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Abstract 

The private corporate forest landowners of the United States have long abandoned the 

practice on relying upon permanent sample plots (PSPs) to measure the components of 

forest growth.  Many of the PSPs were inexpensively established using the Bitterlich 

angle count method, however they furnished estimates of growth with high variance or 

with non-additive properties of biomass/volume (V2 ≠ [V1 + ΔV]).  McTague (2010) 

proposed a new unbiased variable basal area factor that is weakly correlated, in some 

forest conditions, to the conventional  Bitterlich estimator.  Gains in precision are 

possible by using composite estimates that weighted inversely by variance between the 

new and conventional estimators.   This paper will demonstrate that the Bitterlich 

estimator is a special case of a composite estimate between the new variable basal area 

factor and its antithetic counterpart.  When the new estimator is extended to the 

application of estimating change in forest stock or standing inventory from remeasured 

forest plots, it is possible to obtain unbiased, efficient, additive, and inexpensive 

estimates of growth.   

 

 Keywords:  Angle count sampling, composite estimators, forest growth and change 

estimates, permanent sample plots 

 

 

1. Introduction 

Numerous authors have bemoaned the demise of the use of permanent sample plots on 

private forest timberlands in North America, based on an angle count (point sampling) 

estimator, for measuring forest stock and growth.    Assertive and sometimes humorous 

accounts have vigorously claimed that point sampling estimators are very appropriate for 

measuring growth (Furnival 1979, Husch et al. 1982).  The ubiquitous installation of 

permanent point sample plots in the 1960’s and 1970’s was based on the low cost, ease of 

measurement, and efficiency of basal area and volume estimates.  The disfavor of 

permanent point sample points became evident later when analyzing growth from 

remeasurements.   Additive or compatible estimates, such as those reported by Van 

Deusen et al. (1986) typically displayed high variance for the attribute of growth, while 

the efficient change estimator of Grosenbaugh (1958) was non-additive for biomass and 

or volume (V2 ≠ [V1 + ΔV]).    

 

Galik et al. (2013) have recently described the huge potential role of private timberlands 

in carbon sequestration and exchange of carbon credits.  Participation rules for 

commercialization and program design of exchange frequently involve monitoring 

requirements and some level of verification of the change in biomass and carbon stocks.  

Permanent sample plots, based on point or angle count samples, offer an attractive 

methodology for direct observation of change in forest biomass stocks.  This paper 

explores the use of a new point sampling estimator introduced by McTague (2010) and its 
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properties in the estimation of change of forest biomass/volume.   Comparisons are made 

to other estimators of change using the traditional angle count constant for basal area 

factor (BAFAC) created by Bitterlich (1948), and newer variable basal area factors 

proposed by Flewelling (1981), Iles and Carter (2007), and McTague (2010). 

 

2.  Previous studies 

The work presented here builds upon some empirical comparisons among growth 

estimators from permanent point samples presented by Hradetzky (1995) and Thérien 

(2011).  Unfortunately, a definitive answer regarding the most efficient change estimator 

for measuring forest growth is not possible; the results are still partially driven by the 

data, duration between measurement occasions, and the specific component of forest 

growth that is analyzed.  The problem of estimating growth from permanent point 

samples, as described by Hradetzky (1995), is of varying sample composition from one 

measurement occasion to the next.  Excluding the consideration of trees that die, or 

saplings that grow into merchantable size during the remeasurement interval,  the sample 

plot on each remeasurement occasion will normally contain an augmented list of ‘in’ 

trees.  Despite the baffling name of nongrowth trees that was introduced by Martin 

(1982) to denote the list of new ‘in’ trees,  there is nothing mysterious about the updated 

list with new trees included ‘in’ the sample at the time of remeasurement.  Irrespective of 

the location of the permanent point (plot) sample center, the probability of inclusion in 

the sample increases as trees grow larger in diameter.  What differs among the various 

growth estimators examined in this paper is the computation of the basal area and 

expansion factors for the new ‘in’ trees at the time of remeasurement.   The expansion 

factor (BAF/g) is used to compute the representative trees per hectare of a sample ‘in’ 

tree and it is expressed as the quotient of the basal area factor (BAF) and the individual 

sample tree basal area (g). 

