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ABSTRACT 

In many practical situations the linear model is not complex enough to capture the 

underlying relationship between the response variable and its regressors. This paper 

explores this association in dairy cattle breeding data using the partially linear single-

index model via the accelerated failure time model in addition to the ordinary Weibull 

model. Calves survival data were used this study. Each calf record contains the following 

information, survival time till weaning, type of birth (TB), calving ease score (CE), 

season of birth (SEAS), origin of farm or herd (HRD), number of treatments received 

(NTR), weight at the time of event taken (BWT), total volume of colostrums (TVOL) and 

serum total protein (TP) g/dl. Calves that survived up to 120 days were considered as 

censored. BWT, TVOL and TP were included in the nonparametric vector in the PSLISM 

model.  The results show that the estimates of the parametric component are similar in the 

two models. However, the estimates of the nonparametric component differ from 

paramteric analysis. This difference may be attributed largely to the nonlinearity of the 

estimated function indicating the standard linear model does not adequately capture the 

underlying association between the response and regressors in this study. 

INTRODUCTION 

In studying the relationship between a response and a set of predictor variables, the 

mean response variable is often assumed to be a linear regression function of the 

regressors. In many practical situations, however, the linear model is not complex enough 

to capture the underlying relationship between the response variable and its associated 
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covariates. Indeed, some components can be highly nonlinear. A natural generalization of 

the linear model is to allow only some of the predictors to be modeled linearly, with 

others being modeled nonlinearly.  

For the past decades, to overcome the difficulty caused by the curse of 

dimensionality, several models have been developed to study high dimensional data by 

nonparametric or semiparametric regression models. Hardle and Stoker (1989), Powell et 

al (1989) and Newey and Stoker (1997) investigated single-index models. Further, 

Carroll et al (1997) and Xia and Stoker (2006) extended the single-index model to the 

generalized partially linear single-index model. Even so, these models are used to study 

the relationship between the response and the predictor variables when data are fully 

observable.  

In practice, however, survival data are often subject to censoring. When it occurs, 

the incompleteness of the observed data may induce a substantial bias in the sample. 

Several approaches have been developed to overcome the associated difficulties in some 

specific models, including the partial likelihood method in the Cox proportional hazards 

model. Several studies were carried out using parametric and semi-parametric censored 

regression models by assuming a parametric regression form or assumed that the error 

distribution is parametric (Buckley and James, 1979; Koul et al., 1981; Lai et al., 1995; 

Powell, 1986; Duncan, 1986; Fernandez, 1986; Horowitz, 1988; Ichimura, 1998; Lewbel, 

1998; Buchinsky and Hahn, 1998 and Heuchenne and Van Keilegom, 2007). The Cox 

(1972) regression model plays a central role in survival analysis in which the conditional 

hazard of failure at time t given the covariate vector Z takes a semi-parametric form    

h(t:Z) = h0(t) exp (βTZ),  

where the baseline hazard h0(t) is a nonparametric function of time t, and the 

covariate effects are specified in such a way that the parameter vector β represents the 

log-linear effects on the hazard function. However, the Cox model has its limitations in 

dealing with more sophisticated covariate effects arising from real data. Several studies 

have tried to extend the Cox model to include nonparametric or semi-parametric covariate 

effects on censored failure data; for example, Dabrowska (1987) and Nielsen and Linton 

(1995), where the hazard function h(t, z) is completely unspecified. Fan et al. (1997) 

relaxed the fully nonparametric specification to the form h (t, z) = h0(t) λ(z) where both ho 

and λ are nonparametric functions.  
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Fan and Gijbels (1994) proposed a censored nonparametric regression estimator 

based on a class of unbiased data transformations using only univariate regressors. Wang 

and Zheng (1997) and Liang and Zhou (1998), however, extended the univariate 

regressors to multiple regressors. Further, Singh and Lu (2002) studied censored 

nonparametric additive regression models based on some special data transformations. 

