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Abstract
One of the key advantages of the Bayesian paradigm is the ability to incorporate past experiences

and expert opinion into statistical analyses. However, the principled, precise distillation of expert
opinion into a probability distribution, a task known as prior elicitation, is challenging and involves
considerations from psychology, computational science, software engineering, and other related
fields. Moreover, for elicitation to be practical, applied statisticians need good computer tools to
enable its use – to perform complex calculations and provide feedback. Such computer programs
are called facilitators. Using the prior elicitation of a population proportion as a canonical example,
in this article we contend that Wolfram Research Inc.’s novel Mathematica/CDF Player/CDF suite of
technologies provides a new state-of-the-art platform for the development and dissemination of free
facilitators. To illustrate its capabilities, we present a novel free facilitator that enables, in a real-
time interactive environment, the computations and diagnostics required of an elicitation method
known as the mode/percentile (MP) method.

Key Words: Bayesian statistics, prior elicitation, interactive graphics, Wolfram CDF

1. Introduction and Background

One of the great strengths of the Bayesian paradigm is the ability to formally incorporate
prior belief – typically expert opinion – into statistical analyses (Christensen et al., 2011).
To do this, however, requires the representation of belief as a single probability distribution.
The conversion of such belief, especially expert opinion, into a probability distribution is a
task known as prior elicitation.

There have been several investigations into prior elicitation. Perhaps the most up-to-
date concise resource is the definitive survey article by Garthwaite et al. (2005), which
features nearly 150 references from the statistics and psychology literature. Additionally,
there are no less than three full-length texts dedicated to the subject (O’Hagan et al., 2006;
Meyer & Booker, 1991; Cooke, 1991). Each of these texts explores the interaction between
the statistician and the non-statistician and contains topics ranging from how questions
should be asked to what questions should be asked to how to obtain good diagnostics to
judge elicitation fidelity. The first text is particularly related to our investigation in this
article, as it takes more time with some of the more technical statistical details.

While the body of prior elicitation works is fairly large, the subject is by no means
considered settled, partly because of its wide-ranging complexity. Prior elicitation is by
its very nature a multi-faceted problem, involving considerations from psychology, com-
putational science, optimization theory, software engineering and others in a concerted
effort to tackle a fundamentally statistical problem. For instance, much (but by no means
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all) of the psychological work done on the subject revolves around determining the extent
to which humans can accurately, precisely, and consistently estimate statistical measures,
particularly those of centrality, dispersion, and accumulation. To that end, generally speak-
ing it appears that our ability to estimate quantities ranges from reasonable to not good,
depending on the quantity: proportions appear to be easiest, and variances most difficult
(Garthwaite et al., 2005; Shuford, 1961; Lathrop, 1967). Such psychological investigations
form what might now be considered the bedrock of prior elicitation, as they came chrono-
logically early relative to statistical elicitation works and lend credibility to the ultimate
purpose of the endeavor.

Apart from the psychological questions involved, various technical and practical sta-
tistical problems abound, although they are far more scarce in the literature. From the
theoretical statistician’s perspective, elicitation methods need to be proposed, formalized
mathematically, and solved. In other words, typically expert opinion is elicited as numeri-
cal summaries of a distribution, and the summaries are converted into the usual distribution
representations (i.e. with parameters); so the questions become: what information should
be elicited?; how can the procedure be formalized into a general method?; and, once for-
malized, how might solutions be obtained? In this article these elements of the elicitation
process are illustrated with the mode/percentile method for a population proportion. While
this method has been described in various places, a proper mathematical formulation ap-
pears to be missing from the literature, so we present one in Section 2 before turning to our
primary interest concerning practical implementations (Garthwaite et al., 2005; Christensen
et al., 2011).

A less well-studied aspect of prior elicitation comes from the applied statistician’s per-
spective – for prior elicitation to be practical, there need to be tools that enable its use.
Since even the simplest of prior elicitation procedures requires computers for calculations,
what is really needed are computer programs dedicated to facilitating prior elicitation. We
call such implementations facilitators; they are simply computer programs that aid the elic-
itation process in some way.

