , such as Kolmogorov-Smirnov, Cramér-von Mises, or the Pearson’s
type of tests. There has been sustain interest in testing goodness of fit for a parametric
family of distribution, especially the development of chi-square types of test since the pio-
neering work of Fisher in 1922 and Fisher in 1924. Those interests come from the fact that
in survival analysis, for instance, there may be physical reasons that indicate a paramet-
ric family for the underlying failure time distribution. In reliability studies, extreme value
distributions such as Gumbel, Fréchet, or Weibull come as limit of distributions of parallel
or series systems. If the parametric distributions are good models, they could be used for
modeling large claims in actuarial studies. In the area of failure time data analysis-under
valid assumptions-parametrically driven estimates of relative hazard, survival time or their
functionals such as mean or median, tend to have smaller standard errors than they would
in non-parametric settings. Another benefit derived from the method developed herein is
its ability to be used for study design purposes. In the single events, the seminal papers
dealing with the problem of chi-square goodness of fit with fixed or data-dependent cells
include those of Hjort(1990), Kim(1993) , Li and Doss(1993), Habib and Thomas(1986),
Akritas(1988), Hollander and Peña (1992), Moore and Spruill (1975), Pollard(1979), Mi-
halko and Moore(1980) to name a few. The situation where the event is recurrent has
also been dealt with, albeit not as thoroughly yet as in the single event. In the recurrent
event settings, the goodness of fit problem has been considered by Presnell, Hollander,
and Sethuraman(1994), Agustin and Peña(2001) and Agustin and Peña(2005), Stocker and
Adekpedjou(2011), Adekpedjou and Zamba(2012). Presnell et al.(1994) proposed tests for
the minimal repair assumption in the imperfect repair model. Agustin and Peña(2001) pro-
posed goodness of fit test for the Block, Borges, and Savits(1985) model whereas Agustin
and Peña(2005) developed goodness of fit test for an extended Block et al.(1985) model
that include covariates. Stocker and Adekpedjou(2011) developed a class of tests for the
hazard rate function that include chi-squared, Kolmogorov-Smirnov, Cramẽr-von Mises
and obtained asymptotic properties of their tests using empirical process techniques and
Khmaladze transformation. Adekpedjou and Zamba(2012) developed a chi-squared good-
ness of fit for testing the hypothesis of completely known distribution with fixed cells based
on a NPMLE of F . All the tests developed in the above manuscripts in the recurrent event
settings are based on fixed cell boundaries and are different in many ways from the tech-
niques developed herein. Standard statistics of the chi-square types are defined in terms
of cells which are fixed prior to taking the observations. Furthermore, their distributions
are based on multinomial distributions. To test a composite hypothesis, the unknown pa-
rameter must be estimated. If the estimator used is the maximum likelihood based on the
cell frequencies, the resulting test is Pearson-Fisher χ2. If instead the maximum likelihood
used in the construction of the χ2 statistic is based on the original data, then the resulting
statistic does not have a limiting χ2 distribution and the limiting distribution in general de-
pends on the unknown true value θ (cf. Chernoff and Lehman(1954)). To overcome this,
we allow the cell frequencies to be data dependent, that is depend on the estimated value of
the unknown parameter and require that the cells settle down as the sample size increases.
Cells obtained following this technique are called random cells. By doing so, the limiting
distribution of the χ2 statistic will not depend on the unknown parameter. This approach of
constructing χ2 statistic is more flexible, guarantees that the cells probabilities will not be
small and is increasingly practicable. The cell frequencies are no longer multinomial and
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the limiting distribution of the vector of standardized frequencies is now obtained using
sophisticated techniques such empirical process techniques and the Skorohod construction.
Li and Doss developed a χ2 test based on random cells for right-censored and left trun-
cated data in the single event settings. In fact, their test is applicable whenever there exists
an estimator F̂ (t) of F (t) satisfying the asymptotic property

√
n(F̂ − F ) ⇒ W , where

⇒ denote weak convergence and W is a zero-mean continuous Gaussian process whose
variance-covariance matrix is non-singular. Other chi-square tests based on random cells
have also been developed by Moore(1971), Pollard(1979) among others-and these are not
developed for recurrent events. The major goals of this article is to develop chi-square
goodness of fit for testing the null hypothesis that F belongs to some parametric family of
distributions. In the test we propose, the cells are random and data-driven. The proposed
test generalized the work of Li and Doss(1993) to the situation where the event is recurrent.
Furthermore, it encompasses a wide range of tests including-fixed null with random cells,
fixed cells with composite hypothesis- and is different from those proposed in the literature
of recurrent events. We use the NPMLE of the distribution function of the inter-event time
developed in Peña et al.(2001) to obtain the observed frequencies. The NPMLE estimator
is a generalized Kaplan-Meier type (cf. Kaplan and Meier(1958)). The expected frequen-
cies are obtained using the estimator of θ that minimizes a quadratic form obtained from
the suitably standardized vector of “ observed - expected ” frequencies.