 

Efficiency was apparently not compromised when Van Deusen et al. (1986) and 

Nakajima et al. (1996) elected to compute basal area identically for both the new ‘in’ 

trees on the plot at the time of remeasurement, and for the original list of ‘in’ trees that 

were measured on both occasions.  The original list of ‘in’ trees is generally referred to as 

survivor trees, since they are measured ‘in’ and are alive on both measurement occasions.  

Grosenbaugh (1958) and Beers and Miller (1964) preferred to allocate a basal area and 

expansion factor of zero to the new ‘in’ trees.  The preponderance of literature suggests 

that the growth estimator of Grosenbaugh is more efficient than the Van Deusen 

estimator for most forest conditions and remeasurement intervals (Gregoire 1993, 

Hradetzky 1995, and Thérien 2011).  The drawback of the Grosenbaugh estimator is that 

it is non-additive (incompatible).  Bitterlich (1984) suggested that the Van Deusen type 

estimator was of little practical value since it measured the increase rather than the 

increment of sample trees.   Roesch et al. (1989) introduced a novel and efficient 

approach to the computation growth from permanent point samples at the time of 

remeasurement that maintains the property of additivity.   All ‘in’ trees at the time of 

remeasurement are assigned the expansion factor from measurements of the current 

diameter (d at time 2).  The same expansion factor is then retroactively applied to the 

original ‘in’ trees of the previous measurement.   

 

Flewelling (1981) derived an unbiased variable basal area factor estimator that is a 

function of the tree diameter (d) and distance from the point center to the sample ‘in’ tree.  

The expansion factor, computed with the BAF of Flewelling, has a large value for big 

‘in’ trees located near the point center and a reduced value for small ‘in’ trees located 
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away from the point center.   This type of basal area and expansion factor is ideally suited 

for estimating growth from remeasured point samples, since newly recruited ‘in’ trees at 

the time of remeasurement have a diminished impact on change statistics.  In order to 

remain fully additive however, the biomass/volume statistics of V1 and V2 must also be 

computed with the variable BAF factor when computing the change statistic of ΔV.   The 

variable BAF factors derived by Iles and Carter (2007) and McTague (2010) have similar 

properties to the Flewelling estimator.  The same set of trees included ‘in’ the sample and 

trees located further from the point center have less impact on computation of stock or 

change statistics. 

 

3.  Methods 

Comparisons among the unbiased estimators presented in this article are made by 

analyzing the variances associated with repeated sampling at the stand ages of 12 and 16 

using simulation.  The simulation procedure is repeated at each measurement occasion 

500 times using a 40 hectare forest stand and a sampling intensity of one point (plot) per 

hectare.  The inclusion of ‘in’ trees is determined with a BAFAC = 4 using the same point 

location at ages 12 and 16.  The population consists of 500 Pinus taeda plantation trees in 

Santa Catarina, Brazil generated from the growth and yield model described by McTague 

and Bailey (1987).  Their approach relies on stand level equations to predict the attributes 

of dominant height, basal area, and survival.  Individual tree diameters are predicted from 

a diameter distribution function with recovered parameters from the stand level 

equations.  The growth period of 4 years is the typical interval between harvest activities 

in pine plantations of southern Brazil and it is uncommon to witness competition induced 

mortality after repeated thinning.  Age 16 approximates the point of forest stand 

development that corresponds to the culmination of mean annual increment. 