To be truly practical, facilitators need to be good implementations: they should be sta-
ble (that is, they should not crash), free, readily accessible online or for download, cross-
platform, fast, easy to learn and use, and so on. In principle, all of the routines required for
elicitation can be performed in virtually any sufficiently flexible programming language:
C, R, Python, Java, Javascript, etc.; however, both the effort in development and quality
(read: practicality) of the final product depend significantly on the language used. In this
article we present a proof-of-concept facilitator for the prior elicitation of the population
proportion π designed using Wolfram Research Inc.’s (WRI’s) novel Computable Docu-
ment Format (CDF) technology, written in Mathematica. After briefly advocating the use
of the CDF technology as the proper framework for the creation of such facilitators, we
provide an overview of the facilitator available online at blogs.baylor.edu/baylorisms/beta-
facilitator.

2. The Mode/Percentile (MP) Method

Discussions concerning elicitation are usually presented not as general principles that can
be applied to any quantity, as in “irrespective of the quantity elicited, the expert should
specify two percentiles of the prior distribution”, but rather according to the quantity in
question (see, e.g., O’Hagan et al. 2006; Lunn et al. 2012). In other words, sources typi-
cally present methods for eliciting the population proportion π in one section, methods for
the population mean µ in another section, and so on, even if the principles motivating the
methods overlap. This suggests that facilitators should be created with respect to the quan-
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tity being elicited, e.g. a π facilitator, a µ facilitator, and so on. In this section, we discuss
one of the recommended procedures, the mode/percentile (MP) method, for the elicitation
of a population proportion. Since the principle motivating the method is quite general, we
formulate the MP method for the general case first and then simply apply it to the popu-
lation proportion example. In Section 5, we present the corresponding facilitator. As in
previous works on the prior elicitation of a population proportion, we assume a binomial
sampling model with a conjugate beta prior. We further assume that α, β > 1 to ensure a
unique mode.

2.1 Previous work on the elicitation of π

Winkler 1967 lists four methods for the prior elicitation of π: the hypothetical future sam-
ple (HFS) method, the equivalent prior sample information (EPS) method, the cumulative
distribution function (CDF) method, and the probability density function (PDF) method.
These are summarized in Table 2.1.

Method Quantities solicited
HFS Two means: one from experience and one after begin given a hypothetical dataset
EPS The mean and a corresponding sample size
CDF Two or more percentiles
PDF The mode and the two points half as likely

Table 1: The four methods of prior elicitation for π as presented in Winkler 1967.

In cases where experts are inconsistent in their specifications, regularity is achieved
through either statistician/expert dialogue or mathematical fitting such as least squares.
Generally speaking, most methods for elicitation revolve around the specification of per-
centiles, means, medians, or modes, of which countless variations exist. For example,
Hughes & Madden 2002 list ten entirely separate methods. Eight of these are variations of
those in Table 2.1; two more rely on the prior predictive beta-binomial distribution.

As our interest here is the implementation rather than the method, we now describe a
variant of the CDF and PDF methods in Table 2.1 that we call the mode/percentile or “MP”
method; it can be found in various applied Bayesian texts (Christensen et al., 2011; Lunn
et al., 2012). In this method, the expert provides the “best guess for the probability”, which
is considered to be the mode, and the “biggest value the probability could reasonably be”,
which is considered to be the 95th percentile (Christensen et al. 2011, p. 99).

2.2 A general formulation of the MP method

We now present a general formulation for the MP method and apply it to the population
proportion problem with a beta prior. Let θ denote a (single) parameter to be elicited
from a parametric family of distributions with probability density function f(θ|η), where
η ∈ H ⊂ Rk, and k is the number of prior parameters to be elicited. Let p denote the uth
percentile, where u ∈ (0, 1). The MP method therefore corresponds to the solution of the
system of equations

m = arg max
θ
f(θ|η) (1)

p =
∫ u

−∞
f(θ|η) dθ, (2)

for η, where m, p, and u are considered known constants.
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In general, solving the simultaneous system (1) and (2) appears to be a very difficult
task; however, in many practical situations it is readily solvable numerically. In particular,
the case where θ = π, the population proportion, and f is the beta density, so that η =
[α β]′, proves to be quite easy to solve. The assumption that α, β > 1 implies that the
unknown mode in the right hand side of (1) simplifies to α−1

α+β−2 . Moreover, as Hughes &
Madden 2002 point out, the ubiquity of the integral on the right hand side of (2) when f is
a beta PDF has lead to several decades of investigation by numerical analysts, resulting in
very efficient routines for its evaluation for arbitrary u, α, and β. These two facts combine
to change the apparently very difficult system

m = arg max
θ

Γ(α+ β)
Γ(α)Γ(β)