On studying the estimation of an unknown multiple regression function, Lu and Burke 

(2005) proposed a method called censored average derivative estimation (CADE). Lu et 

al. (2006) examined a class of partially linear single-index proportional hazards models 

for survival data. Lewbel and Linton (2002) and Chen et al. (2005) considered 

identification and estimation of a nonparametric location-scale model under fixed 

censoring. However, in most biological and agricultural fields censoring is random hence 

the application of these models is limited.  

In survival analysis an alternative model to the proportional hazards model or the 

multiplicative hazards model is the accelerated failure time model (Lawless 2003). Lu 

and Cheng (2007) investigated a class of partially linear single-index models under 

random censoring as a class of accelerated failure-time models without the specification 

of the distribution function of the response variable. To date, in the case of survival 

analysis in dairy cattle, the covariates are often fitted in the model as linear multiplicative 

effects although several covariates are believed to have nonlinear effects on the survival 

of a cow. Therefore, the objective of this study was to explore the association of the 

response variable and various regressors in dairy cattle breeding data using the partially 

linear single-index model via the accelerated failure time model using the model 

proposed by Lu and Cheng (2007).  

 

MATERIALS AND METHODS 

2.1 Description of the data set used in this study 

Calf mortality is a serious problem in dairy cattle production. Apart from raising 

labor and veterinary expenses, it mainly increases replacement cost. Therefore, 

identifying calves that have a good genetic potential for survival is an important aspect of 

dairy farming. An experiment was set up to study the association between disease 

incidence and pre-weaning survival time of calves from birth till the first 120 days.  
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Data were collected from 16 dairy farms from Ontario-enrolled calves in the study 

from January through December of 2008. In this experiment calf health was monitored 

and recorded for various calf disease occurrences. Calves were treated at least once for 

various diseases in the study period. The farms selected for the study were generally well 

managed farms, enrolled in CanWest dairy herd improvement milk recording program. 

Size and management styles varied between farms, allowing for an overall picture of the 

Ontario dairy industry. The data set included survival time of calves in days, number of 

treatments each calf received and type of disease that occurred, calf weight, height, origin 

of farm or herd, season of birth (seasons were Jan-March, April-June, July-Sept, and Oct-

Dec), calving ease score (scores were 0 = unassisted, 1 = easy pull, 2 = hard pull, 3 = 

surgery), type of birth (0 = single birth, 1 = multiple birth), the total volume of colostrums 

(Kg) consumed during the first 24 hours of life and serum total protein (g/dl).  

Pre-weaned calves were housed both outdoors and indoors in a variety of barn set 

ups. Age was used as a criterion for weaning on all farms participating in the study. Some 

criteria included grain intake and body weight. Enrolment occurred at birth. Producers 

were also asked to complete a Birth Record for each calf born on the farm. These records 

listed the date, time and location of the birth, as well as calving ease score (surgery, 

assisted easy pull was required during the delivery). Colostrums management, including 

volume and time of colostrums feeding was also recorded, along with any perinatal 

treatments. Calves were uniquely identified using National Livestock Identification for 

Dairy tags and Holstein Canada registration numbers (where applicable).  

During weekly farm visits, various measurements to determine the overall health 

status of a calf were taken. Calves were measured at 4 different time points throughout 

the study; the initial assessment occurred at 1-8 days of age (T1), with the three follow up 

visits occurring at 14-22 (T2), 35-43 (T3), and 90-120 (T4) days of age. Body weight and 

height measurements were recorded in the individual calf event record book at each visit. 

Calves were also assigned a health score at each of the 4 sampling visits. A blood sample 

was obtained from each calf during the initial assessment to determine the total protein 

level. Producers were provided with case definitions of diseases and asked to record any 

treatments provided to calves. For every treatment which a producer administered to a 

calf, they were asked to record the date, rectal temperature of the calf, type of treatment 

given, as well as the suspected disease. A health score was also given to every treated 

calf. A total of 511 calves were included in this study. Each calf record contains the 

following information, survival time until weaning, type of birth (TB), calving ease score 
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(CE), season of birth (SEAS), origin of farm or herd (HRD), number of treatments 

received (NTR), weight at the time of event taken (BWT), total volume of colostrums 

(TVOL) and serum total protein (TP) g/dl. Calves that survived up to 120 days were 

considered as censored.  