 

The modeled population is derived from a thinned age 12 stand, grown to age 16, with a 

site index of 20 m (base age 15).  Table 1 contains the parameters of the population 

generated from the growth and yield model.  Using prediction equations for the 10
th
 and 

63
rd

 diameter percentiles of the McTague and Bailey (1987) growth model, Weibull 

parameters are recovered for the stand that are consistent with the stand level estimate of 

basal area and the user-stipulated 500 trees per hectare.   The diameters are then assigned 

to the 500 trees with a procedure described by Clutter and Allison (1974), using varying 

diameter class widths to maintain an equal proportion of trees in each class.  In this case, 

each diameter class contains a proportion of 1/500 or the proportion of 0.002 of the total 

trees, and the diameter class assignment is computed with the following formula 

   c

i ibad
1

002.0001.1ln   

where i = 1 to 500, di = diameter breast height of diameter class i, and a, b, and c, are 

Weibull distribution parameters.  Individual tree heights are predicted using a 

methodology reported by McTague (1985) by first computing the spread between the 

heights of trees corresponding to the maximum diameter and minimum diameter class 

(hdmax – hdmin).  Individual tree height is then predicted as  

  minmaxmin dddi hhxFhh   

where hi is individual tree height for diameter class i and F(x) is the value of the 

cumulative density function of the Weibull distribution for diameter class i, as defined in 

Table 1.  It is assumed that the percentile of each tree in the population remains 

unchanged during the growth interval. 
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Table 1:  Population parameters of a thinned plantation of Pinus taeda with 500 trees per 

hectare (N) with productivity of site index 20, grown from age 12 to age 16. 

 

 Age 12 Age 16 growth 

Forest stand basal area (G) 28.8 m
2
/ha 39.1 m

2
/ha 10.3 m

2
/ha 

Total green weight outside bark (W) 195.2 t/ha 335.5 t/ha 140.3 t/ha 

Mean top height (H) 17.0 m 20.9 m 3.9 m 

Quadratic mean diameter (dg) 27.1 cm 31.6 cm 4.5 cm 

Weibull location (a) parameter 19.13 22.11  

Weibull scale (b) parameter 8.709 10.257  

Weibull shape (c) parameter 2.241 2.015  

 

Note: the 3-parameter Weibull cumulative density function is expressed as F(x) = 1- 

exp(-((x-a)/b)
c
), where x (x ≥ a) is the random variable representing tree diameter (d). 

 

Individual tree volume and green weight from the stump to the top of the tree is 

computed with the two steps of Equation (1)
1
 

004977.0201834.1

356831.1764357.1

)(9672764.0

0000289198.0





hdvw

hdv
 

 

(1) 

where 

v =  total stem volume of a tree outside bark in m
3 

w = total stem green weight outside bark in Kg 

d =  individual tree diameter  in cm determined at breast height of 1.3 m 

h =  total tree height in m 

 

Each of the 40 hectares in the simulation at ages 12 and 16 contains the same population 

of 500 trees.  The trees were randomly sorted for each hectare and assigned once, at age 

12, to grid coordinates.  The spacing between rows was maintained at 2.5 m while the 

distance between trees in the row was randomly pertubated.  Since the simulated stand 

has been thinned with a combination of row and low thinning, every fourth row was 

completely removed.  Multiple random starts are used in the systematic inventory of 40 

hectares.  A small random perturbation, associated with the point (plot) location, is also 

simulated.  The edge-effect and the potential bias associated with point locations close to 

a property boundary are not investigated here.  The point locations in this study are at 

least 12.5 m away from the property boundary.   