θα−1(1− θ)β−1 (3)

p =
∫ u

0

Γ(α+ β)
Γ(α)Γ(β)

θα−1(1− θ)β−1 dθ, (4)

into the much easier one

m =
α− 1

α+ β − 2
(5)

p = h(u, α, β), (6)

where h is a function that, while lacking a closed form, can be evaluated at will. This last
system can be sequentially solved by rearranging (5) to α = 1+m(β−2)

1−m and substituting the
result into (6) to obtain

p = h

(

u,
1 +m(β − 2)

1−m
,β

)

, (7)

a univariate root-finding problem in β that can be solved almost instantly with an off-the-
shelf routine. The parameter α is then obtained by back-substitution.

Thus, while the MP method appears difficult in general, in the case of the population
proportion with a beta prior the problem turns out to be quite simple. The same is true
of the Poisson rate problem with a gamma prior and the normal mean problem with a
normal prior. Care ought to be taken, however, as the problem appears to be somewhat
more complex than its first impression. Intuitively, one might assume that the two pieces of
information elicited (m and p) are simply converted to the two canonical parameters (α and
β); however, after some investigation this is seen to be too naive. For example, no solution
(conversion) exists for the specification m = .80, p = .92, and u = .90, whereas m = .35,
p = .30, and u = .31 has two solutions. Thus, the mapping from m and p to α and β is not
simply 1–1 . For more insight into these details, see Wu et al. 2008.

3. Current Implementations

There are currently a few nice solutions for prior elicitation in some specific contexts (pro-
portions, rates, means, etc.). In this section, we very briefly mention three such facilitators,
two of which are effectively the same.

3.1 MATCH and SHELF

Known by the acronyms MATCH and SHELF, the first two facilitators are fairly general
purpose tools for prior elicitation. Created by Ed Morris and Jeremy Oakley, MATCH
stands for “Multidisciplinary Assessment of Technology Centre for Healthcare,” and is a
browser-based tool available at
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optics.eee.nottingham.ac.uk/match/uncertainty.php. The tool was created with a blend of
PHP and Javascript and features interactive elicitation over a user-specified interval support
for the normal, Student-t, scaled beta, gamma, log-normal, and log-Student-t distributions
using five different methods. Four of the methods are percentile-type variants (i.e. variants
of the CDF method in Table 2.1) called the quartile, tertile, probability, and hybrid schemes.
The last, called the roulette method, essentially allows users to draw their belief by stacking
boxes (“chips”) as in a histogram. The exact details of the conversions of the expert-
specified quantities to a probability distribution (parameters) are not clear since they are
not included; but once the information is specified, the information the expert provides is
automatically converted to the specified probability distribution, the user is presented with
the parameters of the elicited distribution and a nice interactive graphic linked to sliders
that provides percentiles of the elicited distribution. A screenshot of MATCH can be seen
in Figure 1.

Figure 1: A screenshot from the web-based MATCH elicitation tool

MATCH is essentially a nice web-interface that runs routines from SHELF, the SHeffield
ELicitation Framework, created by Tony O’Hagan and Jeremy Oakley. SHELF is a set of
R functions, documents, and templates that facilitate the elicitation of probability distribu-
tions from either a single expert or from a group of experts (Oakley & O’Hagan, 2010).
Instead of a package, SHELF is simply a giant R script file that can be sourced into R. It
is written entirely in R and uses interactive panels via the rpanel package. Once loaded,
it functions almost identically to MATCH but with a rougher looking and less responsive
interface. Originally released in 2008, SHELF was updated to version 2.0 in late 2010. It
is available online at www.tonyohagan.co.uk/shelf/.
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Figure 2: A screenshot from the R-based SHELF elicitation tool

3.2 BetaBuster

Created by Chun-Lung Su at UC Davis, BetaBuster is a facilitator for eliciting beta dis-
tributions. Freely available online at www.epi.ucdavis.edu/diagnostictests/betabuster.html,
BetaBuster is a Windows-only executable written in Java. It is less interactive than MATCH
and SHELF, having only input fields and clickable increase/decrease tabs where MATCH
and SHELF have sliders (and fewer input fields). The chief difference between the two,
however, is the method of elicitation. Where MATCH and SHELF use predominantly CDF
variants, BetaBuster implements the MP method described in Section 2.2; it is thus in
many ways a predecessor of the facilitator presented in this work. While BetaBuster is less
capable than MATCH and SHELF, it is notable because it was perhaps the first facilitator.
Nevertheless, while BetaBuster is not state-of-the art, it is still common to see it used in real
analyses (e.g. Okura et al. 2010), probably because the MP method and BetaBuster’s im-
plementation of it are more inviting than MATCH, whose methods have unfamiliar names
and a more flexible but less intuitive interface. While MATCH’s interface is actually very
simple, for first timers it can be surprisingly difficult to use.