1.1 Background on recurrent event modeling

In this subsection, we briefly review relevant stochastic processes that are used in the es-
timation of the NPMLE of F . Following Peña et al.(2001), we begin by defining some
relevant calendar time stochastic processes given by N †

i = {N †
i (s) : s ≤ τi}, Y †

i =

{Y †
i (s) : s ≥ 0}, where N †

i (s) =
∑∞

j=1 I{Si,j ≤ s ∧ τi}, and Y †
i (s) = I{τi ≥ s}.

For the ith subject, the N †
i process determines the event occurrences up to time τi whereas

the Y †
i process determines if the unit is at-risk for a recurrent event. Let the backward re-

currence time process-that is the time elapsed since the last event- for unit i be defined by
Ri = {Ri(s) : s ≥ 0} with Ri(s) = s−S

i,N†
i (s−)

, where s− is the time just before s. From

stochastic integration theory, the compensator process of N †
i is A†

i = {A†
i (s) : s ≥ 0}

where A†
i (s) =

∫ s
0 Y †

i (v)λ[Ri(v), θ]dv where λ(·, θ) is the hazard rate function of F (·, θ).
The martingale process with respect to the natural filtration F = {Fs : s ≥ 0} gener-
ated by {[(N †

i (s), Y
†
i (s+)) : s ≥ 0], i = 1, 2, . . . , n} is M †

i = {M †
i (s) : s ≥ 0} with

M †
i (s) = N †

i (s)−A†
i (s) being a square integrable martingale with respect to the filtration

Fs. Using the aggregate of processes that keep track of both calendar time and gap-time-
N(s, t), A(s, t), and M(s, t), Peña et al.(2001) developed, based on the data in (1), a
NPMLE of the survivor function F̄ (t) denoted by ˆ̄F (s, t)- which is a Kaplan-Meier type
(cf. Kaplan and Meier(1958)) and given by

ˆ̄F (s∗, t) =
∏
w≤t

[
1− N(s∗, dw)

Y (s∗, w)

]
, (2)

where s∗ = maxi τi, the maximum observation window. Furthermore, they showed that,
over an appropriate Skorohod space

√
n[ ˆ̄F (s∗, t)− F̄ (t)] →d W, (3)

where W is a zero-mean Gaussian process with some variance-covariance matrix Σ1(s
∗, t).
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1.2 Notation and assumptions

We consider the data in (1). We assume that the inter-event times are i.i.d. with a com-
mon absolutely continuous distribution function F . The problem of goodness of fit with
recurrent event data we consider here is to test the null hypothesis H0 that F is a member
of the family Fθ = {F (·, θ) : θ ∈ Θ ⊆ ℜq}. The NPMLE of F is as given in (2). In
what follows, we let the estimate of the survivor function be ˆ̄F (s∗, ·) and will assume the
asymptotic property (3) is in force. Let θ0 be the true parameter value of θ. We introduce
the following notations.

Let T = [0, t∗], where t∗ = maxi,j Ti,j is the largest gap-time. The set T could also be
taken to be [0, s∗]. We consider a subdivision of [0, t∗] given by 0 = tn0 < tn1 < · · · < tnk =
t⋆ where the end-points are functional of the data, namely tnj = tnj (Oi; i = 1, ..., n). The
random cells are given by Ini = [tnl−1, t

n
l ) for l = 1, . . . , k, and we require them to settle

down as sample size increases, that is tnl →p tl and Inl →p Il = [tl−1, tl) as n → ∞, under
F (·, θ0), where tl ∈ [0, t∗]. Here the notation →p means convergence in probability.