 

4.  Results 

McTague (2010) presented a new unbiased basal area estimator that is function of 

conventional Bitterlich angle count basal area factor (BAFAC) and the borderline factor 

(BLF), which is determined by the tree diameter (d) and distance (R) from the sample 

point to center of the ‘in’ tree.   Basal area is computed with the variable basal area factor 

estimator (BAFV) as 

                                                           
1
 Carbon (C) content in Kg is computed as C =  0.1737w (Mello et al. 2008).  Tons of carbon 

dioxide equivalent  (tCO2e) equals C(44/12)/1000. 
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












m

i i

AC
ACV

BLF

BAF
BAFBAFG

1

12  
(2) 

where  

m =  the number of ‘in’ trees at the point (plot) 

G = the forest stand basal area in m
2
/ha 

BLFi
 
 =  the borderline factor for tree i, or (di/Ri)

2
/4 

 

Noting a weak correlation between the conventional estimator BAFAC and the variable 

estimator BAFV, McTague (2010) suggested that gains in efficiency could be obtained by 

creating a weighted composite estimator using BAFAC and BAFV.  The conventional 

angle count estimator presented by Bitterlich (1948) is represented as 





m

i

ACBAFG
1

 
(3) 

It is apparent however, that additional gains in efficiency are possible.  A generalized 

composite model that includes an antithetic variate of BAFV, guarantees an improvement 

over the conventional BAFAC if the basal area composite weight (wG) differs from the 

value of 0.5.  The generalized composite model utilizes an antithetic variate basal area 

factor (BAFAV), which is expressed as 
















m

i i

ACAV
BLF

BAFBAFG
1

2 1
2  

(4) 

The unbiased BAFAV factor behaves as the mirror opposite to BAFV for sample ‘in’ trees.  

The basal area value for borderline ‘in’ trees approaches 2BAFAC while trees close to the 

point center have a basal area approaching a value of zero with the antithetic variate 

estimator.  As demonstrated with Equation (6), the conventional Bitterlich angle count 

basal area estimator, Equation (3), is a special case of the generalized composite 

estimator, Equation (5), when the basal area composite weight (wG) equals 0.5. 

 

Generalized composite   AVGVG BAFwBAFwY )1(  wG ≠ 0.5 (5) 

Special case   AVVAC BAFBAFBAFY 5.05.0  wG = 0.5 (6) 

 

The BAFAV estimator by itself is counter-intuitive and it can display rather large values of 

variance; its real value is inherent with its weak or negative correlation with BAFV.  The 

Bitterlich BAFAC is indeed a very special case of the generalized composite estimator, 

since it does not require any measurement of the borderline factor (BLF) of sample ‘in’ 

trees.  The optimal stand attribute composite weight (wsa) for computing stand basal area 

per hectare (G), green weight per hectare (W), trees per hectare (N) with the generalized 

composite estimator is computed as 

AVVAVVAVV

AVVAVVAV

saw




222

2




  

(7) 

where 
2

V = variance of the variable BAF estimate, 
2

AV = variance of the antithetic 

variate BAF estimate, and AVV = the correlation between the antithetic variate  and 

variable BAF estimate.   
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As demonstrated later, a different approach is proposed to estimate the optimal stand 

attribute composite weight for change statistics for basal area and green weight per 

hectare.  How does the generalized composite estimator Equation (5) compare against the 

special case (conventional Bitterlich angle count) estimator Equation (3)?  This forest 

sampling question is addressed using simulation with the 40 hectare forest described in 

the Methods section for ages 12 and 16.  Trees are included ‘in’ the sample based on a 

BAFAC = 4 m
2
/ha.  Comparisons are also made to the variable BAF estimators of 

Flewelling (1981) and Iles and Carter (2007).  In this example, the variable Flewelling 

estimator (BAFV-Fl) is expressed as 

  ∑        {
36,312771.0

1






BLFBLF
tm

i

i

36,25977.11  BLFt

 

 

(8) 

where m = number of sample ‘in’ trees at a point (plot), and t = number of trees at the 

point that subtend an angle larger than 6°52.78’ which corresponds to a borderline factor 

(BLF) of 36.   