The primary goal of the study was to assess which of the covariates are useful in 

predicting mortality of calves from birth to the first 120 days. First the data w using the 

ordinary Weibull model 

(t)  = 0(t) exp{x’m(t)} 

Here (t) is the hazard of a calf, i.e., the probability of dying at time t given she is 

alive just before t; 0(t)=(t) -1 is the Weibull baseline hazard function with scale 

parameter  and shape parameter  and t is the time in days from one calving to death or 

censoring.  contains the parameters affecting the hazard with x'm(t) being the 

corresponding covariate vectors  

In addition to the above ordinary Weibull model the following partially linear 

single-index model was used to analyze the data, 

Y ൌ 	β଴
୘	V	 ൅ 		λ

଴
൫α଴

୘	X൯ 	൅ 	σሺV, Xሻϵ			with	‖α଴‖ ൌ 1, 

where Y is the log survival time, V and X are the associated regressors, q and p 

vectors, respectively. For ease of understanding we denote the covariates using two 

different symbols: V and X which comprise the parametric and nonparametric 

component, respectively. The parametric component is characterized by an unknown q 

vector with parameter ߚ଴. The nonparametric component is characterized by λ଴, an 

unknown smooth univariate function defined on the real line, and an unknown projection 

p-vector parameter ߙ଴. σ(·,·) is the conditional variance representing possible 

heteroscedacity; ‖. ‖ denotes the Euclidean norm. The constraint ‖ߙ଴‖ ൌ 1 on the single-

index coefficient parameters is required for parameter identifiability. Assume that (V, X) 

and ϵ are independent, E(ϵ) = 0 and let C be the random censoring time associated with 

the log survival time Y, Var(ϵ) = 1. Assume C is independent of (V, X, Y). Denote Z = 

min(Y, C) and δ = I (Y	൑ C). The observations are ሼሺ ௜ܸ , ௜ܺ , ܼ௜, ௜ሻߜ ∶ 	݅ ൌ 1, … , ݊ሽ which 

are regarded as a random sample from the population (V, X, Z, δ).  

Application of the partially linear single-index approach using the above 

mentioned model, raises practical issues of which covariates go into the nonparametric 
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(V) vector and which ones go into the parametric (X) vector. In this study, we utilized the 

subject matter knowledge related to the individual calf and the underlying physiological 

mechanism that influences the ability of calf to reach the next stage. In addition 

preliminary analysis was carried out to investigate if the covariates were associated 

linearly or nonlinearly with the response variable.  

 

Estimation Procedure 

Since the distribution of error in the model is not specified, applying  the  a full likelihood 

function in the above model is not possible. Therefore, a quasi–likelihood estimation 

procedure was implemented using an iterative minimization algorithm (Lu and Cheng, 

2007). The term quasi-likelihood here is similar to that of Wedderburn (1974) in that only 

first and second assumptions are made about the distribution of the response Y. 

Let θ = (હ, β) be the vector of model parameters and if the data is fully observed, 

i.e., ܼ ≡ ܻ	the quasi likelihood estimator of θ଴ ൌ ሺહ଴, β଴ሻ	 and ߣ଴ are the minimizers of 

the following quasi-likelihood function of  ሼሺ	 ௜ܸ , ௜ܺ , ܼ௜, ௜ሻߜ ∶ 	݅ ൌ 1,… , ݊ሽ, 

	र࢔ሺી, ሻࣅ ൌ 	෍ሾ	࢏ࢅ

࢔

ୀ૚࢏

െ	ሼ࢏ࢂࢀࢼ	 ൅ ‖‖α	with	൯ሽሿ૛࢏ࢄࢀࢻ൫ࣅ	 ൌ 1 

This model is similar to the generalized linear single-index models as presented by 

Carroll et al (1997) for complete data. This procedure encounters difficulties in 

estimation due to censoring and the involvement of the nonparametric function λ. To 

overcome this difficulty first synthetic data or pseudo responses were produced using: 

ܼ௜ ෠ீ ௜ܮ	(߶ +1) =  ෠ீ ௜ܭ߶ -  ෠ீ  (following the procedure of Lu and Cheng, 2007). 