Set tn = (tn1 , . . . , t
n
k−1) and t = (t1, ..., tk−1). The number of Ti,j falling in the lth

random cell Inl (l = 1, ..., k) by calendar time s, that is the observed cells frequencies
using the NPMLE is defined by

p̂nl (s) =

∫
In
l

F̂ (s, dw) = F̂ (s, tnl )− F̂ (s, tnl−1). (4)

Under the null hypothesis, the expected random cell frequencies, that is the expected num-
ber of Ti,j falling in Inl are given by

pnl (θ) =

∫
In
l

F (dw, θ) = F (tnl , θ)− F (tnl−1, θ), (5)

and these are expected, as n → ∞, to stabilize to

pl(θ) =

∫
Il

F (dw, θ) = F (tl, θ)− F (tl−1, θ). (6)

In the sequel, we introduce the corresponding vector of observed cells frequencies, ex-
pected random cells frequencies, and limiting values of expected random cells frequencies
by

p̂n(s) = [p̂nl (s)]k×1, pn(θ) = [pnl (θ)]k×1, p(θ) = [pl(θ)]k×1, (7)

respectively. Let the lth element of a k × 1-vector Un(s, t; θ) of “observed-expected”
frequencies over the random cells Inl be defined by

U l
n(s, t; θ) =

√
n[p̂nl (s)− pnl (θ)], l = 1, ..., k. (8)

In general, a chi-square statistic has the form U′
n(s, t; θn)

′Σ̂Un(s, t; θn), where a′ denote
the transpose of a vector a, θn is an estimator of θ having some nice asymptotic properties,
and Σ̂ is a k × k matrix that could possibly depends on θn. The matrix Σ̂ is-most of
the time- an estimate of the Moore-Penrose generalized inverse of a consistent estimator
of the in-probability limit of the variance-covariance matrix of the limiting distribution of
Un(s, t; θ). At any rate, the true limiting matrix Σ is in general assumed to satisfy some
regularity conditions such as positive definite and non-singularity. We now impose some
assumptions that are crucial for the proof of our asymptotic results. These are the classical
conditions imposed on the hypothesized distribution and the expected frequencies under
H0 for chi square type tests -however slightly changed to accommodate recurrent events.
Assumption I. There exists a neighborhood N (θ0) of θ0 on which F (t, θ) is continuous and
differentiable on [0, t∗]×N (θ0) and the derivative of all orders are continuous in t and θ.
Assumption II. The k × q matrix
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∇θ′p(θ) =

 ∇θ1p1(θ) · · · ∇θqp1(θ)
...

. . .
...

∇θ1pk(θ) · · · ∇θqpk(θ)


k×q

where ∇θ = ∂
∂θ ≡ (∂/∂θj , j = 1, 2, . . . , q)t and ∇θjpi(θ) =

∂
∂θj

pi(θ) is of rank q for all
θ ∈ Θ. Other assumptions will be added as needed as we progress in the manuscript.

2. Preliminary results

Our first result in this subsection pertains to the asymptotic distribution of Un(s, t; θ0).

Theorem 1 Under H0, Un(s, t; θ0) converges in distribution to Nk(0,Σ)
where Σ = JΣ1(s, t; θ0)J

′ and the matrix J is given by

J =



1 0 0 · · · 0
−1 1 0 · · · 0
0 −1 1 · · · 0
...

...
. . . . . .

...
0 0 0 · · · 1
0 0 0 · · · −1


k×(k−1)

Furthermore, rank(J) = k − 1.

Proof: Define the product-limit type process by Wn(s, t; θ0) =
√
n[ ˆ̄F (s, t)− F̄ (t, θ0)],

where as before θ0 is the true value of θ. With ξn = [Wn(s, t
n
j ; θ0)](k−1)×1, it is eas-

ily shown that Un(s, t; θ0) = −Jξn. Define ξ
(1)
n = [Wn(s, tj ; θ0)](k−1)×1 and ξ

(2)
n =

[Wn(s, t
n
j ; θ0) −Wn(s, tj ; θ0)](k−1)×1. Then ξn = ξ

(1)
n + ξ

(2)
n . Observe that Wn(s, t; θ0)