 

The variable Iles and Carter estimator (BAFV-IC) is expressed as 




 











m

i c

i
ACICV

R

R
BAFBAFG

1

13  
(9) 

where Ri is the the distance from the sample point (plot) to center of the ‘in’ tree i, Rc is 

the critical or limiting distance of the plot radii for tree i with diameter breast height di 

and is computed as 
ACic BAFdR 5.0

    

The trees per hectare (N) represented by each ‘in’ tree is computed with the expansion 

factor.  Irrespective of whether a constant or variable basal area factor is employed, the 

individual tree expansion factor is expressed as the quotient of BAF and the individual 

tree basal area g, or (BAF/gi).  The green weight (W) per hectare represented by each ‘in’ 

tree is computed as the product of the individual tree green weight of Equation (1) and 

the expansion factor, or (wi  x BAF/gi).  In the example presented here, the variances, 

covariance, and composite estimator weight of Equation (7) were estimated from 

simulation using a sampling intensity of one point (plot) per hectare for a sample size of 

40.  The computation for the optimal stand attribute composite weight wsa and other 

estimates were repeated 500 times.  Comparisons among the estimators for the attributes 

of basal area, green weight per hectare, and trees per hectare are presented in Table 2.  

The variances reported in Table 2 are made from analysis-of-variance-type calculations 

of the between repetitions component.  From Table 2 it is possible to derive the gain in 

relative efficiency from using the composite estimators over that of the conventional 

estimators for basal area, trees per hectare, and green weight per hectare.  The relative 

efficiency estimates at age 16, defined as 
2

2

ˆ

ˆ

Composite

alConvention




, are 1.67, 1.86, and 1.61 for the 

attributes of basal area, trees per hectare, and green weight per hectare respectively for 

the generalized composite estimator. 
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Table 2:  Estimates and efficiencies of the point sampling estimators obtained from 

repeated sampling using a BAFAC = 4 for basal area, trees per hectare, and green weight 

per hectare. 

 
 Basal area in m

2
/ha (G) 

∑    

Trees per 

hectare (N) 

∑   
 

  
 

Green weight in 

t/ha (W) 

∑    
  

  
 

Age and 

estimator 

BAF 

Eq. 

Mean Variance 

of mean 

Mean Variance 

of mean 

Mean Variance 

of mean 

Age 12        

Conventional (3) 28.9 0.607 500.9 189.6 195.9 29.2 

Flewelling (8) 28.9 0.856 500.2 298.2 196.0 40.8 

Iles and Carter (9) 28.9 0.637 500.1 223.4 195.9 30.8 

Generalized   

composite   

(6) 

wsa 

28.9 

 ̅   

0.414 

0.80 

500.6 

 ̅   

132.5 

0.78 

195.8 

 ̅   

20.5 

0.80 

Age 16        

Conventional (3) 39.1 0.838 500.2 158.3 335.9 63.4 

Flewelling (8) 39.2 0.942 500.8 172.3 336.3 72.4 

Iles and Carter (9) 39.2 0.669 500.7 121.5 336.3 52.1 

Generalized 

composite  

(6) 

wsa 

39.2 

 ̅   

0.501 

0.87 

500.5 

 ̅   

85.0 

0.85 

336.4 

 ̅   

39.3 

0.87 

Note:  gi = individual tree basal area in m
2
/ha computed as  

 

     
   

 , and wi = individual 

tree green weight in Kg/1000.  The reported variance is the square of the standard error of 

the mean.  It is computed using the analysis-of-variance-type formulas as  
 1


kn

SSB
yv sy

, where n = 40, k = 500, and SSB is the between repetitions sums of squares.   

