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Abstract 
In this paper we describe an approach to identify patient subgroups with enhanced 
treatment effect in clinical trials.  It utilizes ensemble trees based on resampling and 
naturally produces two consistency measures for each potential subgroup identified.  We 
compare simple ways to combine these measures into an overall summary of strength.  
Using stratified permutations and out-of-bag samples, the approach also provides a 
multiplicity-adjusted p-value and bias-corrected estimate of treatment effect, both of 
which are important for decision-making in tailored therapeutics applications.  A 
simulation study is performed to evaluate the performance of the proposed method. 
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1. Background 
 
In randomized clinical trials, individuals are assigned randomly to a treatment group and 
a control group.  Efficacy and safety outcomes are measured and compared between the 
two groups.  The main interest of the study investigators is to evaluate the treatment 
effect on the overall population.  However, some subgroups of patients may have greater 
response to treatment than the overall population.  It has been well known that patients 
respond to drugs differently, with many factors that affect the response to any given drug 
such as genetic makeup, phenotypic, pharmacokinetic, social, and disease severity as well 
as demographic factors.  Increasingly in pharmaceutical drug development, it is not 
enough to merely show the mean effect of a new treatment is statistically significantly 
better than the control.  Patients, physicians, and payers want and, in fact, are demanding 
to know more about individual patient outcomes1, so that the right drug can be selected to 
properly fit each patient.  It has therefore become important to improve on the traditional 
“one size fits all” paradigm of drug development, and there are now examples of 
marketed compounds that make tailored therapeutics a reality, such as trastuzumab 
(Herceptin), imatinib (Gleevec), and cetuximab (Erbitux)1. 
 
This challenge of identifying subgroups of patients with more desirable clinical outcomes 
has also been a complex problem for statisticians.  Traditional subgroup analyses are 
based on interaction tests where differential treatment effects among subgroups are 
analyzed by testing treatment by subgroup interactions in regression models.  Such 
analyses have many drawbacks, such as the inability to consider more complex 
subgroups involving multiple markers.  These limitations have led to many 
recommendations and generated much caution on the interpretation of results.  Many 
researchers proposed that subgroup analysis should be (1) limited to a few clinically 
important questions proposed in advance; (2) based on formal tests of interaction; (3) 
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adjusted for multiplicity; and (4) fully reported (including all analyses performed) and not 
over-interpreted2-4.  However, inappropriate analyses continue to appear in the literature, 
and there have been many examples of apparently important findings on treatment effect 
heterogeneity that are subsequently shown to be false4. 
 
Recently, a number of approaches to subgroup identification have been proposed5-10 that 
utilize more advanced statistical methodologies.  Two of the techniques found in many of 
these approaches are recursive partitioning and resampling.  In this paper, we propose a 
rigorous and sophisticated approach to apply these techniques in order to identify 
subgroups with enhanced treatment effects with controlled type I error rate and improved 
power. 
 

 

2. Method 
 
Our method uses recursive partitioning, which has been shown to be extremely useful in 
modern data mining problems thanks to many attractive features including minimal 
assumptions on distributions and models11.  Furthermore, the fact that it directly leads to 
patient subgroups—as opposed to regression models from some other types of analyses—
closely matches the needs for drug development.  For tailored therapeutics, a subgroup 
definition is required to enable the design of a subsequent trial, labeling of the drug by 
regulatory agencies, and medical decision making by prescribers. 
 
A single analysis of recursive partitioning on a given dataset may not be very stable, as 
small change in the dataset can lead to quite different results.  Significant improvements 
can be made in this regard by using an ensemble approach enabled by resampling 
techniques such as bootstrap, cross-validation, and subsampling12-14.  Although these are 
similar, subsampling (that is, sampling without replacement) is preferable since it 
provides the most flexibility in terms of the number and dimensions of the resampled 
datasets.  The same recursive partitioning analysis is performed for each resampled 
dataset, and we further enrich the ensemble of candidate subgroups by harvesting 
multiple subgroups from a given tree and consider multiple competing trees for each 
subsample dataset.  By aggregating similar subgroups identified in this ensemble 
approach, we can easily summarize the frequency by which a given subgroup is identified 
among resampled datasets, which provides a highly robust measure that we will refer to 
as “internal consistency”. 
 