is a type of process given in (3) and its weak convergence to say W (s, t; θ0) is given in
(3). Using the Cramér-Wold device, Peña, Strawderman, and Hollander(2000) proved con-
vergence of finite dimensional distributions of W (s, t; θ0) to Gaussian distributions for any
t1 < t2 < · · · < tk. The proof is complete if we can show that ξ(2)n converges in probability
to a (k − 1)- dimensional vector 0(k−1)×1. By the representation theorem of Pollard (cf.
Pollard(1879)), there exists a new probability space (Ω̃, F̃ , P̃ ), new processes W̃n(s, t; θ0)
and W̃ (s, t; θ0) such that Wn(s, t; θ0) =ed W̃n(s, t; θ0) [where =ed means “equal in dis-
tribution”] and W (s, t; θ0) =ed W̃ (s, t; θ0). Moreover, W̃n(s, t; θ0) converges weakly to
W̃ (s, t; θ0) and the new processes have the same finite distributions as the old ones on their
respective probability spaces. Since W̃ (s, t; θ0) has continuous sample paths, the distribu-
tion equalities imply

sup0≤t≤t⋆ |W̃n(s, t; θ0)− W̃ (s, t; θ0)| →p 0

as n → ∞. Next, for l = 1, ..., k, introduce t̃nl = tnl (Õi : i = 1, ..., n), the counterparts of
tnl on (Ω̃, ♡F , P̃ ) such that t̃nl =ed tnl . In addition, t̃nl →p tl since tnl →p tl and t̃nl =ed tnl . It
then follows, for large n that (we drop the argument θ0)

|W̃n(s, t̃
n
l )− W̃n(s, tl)| ≤ |W̃n(s, t̃

n
l )− W̃ (s, t̃nl )|+ |W̃ (s, t̃nl )− W̃ (s, tl)|

+|W̃ (s, tl)− W̃n(s, tl)|
≤ 2 sup

0≤t≤t⋆
|W̃n(s, t)− W̃ (s, t)|+ |W̃ (s, t̃nl )− W̃ (s, tl)|(9)

→p 0
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as n → ∞, where the last inequality is obtained by using the continuous sample path
property of W̃ (s, t; θ0). Because W̃ (s, t; θ0) has continuous sample paths, an application
of the continuous mapping theorem implies that the right hand side of (9) is negligible.
Therefore, ξ(2)n →p 0 and the result in the statement of the theorem follows by applying
Slustky theorem. ∥

Let Ξ(θ; s, t) be the square root of the Moore-Penrose generalized inverse of Σ(s, t; θ).
Then Ξ(θ; s, t) is a (k×k symmetric matrix whose elements are function of (θ, t) for fixed
s. The variance-covariance matrix Σ1 of W in (3) is a non-singular matrix. We now impose
some conditions on Ξ(θ; s, t).
Condition 1: Ξ(θ; s, t) is continuous at (θ, t) for a fixed s
Condition 2: Ξ−1(θ; s, t) exists and bounded on (Θ× [0, s∗]× [0, s∗])
For brevity, let Ξ(θ; s, tn) ≡ Ξn(s, θ) be the matrix obtained with t replaced by the random
boundaries vector tn. Define

Vn(θ; s, t) = Ξn(s, θ)Un(s, t; θ). (10)

The limiting distribution of Vn(θ; s, t) under H0 is straightforward from Theorem 1. We
now imposed our third assumption about the minimum chi-square estimator of θ0.
Assumption III Let {θ̄n(s∗, t∗) : n = 1, 2, ...} be the sequence of θ-values minimizing the
sequence of quadratic forms {V′

n(θ; s
∗, t∗)Vn(θ; s

∗, t∗) : n = 1, 2, ...}. Then under the
assumptions and conditions given above, θ̄n(s∗, t∗) →p θ0 as n → ∞.

In the above theorem, θ̄n(s∗, t∗) is the modified minimum chi square estimator of θ.
When t∗ → ∞, the modified minimum chi square reduces to the minimum chi square esti-
mator θ̄n(s∗). In cases were closed form solution for zeros of θ̄n(s∗, t∗) V′

n(θ; s
∗, t∗)Vn(θ; s

∗, t∗)
does not exist, numerical methods such as the Newton-Raphson algorithm will be needed
to minimize the quadratic form.

From now on, we abbreviate θ̄n(s∗, t∗) by θ̄n. The next two lemmas pertain to a Taylor-
type expansion around θ̄n for pn(θ̄n) and ∇θ′pn(θ̄n). These two lemmas prove to be crucial
in most of our asymptotic proofs.

Lemma 1 Under the assumptions and conditions enumerated above, we have:
[i] pn(θ̄n) = p(θ0) + op(1) and [ii] ∇θ′pn(θ̄n) = ∇θ′p(θ0) + op(1).