 

Composite weights (wsa) were computed for the stand attributes of basal area per hectare, 

trees per hectare, and green weight per hectare for each repetition.  While 0.80 represents 

the average composite weight for basal area per hectare (wG) at age 12, the range over 

500 repetitions varied from 0.57 – 0.99.   In the case at age 12 where  ̅      , the 

average correlation between Equation (2) and Equation (4) equals   ̂         .  
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4.1  Efficiency of permanent sample plot growth estimators 

This paper reports the statistical properties of growth (change) estimators of an older, 

repeatedly thinned plantation.  It excludes consideration of tree mortality or ingrowth 

(saplings that grow into merchantable size during the remeasurement interval).  Neither 

mortality nor ingrowth are considered as the components of growth that are responsible 

for the high variance of the additive (compatible) estimator.  The high variance is 

normally attributed to the list of new ‘in’ trees at the time of remeasurement.  Martin 

(1982) denotes these new ‘in’ trees as nongrowth trees and Hradetzky (1995) states that 

they are additional sample trees of the subsequent inventory.    Expanding upon the 

notation of Hradetzky (1995), unbiased change estimators for green weight per hectare of 

a pure panel design are presented below   









 



12

1 1

1

1 2

2
1

m

i i

i

m

i i

i
AC

g

w

g

w
BAFZ

 

(10) 

where 

Z1 =  change in green weight (t/ha) using the additive Van Deusen et al. (1986) 

estimator
 

wij =  total stem green weight for tree i at time j in Kg/1000. j = 1 for age 12 and 

j = 2 for age 16 

gij =  individual tree basal area in m
2
/ha for tree i at time j 

mj =  number of sample ‘in’ trees at a point (plot) at time j.  The number of new 

‘in’ trees at the time of remeasurement equals (m2 – m1) 

 

The Z1 estimator is preferred by Eastaugh and Hasenauer (2013) because it is resistant to 

measurement error.  Long growth periods, high growth rates, or cases where growth 

exceeds the initial stand basal area, G1, also favor the use of the Z1 estimator (Flewelling 

and Thomas 1984, Hradetzky 1995).  The most widely used estimator for computing 

change in biomass/volume from point samples is the non-additive Grosenbaugh (1958) 

estimator which essentially ignores the contribution of the new ‘in’ trees at the time of 

remeasurement into the calculation of growth: 

 







 
 



1

1 1

12

2

m

i i

ii

AC
g

ww
BAFZ  

(11) 

where Z2 = change in green weight (t/ha) using the non-additive Grosenbaugh (1958) 

estimator. 

 

The Roesch et al. (1989) estimator is similar to Equation (11) in that only one expansion 

factor is used.  Rather than employing an expansion factor computed at time 1 and 

employing it to the original m1 trees, the Roesch et al. (1989) utilizes an expansion factor 

computed at time 2 and applies it to the entire list (m2) of ‘in’ trees at time 2. 

 







 
 



2

1 2

12

3

m

i i

ii

AC
g

ww
BAFZ  

(12) 

where Z3 = change in green weight (t/ha) using the conditionally additive Roesch et al.  

(1989) estimator. 

 

The drawback to the Z3 estimator is that it requires measurement the of attribute wi1 at 

time 1, for the (m2 – m1) trees that ‘out’ at time 1 but ‘in’ at time 2.   In the simulation 

example employed in this paper, this information is readily available, however for 
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operational inventories, it is perhaps fanciful to believe that wi1 of trees excluded of the 

sample at time 1 would be observed .  The Z3 estimator is additive when adjustments are 

made to the green weight per hectare (W1) at time 1, based upon measurement of green 

weight per hectare (W2) at time 2. 

 

The remainder of the change estimators presented here are variable; the BAF is different 

from tree to tree in the sample and it changes over time for a specific tree of interest.  The 

Flewelling (1981) estimator for change in green weight per hectare is expressed as 








 
12

1 1

1
)1(

1 2

2
)2(4

m

i i

i
jFlV

m

i i

i
jFlV

g

w
BAF

g

w
BAFZ  

(13) 

where Z4 = change in green weight (t/ha) using the additive Flewelling (1981) estimator 

and ∑           is calculated at time j using Equation (8). 