An additional benefit of subsampling that we also take advantage of is the out-of-bag 
sample consisting of observations not included in a given resampled dataset.  Since these 
data are entirely distinct from the corresponding resampled dataset, they can be used to 
assess, in an unbiased manner, any subgroup findings from the subsample dataset.  
Similar to the internal consistency, the results of this assessment can be averaged across 
subsampled datasets pairs (of in-bag and out-of-bag samples) to yield an “external 
consistency”.  While more complex choices can be made, we have found it both simple 
and useful to assess a subgroup finding from an in-bag sample by determining whether it 
is directionally consistent in the corresponding out-of-bag sample, and calculating the 
percentage of consistent out-of-bag samples among all the times this potential subgroup 
was selected in in-bag samples. 
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Once we have obtained both the internal and external consistency measures, which 
contain distinct and complementary information, it is natural to ask how we can best 
combine the two in order to measure the strength of an identified subgroup.  For the 
remainder of this paper, we will use Mi (“i” for “internal”) and Me (“e” for “external”) to 
denote these two measures for a given subgroup finding.  Perhaps the most intuitive and 
obvious choices for combining the two are: min(Mi, Me) and Mi × Me.  The rationale for 
the first is to require a subgroup to have a minimum level of both internal and external 
consistencies.  It should be more beneficial than using Mi or Me alone, provided that they 
manifest on comparable scales, so that one is not always greater than the other.  The 
second combination is the product of the two measures, which would always utilize 
information contained in both measures.  There are of course many other reasonable ways 
to combine the two measures—for example we can weigh the two unequally—but it will 
be more complex to investigate those, which is an interesting area of future research. 
 
As an initial investigation of the performance of different measures, we performed a 
simulation study using datasets with 240 subjects and 20 markers, including one marker 
that defines a subgroup with enhanced treatment effect.  Recursive partitioning with 
subsampling as described above yielded a number of potential subgroups for each 
datasets, all with various Mi and Me values.  Four overall consistency summary for these 
subgroups were considered: (1) Mi alone (2) Me alone (3) min(Mi, Me), and (4) Mi × Me.  
For each summary, the type I error rate and power were estimated for each possible 
“critical value” of the summary by calculating the respective numbers of correct and 
incorrect subgroups whose summary exceeded the critical value.  The power curves 
(power vs. type I error rate) for the four summaries (Figure 1) demonstrate the superiority 
of the last summary, Mi × Me, in this setting.   
 
When it is desirable to produce a multiplicity-adjusted p-value for the strongest subgroup 
identified, our method utilizes permutation that is stratified by treatment groups.  That is, 
a permuted dataset is obtained by shuffling the observed responses within each treatment 
arm.  While all permutation methods require (often implicitly) assumptions to be valid, 
this specific permutation scheme preserves the overall treatment effect and is an ideal 
match to the tree construction method (that is, trees are constructed first from one of the 
two treatment arms), hence is expected to be quite robust.  As is standard, after 
performing a large number of simulations, the summary of the best subgroup identified 
from each permuted dataset provides a reference distribution, with which the summary of 
the top subgroup from the actual data is compared to yield a multiplicity-adjusted p-
value. 
 
Besides the external consistency measure described above, an additional benefit provided 
by the out-of-bag samples is an unbiased estimate of the differential treatment effect 
associated with the subgroup.  It is well known that the “naïve” estimate of the size of an 
effect from the same data that led to the identification of this effect is upwardly biased, 
sometimes severely so.  In the data mining literature, the best option to replicate a 
finding, including the size of the effect, is to utilize an independent dataset.  Put in the 
drug development context, this means either a new clinical study, or having sufficient 
amount of data from the current clinical study so that part of that data is set aside as 
“testing data” to be used, not in the identification of subgroups, but only in validation of 
an identified subgroup.  However, given the fact that a clinical study is typically powered 
to detect a main treatment effect, coupled with the lower power of detecting a treatment 
by subgroup interaction, not surprisingly in practice it is rare to have the luxury of a 
sufficiently large study to enable the setting aside of a testing dataset.  In such situations, 
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the out-of-bag samples made possible by bootstrap or subsampling provide the next best 
solution to obtaining an unbiased estimate of the differential treatment effect. 
 
The proposed method can therefore be described by the following algorithm: 
 
1. Sample the original data B times (done separately for each treatment arm), each time 

creating a pair of mutually exclusive datasets (in-bag and out-of-bag samples) with 
size as specified percentages (such as 50%-50% or 70%-30%) of the original dataset. 
 

2. Harvest potential subgroups of enhanced treatment effect for each in-bag dataset by 
first building a tree with a specified maximum depth using a specified treatment arm, 
and then combining with the other treatment arm and applying specified selection 
criteria (for example the observed treatment effect in the subgroup needs to be 
enhanced beyond a certain threshold as compared to the observed overall treatment 
effect).  The number of potential subgroups identified from each resampled dataset 
also depends on the specified number of competing markers to be considered; for 
example if one competing marker is considered, then after the strongest subgroup is 
identified the analysis is re-run without the corresponding marker.  The purpose of 
considering competing markers is to avoid “masking” of markers and subgroups. 