Introduce the k × q matrix B(s, t; θ0) with (i, j)th entry equals to

Ξ(s, t; θ0)i,j
∂pi(t, θ0)

∂θj
(11)

for i = 1, ..., k and j = 1, ..., q, so that B(s, t; θ0) = Ξ(s, t; θ0)∇θ′0
p(t, θ0).

Lemma 2 Under the regularity condition and assumptions, we have:

B′(s, t; θ0)Vn(s, t; θ̄n) = op(1)

Proof: Since θ̄n is the value of θ minimizing the quadratic form V′
n(θ; s, t)Vn(θ; s, t), it

follows that for j = 1, ..., q

∇θj [V
′
n(s, t; θ̄n) · Vn(s, t; θ̄n)] = 0, (12)

where the symbol · represents the dot operator. Using the definition of Vn(s, t; θ), (12) is
equivalent to

∇θj [U
′
n(s, θ̄n)Ξ

2(s, θ̄n)Un(s, θ̄n)] = 0. (13)

Expending (13) and differentiating U′
n(s, θ̄n) with respect to θj , we obtain
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−2
√
n∇θj [p′

n(θ̄n)]Ξ
2(s, θ̄n)Vn(s, θ̄n) + U′

n(s, θ̄n)∇θj (Ξ
2(s, θ̄n))Un(s, θ̄n) = 0.

By Condition II, Ξ−1(s, θ̄n) exists and is bounded, therefore, Un(s, θ̄n) = Ξ−1(s, θ̄n)Vn(s, θ̄n).
Furthermore, the asymptotic distribution of Un(s, θ0) yields

∥Un(s, θ0)∥ = Op(1). (14)

That the statement of the proposition holds follows using (14) and the rules of multiplica-
tion of little o and big O by bounded elements. ∥

Theorem 2 Under the null hypothesis H0 and Assumptions I and II above, we have
√
n(θ̄n−θ0) = B(s∗, t∗; θ0)[B′(s∗, t∗; θ0)B(s∗, t∗; θ0)]−1B′(s∗, t∗; θ0)Vn(s

∗, t∗; θ0)+op(1)
(15)

Proof: Start out by adding and subtracting p(θ0) in (10) to obtain (we drop the gap time
argument in V and U for simplicity)

V(s, θ̄n) = Ξ(s, θ̄n)
√
n[p̂n(s)− pn(θ0)]− Ξ(s, θ̄n)

√
n[p̂n(θ̄n)− pn(θ0)]

= Ξ(s, θ̄n)U(s, θ0)− Ξ(s, θ̄n)
√
n[pn(θ̄n)− pn(θ0)].

Using (4), Assumption I, and Lemma 1, we obtain

Vn(s, θ̄n) = Ξ(s, θ̄n)Un(s, θ0)− Ξ(s, θ̄n)[∇θ′p(θ0) + op(1)]
√
n(θ̄n − θ0). (16)

An application of Condition I, Lemma 1 to Ξ(s; θ̄n), and the rules of multiplication of little
o by bounded elements yields

V(s, θ̄n) = [Ξ(s, θ0) + op(1)]Un(s, θ0)− [Ξ(s, θ0) + op(1)][∇θ′p(θ0) + op(1)]
√
n(θ̄n − θ0)

= Vn(s, θ0) + op(1)Un(s, θ0)− [Ξ(s, θ0)∇θ′p(θ0) + op(1)]
√
n(θ̄n − θ0)

= Vn(s, θ0)− [B(s, θ0) + op(1)]
√
n(θ̄n − θ0) + op(1) (17)

Multiplying (17) by B′(s, t; θ0) and using the fact that B′(s, t; θ0)Vn(s, θ̄n) is negligible by
Lemma 2 gives the desired result. ∥

3. Construction of the test statistic and applications

3.1 Construction of the test and large sample properties

With θ̄n being the minimum chi-square estimator, let Vn(s, θ̄n) be the value of Vn(s, θ) at
θ̄n. Furthermore, let A(s, t; θ) be the k × k matrix defined by

A(s, t; θ) = Ik − [B′(s, t; θ)B(s, t; θ)]−1B′(s, t; θ).