 

The Iles and Carter (2007) estimator for change in green weight per hectare is 








 
12

1 1

1
)1(

1 2

2
)2(5

m

i i

i
jICV

m

i i

i
jICV

g

w
BAF

g

w
BAFZ  

(14) 

where Z5 = change in green weight (t/ha) using the additive Iles and Carter (2007) 

estimator and ∑           is computed at time j using Equation (9).  Over time, the 

value of            increases as the subject tree of interest grows in diameter, and the 

critical or limiting distance Rc increases.   

 

Given the results presented in Table 2 and the success of the generalized composite 

estimator in efficiently predicting stand basal area, trees per hectare, and green weight per 

hectare, a natural progression is to test its capabilities in estimating change.  In this case, 

the generalized composite growth estimator for green weight per hectare is expressed as 
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(15) 

 

where Z6 = change in green weight (t/ha) using the additive generalized composite 

estimator, ∑        is calculated at time j using Equation (2), and , ∑         is 

calculated at time j using Equation (4).  The composite weights (wWj) at time j are 

computed for each of the 500 repetitions using Equation 7).   As previously stated, the 

average green weight per hectare composite weights at age 12 (time 1) and age 16 (time 

2) are wW1 = 0.80 and wW2 = 0.87 respectively.   

 

The composite weights (wWj) that were inserted in Equation (15) provide efficient 

estimates of standing green weight per hectare (W) at ages 12 and 16.  By no means 

however, are they the best for estimating change or growth of biomass/volume.   If the 

focus of the forest inventory is strictly aimed at estimating efficient estimates of change, 

alternative methods can be employed to maximize the correlation between the successive 

panel survey estimates of green weight per hectare for the permanent sample plots.  In the 
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case of forests managed to maximize carbon sequestration or change in carbon stocks, the 

path to efficient estimates is attained by improving the correlation between successive 

measurements.  Generalized least squares estimation represents a common approach to 

assigning appropriate weights to panel surveys (Legg et al. 2005 and Baltagi 1998).  

Under the assumption that there is little authority or capability of the forest inventory 

administrator to change the estimates Y1 by altering the composite weight for green 

weight per hectare, (wW1) at time 1, the focus remains on how to estimate  composite 

weight at time 2 for Y2 that will maximize the correlation between time periods.   The 

following restricted linear model can be used to estimate the optimal composite weight 

(wW2) for estimating change of green weight per hectare 

 

211101 )1( XbXbbY   (16) 

where 
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b0 =   negative estimate of change or growth in t/ha 

b1 =  regression estimate of the composite weight for  green weight per hectare at 

time 2  (wW2)  
 

In the example presented here, the b1 parameter was estimated from fitting Equation (16) 

using a sampling intensity of one point (plot) per hectare for a sample size of 40.  The 

computation for the regression composite weight for basal area per hectare and green 

weight per hectare were repeated 500 times.  The regression composite estimator for 

estimating the change in green tons per hectare (W) is presented below 

127 YYZ   (17) 

where Y2 = b1X1 + (1 – b1)X2 and the terms b1, X1, X2, and Y1 are previously explained. 

 

Comparisons among the seven change estimators for the attributes of basal area, and 

green weight per hectare are presented in Table 3.  Since there is no change in the 

population value of trees per hectare between ages 12 and 16 of a repeatedly thinned 

stand, no attempt was made to analyze the behavior of the change estimators for stand 

density.  The variances reported in Table 3 are made from analysis-of-variance-type 

calculations of the between repetitions component.  Altering the average composite 

weight for green weight per hectare at age 16 from 0.87 in Equation (15) to 1.008 in 

Equation (17) results in a considerable improvement in the efficiency for the estimation 

of growth.  Essentially the new weight extends the range of the estimate of green weight 

per hectare at age 16 and it improves the correlation between age 12 and 16 stand 

attributes.  This effect of changing the composite weight on the correlation of Age 16 vs 

Age 12 values is displayed in Figure 1. 
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Table 3: Estimates and efficiencies of the point sampling change estimators obtained for 

basal area and green weight per hectare. 
   Change in green 

weight per hectare, 

ΔW in t/ha. 