 
3. Each identified subgroup is assessed for consistency and differential treatment effect 

in the corresponding out-of-bag sample. 
 
4. Combining results across subsampled dataset pairs, the internal and external 

consistency measures are calculated for each identified subgroup.  The two can be 
combined (we use the product Mi × Me) to produce an overall summary. 

 
5. Using permutation stratified by treatment arms, a large number of permuted datasets 

are obtained, each analyzed as described above.  This provides a reference 
distribution of the summary measure, against which the observed results from the 
actual dataset is compared to yield a multiplicity-adjusted p-value. 

 
We have implemented this method using SAS (SAS 9.2, Enterprise Miner 6.1 and 
specifically Proc Arbor) and R.  A key consideration in practice is the computing speed, 
and to that end, the architecture of the method lends itself naturally to parallel computing 
that can dramatically improve the speed if a large number of computing nodes are 
utilized. 
 
 

3. Simulation Study 
 
A simulation study was performed to assess the proposed method.  Each generated 
dataset consists of a number (represented by p) of 3-level genetic markers (with values 0, 
1, and 2, representing the number of miner alleles a subject is carrying for a given SNP), 
a continuous outcome Y, and a binary treatment variable T (representing “Treated” and 
“Placebo” groups).  The outcome Y was generated from a linear model, where the mean 
placebo response is -0.1, and the standard deviation conditional on all markers is 1.13.  
The number of markers (p) can be 5, 20, or 50 and the sample size (n) is either 240 or 
480.  In terms of marker effects, datasets were generated under both the “null” scenario 
(that is, no predictive marker) for evaluation of type 1 error rate and “alternative” 
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scenarios with one or two predictive biomarkers for assessment of statistical power.  
When predictive biomarkers are present, the mean treatment effect in the weakest-
responding subgroup is -0.1, and each predictive marker is associated with a differential 
treatment effect of -0.45.  A subgroup is considered to be identified if the multiplicity-
adjusted p-value is less than 0.1.  Results of the simulations are presented in Tables 1-7 
and Figures 1-3. 
Table 1 compares the performance under the null scenario when the number of markers 
ranges from 5 to 50 (scenarios A, B, C), and the results show that type I errors are 
controlled at close to the nominal level. 

Results for scenarios D, E, and F are presented in Table 2 and Figure 2.  Here datasets 
were generated with 1 predictive marker, and the number of markers again ranges from 5 
to 20 to 50.  The overall statistical power is low, in that no subgroup was identified for 
55%-74% of datasets across the scenarios.  However, when looking at the instances when 
at least one subgroup is identified, the performance of the method is good, especially 
when the number of markers is small.  In other words, when a subgroup is identified it 
tends to be a correct subgroup.  Table 3 provides additional performance summaries for 
these three scenarios at the subgroup level. 

To assess the performance under different combinations of p and number of predictive 
markers, in Table 4 we summarized results when the total number of markers is 20 or 50, 
and the number of predictive markers is 1 or 2.  Comparing scenarios E and G, we can 
see that the conditional power of identifying both predictive markers is about half of that 
of identifying the lone predictive marker, when there are 20 markers overall.  The drop is 
smaller when there are 50 markers overall.  Table 5 provides additional subgroup-level 
performance summaries. 

The impact of sample size is illustrated in Tables 6-7 and Figure 3, where for each p (20 
or 50) and predictive markers (1 or 2), sample sizes of 240 and 480 are compared.  Large 
gain of statistical power is seen across the board. 
 
 

4. Conclusions 
 
We have described a resampling-based ensemble tree approach to identify subgroups of 
patients with enhanced treatment effect in clinical trials.  It has a number of advantages: 

 The recursive partitioning approach determines subgroups, a good match with 
drug development and medical and regulatory decision making; 
 

 By using an ensemble approach, the results are robust to outliers, which reduces 
spurious findings to which some other methods are prone; 
 

 Criteria such as minimum subgroup size can be applied to eliminate subgroups 
that do not meet the need of a specific project, thus reducing the scope of the 
overall “search space” and lessons the severity of multiplicity, leading to increase 
statistical power;  
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 By allowing a specified number of competing markers in the “harvesting” of 
trees, the issue of collinearity is easily handled, so that a potentially useful 
marker is not masked by others; 
 

 The out-of-bag samples conveniently supplied by bootstrap or subsampling 
provide key information such as directional consistency and bias-corrected 
estimate of effect; 
 

 By intelligently utilizing both the internal and external consistency measures, the 
power is improved for a given level of type I error rate control. 