Here ܮ௜ ෠ீ ׬ =  ሺ
∞

ି∞
୍ሾ௓೔ஹ௦ሿ

ሺଵି ෠ீሺ௦ିሻሻ
 – I[s ൏ 0ሿሻ ௜ܭ  ,ݏ݀ ෠ீ  = 

௓೔ఋ೔
ሺଵି ෠ீሺ௓೔ିሻሻ

 , ߶ is a tuning parameter 

which control the weights put on censored and uncensored observations and I(.) is the 

indicator function.  		ሺ1 െ .෠ሺܩ െሻሻ is the left continuous version of Kaplan-Meier 

estimator defined by  

1 െ ሻݐ෠ሺܩ ൌ 	∏ ቂ ௡ି௜

௡ି௜ାଵ
ቃ
ூൣ௓ሺ೔ሻஸ௧,ఋሺ೔ሻୀ଴൧௡

௞ୀଵ , 

ܼሺଵሻ ൑ 	ܼሺଶሻ 	… 	ܼሺ௡ሻ	are the order statistics of Z-sample and ߜ௜is the associated ߜ with 

ܼሺ௜ሻ	, 1 ൌ 1, 2, … , ݊. The observed data ( 	ܸ௜	 ௜ܺ	ܼ௜, ௜ሻ is replaced by ൫ߜ 	ܸ௜ , ௜ܺ,ܼ௜ ෠ீ൯. The 

pseudo responses are such that  when G is known,  the expected value of ZiG equals the 

expected value of Y, i.e. E(ZiG) = E(Y). Thus the censored observations are unbiasedly 

transformed to pseudo responses, which approximate or impute the unobserved values.  
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When G is unknown, we may substitute the Kaplan-Meier estimator ܩ	෡ for G. The 

transformation is still asymptotically unbiased in this case. This class of transformation 

was introduced by Fan and Gijbels [8], and Koul, Susarla, and Van Ryzin [16] 

abbreviated as KSV. Using the transformed data, both parametric (ߚ଴) and nonparametric 

  .were estimated by applying the local linear fit to the quasi log likelihood iteratively (଴ߣ)

Two well-known qualities of the local linear fit are the reduction of the bias for 

the estimation of the nonparametric function and the avoidance of boundary effects. 

Suppose that λ(·) is continuously differentiable. Then in a neighborhood of a fixed point 

u, we can write λ(v) ≈ a଴ + aଵ (v − u), where a଴ = λ (u) and aଵ = λള(u). This is called the 

local linear fit. α 

Let W(·) be a kernel with a given bandwidth b and a given parameter vector θ. 

One can obtain local estimators aො଴ ≡ 	 aො଴ሺܝ: ીሻ, aොଵ	܊ ≡ 	 aොଵሺܝ:  ીሻ by minimizing the	܊

following local quasi log likelihood 

	र࢔ሺܽ଴, ܽଵሻ	ሻ ൌ 	෍ሾ	Z୧ୋ෡

୬

୧ୀଵ

െ	ሼ்ߚ	 ௜ܸ ൅ 	ܽ଴ ൅ ܽଵ൫α୘X୧ െ 	u൯ሽሿ૛	࢈ࢃ	൫αࢀX୧ െ u൯, 

where ௕ܹሺ. ሻ ൌ 	 ܾିଵܹሺ. |ܾሻ, and u is a fixed real number. 