4. Wolfram Research Inc.’s (WRI) Computable Document Format (CDF)
Technology

In Summer 2011, Wolfram Research Inc. (WRI), the developers of the popular computer
algebra system Mathematica and online computational knowledge engine Wolfram|Alpha,
released a new technology called the Computable Document Format (CDF). The innova-
tion came in the form of (1) a new kind of file format with extension .cdf and (2) a new
application called the CDF Player. When run, the files themselves (CDFs) work just like
interactive computer programs, where one .cdf file is one program, and they can be run as
stand-alone programs or in the browser embedded in an HTML webpage.

CDFs are written using Mathematica. The relationship between Mathematica, the CDF
Player, and a CDF file can be well understood by analogy with the Adobe Acrobat, Adobe
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Figure 3: A screenshot of BetaBuster

Reader, and portable document format suite created by Adobe Systems Inc. (Adobe).
Adobe is the maker of the ubiquitous portable document format (with extension .pdf).
Documents in this format, called PDFs, are often authored and edited in Adobe Acrobat, a
paid application, but can be viewed by anyone with Adobe Reader, a freeware application.
Analogously, CDFs are authored in Mathematica, but can be viewed using the CDF Player
which, like Adobe Reader, is free and can operate through the browser. CDFs therefore
meet a basic requirement for any practical facilitator: they are easily disseminated and can
be freely used by anyone.

CDFs can draw from nearly the full range of Mathematica capabilities, which makes the
CDF technology an incredibly powerful platform for developing facilitators. In particular,
CDF-based facilitators enjoy huge design advantages over other programming languages
and frameworks due to their ability to draw on the power of Mathematica. Here are a few
examples:

1. Mathematica has a vast array of symbolic and numerical algorithms that authors can
draw upon with simple commands. Numerical integration, optimization, linear alge-
bra and much more are all built-in. Moreover, they are customizable. For example,
when a numerical optimization problem is presented, not only are standard numer-
ical algorithms such as Newton’s method available, but so too are other schemes:
differential evolution, Nelder-Mead, simulated annealing and so on, all by simply
changing a word, not re-implementing the whole scheme. Symbolic schemes and/or
simplifications and rearrangements can also be used. To top it off, the implementa-
tions are efficient, stable, and robust.

2. Mathematica boasts the largest array of probability distributions of any current com-
puting platform (Wolfram Research Inc., 2010). This includes key functionality not
currently available in other platforms: (1) symbolic representation and manipula-
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tion of probability distributions, (2) symbolic handling and numerical evaluation of
distribution-related functions (PDFs/CDFs, survival, hazard, and characteristic func-
tions) and functionals (moments/expected values, percentiles), and (3) the analytical
and numerical evaluation of probability statements. This is on top of standard func-
tionality such as sampling from distributions and fitting linear and nonlinear models.

3. Mathematica includes a tremendous variety of graphics options, from 2D and 3D
plotting of functions and data (e.g. scatterplots) to 2D and 3D histograms and contour
plots.

4. Perhaps most importantly, Mathematica has very simple mechanisms for making
interactive content. For example, a user can create an interactive graphic of a normal
density with sliders to change its mean and standard deviation in real-time using a
mere few lines of code. All of the interactive programmatic overhead and graphical
user interface (GUI) details are handled by Mathematica and are highly customizable.

While the Mathematica-inherited capabilities alone are nice, they are by themselves
insufficient for a platform for developing facilitators. In particular, to be truly practical
facilitators need to be freely available to be used. This is precisely the beauty of the WRI’s
CDF Player technology. Not only can the routines of facilitators be easily designed and
written in Mathematica, but as CDFs they can be created and distributed as either stand-
alone applications or seamlessly embedded in webpages, a particularly convenient medium.