Furthermore, although we have primarily dealt with the more challenging problem of 
identifying super-responder subgroup identification that is common in tailored 
therapeutics, the same approach can be used to identify prognostic factors from a single-
arm clinical trial. 

Because of the need to perform nested resampling (for example permutation and 
subsampling), this approach can be computationally intensive.  However, the architecture 
of the approach lends itself naturally to parallel computing, which can be leveraged to 
dramatically improve the computing speed. 

There are a number of interesting areas for further research, such as optimization of how 
the internal and external consistency measures can be combined.  It would also be 
informative to evaluate the performance of the method in additional scenarios. 
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Table1: Estimated type I error rate for identifying predictive markers (n=240) 

Scenario Markers Type I Error Rate 

A 5 0.10 

B 20 0.11 

C 50 0.12 

 

 

Table 2: Summaries of estimated power for identifying predictive markers 

(n=240, 1 predictive marker) 

Scenario Markers 
No Subgroup 

Identified 
(Conditional) 

Sensitivity 
(Conditional) 

Specificity 
(Conditional) 

PPV 
(Conditional) 

NPV 

D 5 55% 0.955 0.988 0.955 0.988 

E 20 62% 0.769 0.986 0.763 0.988 

F 50 74% 0.538 0.989 0.519 0.990 

 

 

Table 3: Summaries of identified subgroups (n=240, 1 predictive marker) 

Scenario Markers 
No Subgroup 

Identified 
Average Size of 

Subgroup 
Average Treatment 

Effect 

D 5 55% 0.500 -0.540 

E 20 62% 0.521 -0.495 

F 50 74% 0.535 -0.452 

       

 

Table 4: Summaries of estimated power for identifying predictive markers (n=240) 

Scenario Markers 
Predictive 
Markers 

No Subgroup 
Identified 

(Cond.) 
Sensitivity 

(Cond.) 
Specificity 

(Cond.) 
PPV 

(Cond.) 
NPV 

E 20 1 62% 0.769 0.986 0.763 0.988

G 20 2 52% 0.395 0.988 0.791 0.936

F 50 1 74% 0.538 0.989 0.519 0.990

H 50 2 60% 0.462 0.996 0.850 0.978

 

 

Table 5: Summaries of identified subgroups (n=240) 

Scenario Markers 
Predictive 
Markers 

No Subgroup 
Identified 

Average Size of 
Subgroup 

Average Treatment 
Effect 

E 20 1 62% 0.500 -0.540 

G 20 2 52% 0.528 -0.737 

F 50 1 74% 0.535 -0.452 

H 50 2 60% 0.518 -0.752 
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Table 6: Summaries of estimated power for identifying predictive markers 

Scenario Markers 
Predictive 

Marker 
Sample 

Size 
No Subgroup 

Identified 
(Cond.) 

Sensitivity 
(Cond.) 

Specificity 
(Cond.) 

PPV 
(Cond.) 

NPV 

E 20 1 240 62% 0.769 0.986 0.763 0.988

I 20 1 480 37% 0.968 0.994 0.936 0.998

F 50 1 240 74% 0.538 0.989 0.519 0.990

J 50 1 480 49% 0.941 0.997 0.921 0.998

G 20 2 240 52% 0.395 0.988 0.791 0.936

K 20 2 480 15% 0.688 0.996 0.958 0.967

H 50 2 240 60% 0.462 0.996 0.850 0.978

L 50 2 480 24% 0.638 0.998 0.956 0.985

 

 

Table 7: Summaries of identified subgroups 

Scenario Markers 
Predictive 

Marker 
Sample 

Size 
No Subgroup 

Identified 
Average Size of 

Subgroup 
Average 

Treatment Effect 

E 20 1 240 62% 0.500 -0.540 

I 20 1 480 37% 0.522 -0.539 

F 50 1 240 74% 0.535 -0.452 

J 50 1 480 49% 0.510 -0.536 

G 20 2 240 52% 0.528 -0.737 

K 20 2 480 15% 0.508 -0.772 

H 50 2 240 60% 0.518 -0.752 

L 50 2 480 24% 0.516 -0.779 
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Figure 1: Comparing Performance of Different “Summaries of Strength” 

 

 

Figure 2: Relationship between Power and Total Number of Markers 
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Figure 3: Power Comparison between Scenarios 
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