When the true parameter vector θ is unknown, in order to obtain estimators for the model, 

we need to iteratively update the estimates of the nonparametric component  ߣ଴ሺ. ሻ and 

the parametric components	ߠ଴ ൌ ሺߙ଴,  ଴ሻ. The iterative algorithm consists of theߚ

following steps, 

Step 1: Treat the pseudo-responses ࡳ࢏ࢆ෡  as complete data and apply the estimation 

procedure for the partially linear single-index models, to obtain initial estimates 

∝ෝ and	ߚመ  of ߙ଴ andߚ଴ respectively, with the restriction ‖∝ෝ‖ ൌ 1 and ߠ෠ ൌ

ሺ	ߙො,  .መሻߚ

Step 2: Find	ߣ෡൫ݑ: ܾ, ෠൯ߠ ൌ ොܽ଴ as a function of u by maximizing the local quasi log-

likelihood with respect to ܽ଴	and	ܽଵ with fixed θ = ߠ෠ and a suitable bandwidth 

b as described by Lu and Cheng (2007). 

Step 3. Update ߠ෠ by minimizing the following equation with respect to ߠ ൌ ሺߙ,  ሻߚ

	෍ሾ	Z୧ୋ෡

୬

୧ୀଵ

െ	ሼβ୘	V୧ ൅ λ෠൫∝୘ X୧: b, θ෠	൯ሽሿ૛ 

Step 4.  Cycle Steps  2 and 3 until ߠ෠ convergence of ߠ෠.   
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Standard errors of parameters were estimated by generating 500 independent bootstrap 

samples with replacement . For each independent sample drawn  the above 

aforementioned model was fitted  and the corresponding parameters were calculated as 

described.  

 

 Results and Discussion 

To compare the results obtained from this study particularly the parametric component of 

the model, the data set was analyzed using the ordinary Weibull model and the results are 

presented in Table 2.  

Table 2. Summary of results from ordinary Weibull model. 

  parameter SE      P 
(Intercept)  7.923 0.3808 0.000 
BWT ߙଵ 2.508 0.2013 0.000 
TVOL ߙଶ -0.114 0.1224 0.035 
TP ߙଷ 0.124 0.0931 0.018 
HRD ߚଵ -0.166 0.1923 0.003 
SEAS ߚଶ 0.144 0.1168 0.219 
TB ߚଷ -0.066 0.1006 0.041 
CE ߚସ -0.112 0.074 0.016 
NTR ߚହ -0.215 0.023 0.002 

BWT= body weight, TVOL= totla colostrol volume,  TP= total serum protein level, 
HRD= famr; SEAS= season of calving,  TB= type of birth; CE= calving ease score; 
NTR= number of treatments. 

The results show that body weight had a significant effect (P< 0.001) as did total 

volume of colostrum, total protein, herd, type of birth and calving ease score (P<0.05). 

Season of birth had no significant effect on calf survival. Detailed analysis of the data 

also showed the relative calf mortality was associated with the type of birth. For instance, 

twin born calves had 1.12 times higher risk of dying than single born calves. Usually twin 

born calves have lower birth weight and subsequent growth rate than single born calves 

due to prenatal nutritional competition and other maternal effects.  Table 2 also shows 

significant relationship between calving ease and calf mortality. Calves with hard pull 

and surgery had a considerably increased relative risk of dying compared to unassisted 

calving. For instance, calves with hard pull and surgery were 1.27 and 1.92, respectively, 

more likely to have died compared to unassisted calvings.  

Difficult births have a remarkable effect on calf survival and health. When cows 

have to be assisted or have surgery during birth, there are often lasting effects on the calf. 

Calves may suffer from anoxia, lack of oxygen and may have damage to joints, bones or 
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organs. Consequently, the calf feels weak and is slow to stand or nurse the cow. As a 

result many calves suffer from failure of passive transfer and are more susceptible to 

disease. 

The relationship between the number of treatments received and survival shows 

that calves who receive treatments twice and three times had a considerably increased 

relative risk of dying compared to calves that received only one treatment. For instance, 

calves with two and three treatments were 2.52 and 3.38, respectively, more likely to 

have died compared to calves with only one treatment group. 