Theorem 3 Under the regularity condition and assumptions stated above, and under H0,
we have

Vn(s
∗, t∗; θ̄n) →d Nk(0,Γ(s

∗, t∗; θ0))

where Γ(s, t; θ0) = A′(s, t; θ0)Ξ(s, t; θ0)ΣΞ(s, t; θ0)A(s, t; θ0).
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Proof: From Lemma 1 and the definition of Vn(s, t; θ), the asymptotic distribution of
Vn(s, t; θ0) under H0 is given by

V(s∗, t; θ0) →d N(0,Ω(s∗, t; θ0)) (18)

where Ω(s, t; θ0) = Ξ(s, t; θ0)ΣΞ
′(s, t; θ0). Taylor expending of Vn(s, t; θ̄n) around θ0

and an application of Theorem 2 to
√
n(θ̄n − θ0) successively yields

Vn(s, θ̄n) = Vn(s, θ0)− [B + op(1)]
√
n(θ̄n − θ0) + op(1)

= Vn(s, θ0)− [B + op(1)][(BB′)−1B′Vn(s, θ0)] + op(1)

= [I − B(B′B)−1B′]Vn(s, θ0) + op(1).

Thus the limiting distribution of Vn(s
∗, t; θ̄n) follows upon applying standard results of

multivariate normal distributions. ∥
To obtain a statistic with limiting chi-squared distribution, we first provide a consistent

estimator of Σ1(s, t; θ0). The limiting variance-covariance matrix Σ1(t1, t2, ..., tk−1) of
the finite dimensional distributions of W for any 0 < t1 < t2 < · · · < tk−1 under H0 is
given by

Σ1(s, t; θ0) =


Σ1(s, t1; θ0) Σ1(s, t1; θ0) · · · Σ1(s, t1; θ0)
Σ1(s, t1; θ0) Σ1(s, t2; θ0) · · · Σ1(s, t2; θ0)

...
...

. . .
...

Σ1(s, t1; θ0) Σ1(s, t2; θ0) · · · Σ1(s, tk−1; θ0)

 ;

where each Σ1(s, tj ; θ0), j = 1, ..., k − 1 is given by (cf. Peña et al.[?])

Σ1(s, tj ; θ0) = F̄ 2(tj , θ0)

∫ tj

0

log−F̄ (dw, θ0)

y(s, w; θ0)
. (19)

With Y (s, t) =
∑n

i=1 Yi(s, t) being the generalized at-risk process, it has been shown in the
aforementioned paper that a uniformly consistent estimator of y(s, t) is Ȳ (s, t). Therefore,
a natural estimator of Σ1(s, tj ; θ0) under H0 for each j is

Σ̂1(s, tj ; θ̄n) = F̄ 2(t, θ̄n)

∫ tj

0

log−F̄ (dw, θ̄n)

Ȳ (s, t)
. (20)

The next result pertains to the rank of the matrices Γ(s, t; θ0) and Γ̂(s, t; θ̄n). This will be
used later to obtain the number of degrees of freedom of our chi-square statistic.

Theorem 4 Under the regularity condition and assumptions, we have
[i] rank(Γ(s, t; θ0)) = k − q − 1
[ii] P (rank(Γ̂(s, t; θ̄n)) = k − q − 1) → 1 as n → ∞.

Proof: [i] Abbreviate Σ1(s, t; θ0), Ξ(s, t; θ0), A(s, t; θ0) and Γ(s, t; θ0) by Σ1, Ξ, A and Γ
respectively. We begin by noting that because Σ1 is a positive definite matrix, there exists
a matrix T via Cholesky decomposition such that Σ1 = TT ′. Therefore,

rank(Γ) = rank[AΞJTT ′J ′ΞA] = rank[(AΞJT )(AΞJT )′],

and rank(Γ) reduces to rank[AΞJT ]. The latter can be further reduced to rank[AΞJ ].
The proof of [i] will be completed if we can show that rank[AΞJ ] = k − q − 1. Using
results from linear models theory, that amounts to showing that

rank(AΞJ) = dim(C(AΞJ)) = k − dim(C⊥(AΞJ)),
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where C(AΞJ) is the column space spanned by the columns of the matrix AΞJ and C⊥(AΞJ)
is the space of all vectors orthogonal to C(AΞJ). Let B(s, θ) be the matrix with (i, j)th
defined in (11). It is clear that rank(B) = q and dim C(B) = q. Let e = Ξ−11, where 1 is
a k × 1 vector with (1)i = 1, for i = 1, ..., k. Then it is straightforward to see that using
matrix multiplication

B′e = ∇θ′ [1
′ · p(θ)]′ = 0. (21)

From (21), it follows that e is orthogonal to C(B) and consequently dim C[B, e] = q + 1.
To complete the proof, we need to show that the space of all vectors orthogonal to C[B, e]
is C[AΞJ ]. Observe that

(AΞJ)′B = J ′ΞAB = J ′Ξ0 = 0,

(AΞJ)′e = J ′1 = 0.