Change in basal 

area per hectare, ΔG 

in m
2
/ha.    

Estimator Source Eq. Mean Variance 

of Mean 

Mean Variance 

of Mean 

Z1 Van Deusen et al. (10) 140.0 52.9 10.3 0.81 

Z2 Grosenbaugh (11) 140.5 16.8 10.3 0.10 

Z3 Roesch et al.  (12) 140.3 11.7 10.3 0.07 

Z4 Flewelling (13) 140.3 13.7 10.3 0.16 

Z5 Iles and Carter (14) 140.4 10.1 10.3 0.13 

Z6 Generalized composite (15) 140.3 14.5 10.3 0.19 

Z7 Regression composite 

 

(17) 

wsa 

140.4 

 ̅    

9.8 

1.008 

10.3 

 ̅    

0.09 

1.045 

 

1.  The computation of basal area per hectare employs Equations (10), (13)-(15), and 

(17), however the term of (wij/gij) is omitted.  In the case of the Grosenbaugh and 

Roesch estimators for basal area, the term in parenthesis in Equations (11) and (12) 

(wi2 – wi1) should be replaced with (gi2 – gi1).   

2. The reported variance growth or change is the square of the standard error of the 

mean.  It is computed using the analysis-of-variance-type formulas as 

 
 1


kn

SSB
yv

sy
, where n = 40, k = 500, and SSB is the between repetitions sums of 

squares. 

 

5.  Discussion 

Additivity and efficiency are possible when permanent sample plots are established with 

a point sampling design.  If tree diameter and distance from the sample point to the 

subject ‘in’ tree are measured during the forest inventory, it is possible to compute the 

borderline factor (BLF) and the variable basal area factors BAFV and BAFAV of Equation 

(2) and (4).  Both BAFV and BAFAV are used to compute the generalized composite 

estimator, Equation (5), which will always be equal or more efficient than the 

conventional estimator represented by either Equation (3) or Equation (6).   Plot size 

clearly has an effect on efficiency of the estimate for change statistics and for stand 

attributes any given age.  Based on the quadratic mean diameters at age 12 and age 16 

presented in Table 1, the average plot size increased by 51.9 m
2
 at time 2.  This explains 

why the variance for the estimate of trees per hectare (N) decreased in Table 2 for Age 

16.  Increased plot size and the increase of (m2 –m1) sample ‘in’ trees also explains why 

the Roesch et al. (1989) change estimator is superior to the Grosenbaugh (1958) in Table 

3.    

 

In the example provided here, the drawback attributed to using the additive (compatible) 

Z1 change estimator of Van Deusen et al. (1986) is also manifested in terms of high 

variance.  All six other alternatives (Z2 – Z7) are superior in providing efficient change 

estimates for basal area and green weight per hectare.  If the goal is to monitor forest 

stands that are commercialized for carbon sequestration credits, the variable and additive 
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BAF estimators (Z4 –Z7) offer an attractive alternative to the common non-additive 

estimator of Z2.  While efficient, the new Z7 composite estimator proposed in this 

example, represents a drastic procedure for dealing with borderline ‘in’ trees at time 2, 

since it is possible to assign a negative value for a stand attribute.  It may prove more 

reasonable to constrain the value of estimated b1 coefficient of Equation (16) to 0 ≤ b1 ≤ 

1.    
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1a. 

 

1b. 

 

Figure 1:  The top panel displays the Age 16 vs Age 12 green weight per hectare values 

used the in estimator Z6 of Equation (15).  The average correlation of Fig. 1a is   ̂  
 .79.  The bottom panel displays the Age 16 vs Age 12 green weight per hectare values 

used in estimator Z7 of Equation (17).  The average correlation of Fig. 1b is   ̂   .92.  

Derived from the sample size of 40 and 500 repetitions, each graph contains 20,000 

paired observations. 
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