The combination of each of the above makes Mathematica a potent development plat-
form for facilitators. Compared to other platforms (e.g. Java or Javascript), the develop-
ment cycles of facilitators can be much shorter with Mathematica due (1) its wide array
of built-in functionality, and (2) its automated handling of so many of the interactive GUI
tasks. Taken together, these allow the creator to focus on the statistical details of the fa-
cilitator rather than the programming details of the software engineering. It should further
be noted that Mathematica and the CDF Player can be run on a wide array of operating
systems (Windows, OS-X, Linux), and the CDFs can be viewed through any of several
standard browsers (Internet Explorer, Safari, Firefox, Chrome, etc.). Lastly, while not cur-
rently available, WRI has expressed the goal of making the CDFs available for multi-touch
devices with much the same development simplicity (Wolfram Blog Team, 2012). This
kind of interface would allow for a significantly enhanced prior elicitation experience.

5. The Beta Prior Facilitator

The beta prior facilitator is a proof-of-concept CDF facilitator available through any stan-
dard web browser at blogs.baylor.edu/baylorisms/beta-facilitator. It is also available for
download from the same site, thereby allowing it to be used offline in exactly the same
way and with the same functionality as online. A screenshot of the facilitator is included in
Figure 4.

At root, the CDF beta facilitator contains many of the features of BetaBuster in a greatly
enhanced form. Input fields to specify the mode (m), percentile (p), and corresponding per-
centage (u) are present, but they can now be provided either on the cumulative distribution
or survival scales (i.e. “less than p” or “greater than p”). The confidence region is illus-
trated in the graphic as a shaded region that changes with the user’s specifications. Instead
of input fields for α and β, the CDF facilitator provides sliders.

However, the facilitator has several elements that BetaBuster does not have. In the
control panel on the bottom, a “Scale ESS” slider allows the user to interactively change
how informative the elicited prior is after elicitation. In Bayesian data analysis, one of the
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measures of the strength of a prior – how influential it will be an analysis – is its equivalent
sample size (ESS, Christensen et al. 2011; Morita et al. 2008). In the context of a binomial
sampling scheme, the beta prior on π can be understood in terms of a hypothetical dataset.
In particular, if a Beta (α, β) prior is elicited, it can be thought of as observing α successes
out of α+ β trials. For example, a prior with α = 3 and β = 7 can be thought of as having
observed an experiment where a success occurred in three out of ten trials.

Figure 4: The beta facilitator – an elicitation tool for the population proportion π using a
beta prior

The purpose of the Scale ESS slider is to allow the user to increase or decrease the
strength of the prior after it is elicited. When a prior is elicited, the parameters are provided
directly below the graphic along with the ESS. If, after elicitation, the statistician or expert
wishes to decrease the strength of the prior, they can use the ESS slider to “discount” the
ESS of the prior. This works by scaling the elicited α and β; in effect trying to reduce
the ESS while minimally affecting the elicited quantities. The graphic and all quantities
change in real-time as the slider is adjusted, providing the user with instant feedback.

It has been suggested that elicitation is best performed in an environment with instant
feedback (Meyer & Booker, 1991). In particular, if done properly studies suggest that feed-
back might enable the expert to calibrate their information to produce priors more faithful
to their actual belief: “To improve experts’ calibration, the feedback from the known pro-
cedures must be immediate, frequent, and specific to the task...” (Meyer & Booker 1991,
p. 18, summarizing Lichtenstein et al. 1977). To provide such feedback, the beta facilitator
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provides the marginal probability and odds of success and failure in the graphic, labeled
“P” and “O”, assuming the elicited distribution. These are calculated based on the prior
predictive beta-binomial distribution, which is built-in in Mathematica. As sliders change,
every element of the graphic changes dynamically in real-time, so that the statistician and
the expert know right-away the ramifications of the expert’s belief on a meaningful scale.

A few other functional elements are included in the facilitator as well: the ability to
change the axes/viewing window and the inclusion of a reference beta distribution with
slider-manipulable parameters. These can be helpful when trying to manually select a beta
distribution that in some way matches the elicited beta.

6. Discussion and future directions

As advances are made in computer technology, specifically software technology and espe-
cially web-based technologies, there are increasingly many opportunities for the computer-
assisted conversion of expert knowledge into probability distributions to be incorporated
directly into statistical analyses. Currently, the arguments in this article suggest that WRI’s
CDF technology ushers in a new state-of-the-art platform for quickly developing top-notch
facilitators with minimal effort. Near-term improvements, such as the addition of multi-
touch functionality to CDF documents, are sure to increase the ease with which facilitators
can assist elicitation.
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