Therefore C(AΞJ) is orthogonal to C[B, e], hence C⊥(AΞ)J) ⊇ C[B, e]. In a similar way,
we can prove the inverse inclusion, and the result follows.
[ii] This part follows from part [i] and standard results on rank of uniformly consistent esti-
mator of matrices. ∥ We are now ready to construct our test statistic. Let Γ−(s∗, t; θ0) and
Γ̂−(s∗, t; θ̄n) denote the Moore-Penrose generalized inverse of Γ(s∗, t; θ0) and Γ̂−(s∗, t; θ̄n)
respectively. From [i] and [ii] of Theorem 4, it follows that

Γ̂−(s∗, t; θ̄n) →p Γ
−(s∗, t; θ0). (22)

The result in (22) is key to obtaining the asymptotic distribution of our chi-square statistic,
given in the next theorem.

Theorem 5 Define Q̄(s∗, t) = V′(s∗, t; θ̄n)Γ̂
−(s∗, t; θ̄n)V(s∗, t; θ̄n). Then, under H0

Q̄(s∗, t) →p χ
2(k − q − 1),

and the test reject the hypothesized family of distributions at level α if Q̄(s∗, t) ≥ χ2(k −
q − 1, α), where χ2(k − q − 1, α) is the upper α point of χ2(k − q − 1).

Proof: Equation (22) and Theorem 3 together with results on multivariate normal distribu-
tion provide the result. ∥

4. Simulation Study

4.1 Simulation Design

We perform a Monte Carlo simulation study using the R software on Linux platform. The
LINUX server, ph - nmx, at the College of Public Health, The University of Iowa is
used for the simulations. The goal of the simulation study is to assess estimation using
minimum χ2 methods, and to gauge the performance of our proposed random cell test with
respect to nominal and achieved significance levels. For the sake of brevity, we design
our simulations using 3 random partitions (Il) of the monitoring period; although more
than three partitions can be considered. In order to carry the simulation, recurrent event
data must be generated during a study monitoring period [0, τ ]. To generate the recurrent
event data, we use a structure that reconciles the interocurrence time survivor function F̄
and the length of the monitoring period τ–by implication, the censoring distribution Ḡ.
A well-known structure that reconciles F̄ and Ḡ in the presence of recurrent event data
is the generalized Koziol-Green (KG) model (Koziol & Green(1976)). The generalized
KG model for a recurrent event settings postulates the existence of a monitoring parameter
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β > 0 such that Ḡ(t) = F̄ (t)β . The parameter β controls the events intensity over the
monitoring period and is reasonably constrained to (0, 1] for practical relevance– constraint
that leads to more observed recurrences. We set the value of β to be 0.3 and consider
estimating and testing within parametric model: the Weibull parametric lifetime models.
To find the minimum chi square estimator, the quadratic form of theorem 2 was used. It is
to be noted that any other estimator that is asymptotically equivalent to the MCSE provides
the same asymptotic result as the MCSE (Li and Doss, 1993). In the case of recurrent
events, among the class of MCSE, the minimum Hellinger distance estimator (Beran 1977)
has proved to have consistently provided unbiased estimators of the parametric family.
Model: True inter event time survivor function follows a Weibull distribution; F̄ (t, θ) =
exp(−tθ); with null survivor function F̄ (t, 1).

Estimation
For model, we vary θ in {2.00, 1.50, 1.25, 1.00, .50, .25}. We view these values as ‘true’
parameters for the sake of simulation and to gauge how well they are recuperated by our
estimation methods. We consider small sample as well as large sample estimation (n in {
30, 50, 100, 200}). For each combination of (θ, n), we run 100 replications to estimate
the parameter and carry out the test. Table 1 displays the value of a ‘true’ parameter (i.e.
θ as set by the simulated data), the average value of the parameter across 100 replications
(θ̄), and the standard deviation around the estimation. The true parameter value is what has
been used to generate the recurrent event data. θ̄ and θ̇ are the estimated values from the
simulation after we apply the minimum χ2 framework. We found out that for the Weibull
model, the more concave shape densities (i.e θ ≫ 1) are prone to bigger estimation errors
than the convex counterparts.
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Table 1: Weibull Parametric Family: F̄ (t, θ) = exp(−tθ)

n θ θ̄ SD θ̇ n θ θ̄ SD θ̇

30 0.25 0.25 0.01 0.25 100 0.25 0.25 0.01 0.25
0.50 0.50 0.03 0.50 0.50 0.50 0.01 0.50
0.75 0.76 0.07 0.76 0.75 0.75 0.03 0.74
1.00 1.02 0.09 1.02 1.00 1.01 0.05 1.01
1.25 1.28 0.15 1.26 1.25 1.26 0.07 1.27
1.50 1.53 0.20 1.52 1.50 1.53 0.11 1.54
1.75 1.87 0.26 1.81 1.75 1.79 0.14 1.79
2.00 2.10 0.33 2.08 2.00 2.07 0.16 2.04
3.00 3.15 0.58 3.11 3.00 3.10 0.26 3.09
5.00 5.42 1.13 5.40 5.00 5.21 0.50 5.18

50 0.25 0.25 0.01 0.25 200 0.25 0.25 0.01 0.25
0.50 0.50 0.02 0.50 0.50 0.50 0.01 0.50
0.75 0.76 0.04 0.76 0.75 0.75 0.02 0.75
1.00 1.02 0.08 1.02 1.00 1.00 0.04 1.00
1.25 1.28 0.10 1.28 1.25 1.25 0.05 1.25
1.50 1.55 0.14 1.54 1.50 1.51 0.08 1.51
1.75 1.81 0.18 1.79 1.75 1.76 0.09 1.76
2.00 2.08 0.22 2.08 2.00 2.02 0.13 2.02
3.00 3.18 0.43 3.15 3.00 3.04 0.18 3.05
5.00 5.29 0.90 5.14 5.00 5.07 0.34 5.07
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Table 2: Observed Significance

θ n Test1 Test2

0.5 20 0.030 0.001
30 0.010 0.010
50 0.001 0.001
75 0.001 0.001

100 0.001 0.001
200 0.001 0.001

1.0 20 0.110 0.100
30 0.120 0.100
50 0.070 0.070
75 0.050 0.050

100 0.060 0.050
200 0.030 0.040

3.0 20 0.190 0.100
30 0.140 0.110
50 0.070 0.060
75 0.040 0.020

100 0.020 0.010
200 0.020 0.001

Testing:
For testing the parametric family against the NPMLE, the estimated values θ̄ obtained from
theorem 2, θ̄n say, were plugged into the quadratic form of theorem 6 to obtain test statistics
that are compared to the χ2 distribution with one degree of freedom. The test has been set
to reach a nominal significance level of 0.05. The achieved significance is represented by
the proportion of these quadratic forms that cross the upper .95 quantile of the limiting χ2

distribution (i.e. 3.8415). Table 2 displays such results for selected values of θ. We use two
different tests based on two different estimations of Γ(s, t, θ̄n). The first estimator is based
on the parametric cumulative hazard functions as outlined in equation 20. The resulting test
is labeled Test1. The second estimator substitutes the parametric estimation of equation
20 by its non-parametric equivalent (see for example estimator I of Adekpedjou & Zamba
, 2010). The second test is labeled Test2 on table 2. For Weibull parametric model, the
tests are anti-conservative in small samples and tend to be conservative as sample size
increases. But the test built around a non-parametric estimation of the integrated hazard is
very conservative when the parameter is small. The Weibull family with decreasing hazard
reacts extremely conservatively to the test in large sample than the Weibull family with
increasing hazard. Anti-conservativeness remains an issue in small sample; though more
pronounced when the hazard increases in time. By and large, reliability growth suffers
from small and large sample conservativeness while reliability deterioration suffers from
small sample anti-conservativeness and a large sample conservativeness.
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5. Concluding remarks

In this manuscript, a goodness of fit test for testing whether or nor the distribution of the
time between failure belongs to some parametric family of distribution is developed. The
chi-square test developed is adaptive in the sense that the boundaries are data dependent
and those are expected to stabilize are sample size increases. The test developed is more
flexible and guaranties cells probabilities will not be small as would be the case if fixed
cells probabilities were chosen. Moreover, the chi-square test fails when many cells have
small expected number of observations. The test statistics is shown to be asymptotically
chi-square. There are many avenues for estimating the unknown parameter of the under-
lying distribution. However, we found the minimum chi-square estimator more appealing
because of its nice asymptotic prosperities and its equivalence to other estimator of θ for
large samples.
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