Table 3 presents estimates and standard errors obtained by the ordinary Weibull 

model and partially single linear index model.  Table 3 shows that the estimates of the 

parameters in the parametric component (β) are similar under the ordinary Weibull linear 

model and the partially linear single-index survival model. However, the estimates of the 

nonparametric component (single-index) parameter, ߙ, are different.  
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Table 3. Estimate and standard error of the parameters obtained from  
 Weibull model and the partially single linear index model for the data set 

  Ordinary Weibull PSLISM 
  parameter SE parameter SE 
BWT ߙଵ 2.508 0.2013 0.268 0.105 
TVOL ߙଶ -0.114 0.1224 0.354 0.162 
TP ߙଷ 0.124 0.0931 0.896 0.247 
HRD ߚଵ -0.166 0.1923 -0.156 0.125 
SEAS ߚଶ 0.144 0.1168 0.129 0.101 
TB ߚଷ -0.066 0.1006 -0.078 0.092 
CE ߚସ -0.112 0.074 -0.117 0.084 
NTR ߚହ -0.215 0.023 -0.151 0.034 

BWT= body weight, TVOL= totla colostrol volume, TP= total serum protein 
level,HRD= famr; SEAS= season of calving, TB= type of birth; CE= calving ease score; 
NTR= number of treatments; PSLISM= partially single linear index survival model 

 

This difference could be attributed largely to the nonlinearity of the estimated function as 

observed in Figure 1. 

Figure 1 shows that as the index increases the survival of calves increases in 

nonlinear fashion. At the beginning the effect is dramatic but once it reaches a threshold 

value it levels off. Looking at the indiviual components of the single-index such as the 

body weight reveals that calves with higher body weight tended to have lower risk of 

dying compared to the calves with lower body weight.  
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Figure 1. Adjusted observed response against the estimated single-index value 

 

Moreover, it is observed from the results that calves with higher volume of 

colostrum and serum protein level have higher survival rate than those calves with lower 

volume. This is because these two components are physiologically important for immune 

response and ability to resist some disease incidence. The primary factors involved with 

successful attainment of passive immunity are the volume of colostrum fed, the IgG 

content of the colostrum and how quickly it was fed. The main role of IgG is to identify 

and help destroy invading pathogens. Therefore, the consumption and absorption of 

colostrum early in life is a primary determinant of calf health and growth. In turn, the 

success of the colostrum feeding is reflected in an increase in serum protein concentrate 

in the blood. Serum protein, is also important to the calf for growth and development. 

These three components of the index have somewhat intricated interdependence on each 

other that influences the calf survival in a complex way which may not be explained by 

application of the usual standard survival linear model.  

In the survival literature, various statistical models were proposed for analyzing 

censored data in the presence of covariates. Parametric, semiparametric survival models 

such as the accelerated failure time model, the Cox proportional hazards model and the 
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additive risk model are commonly used in many clinical trials, biomedical and 

agricultural studies. These models specify the form of the conditional hazard function of 

survival time given a set of associated covariates. An alternative approach is to use a 

direct relationship between survival time and its covariates by means of linear regression. 

For the last few decades the linear regression techniques for censored survival data were 

used extensively because of the ease of interpretation of the results.  

In the above-mentioned models, however, a specific functional form of relationship 

between survival time and the associated covariates is given. Despite the fact that all 

these models have nice theoretical properties, they may not be flexible enough to describe 

the complexity of biological processes in many real applications. The single-index model 

as observed in the present study may have greater flexibility than other regression models 

in terms of analyzing complex data since the link function in the model is assumed 

arbitrary.  

In dairy cattle the breeding goal is to increase lifetime profit per animal and per 

unit of time. Profit is a function of production and the time that a cow remains in herd 

(commonly called survival or longevity or herd life). Therefore, survival or longevity of 

cows is a trait of considerable economic importance since it has a significant impact on 

profitability. Increased longevity is associated with decreased culling and therefore 

decreased cost of raising or purchasing replacement females.  

Several strategies have been suggested and used to analyze survival data in dairy 

cattle. These include a simple modeling of a 0-1 variable indicating whether the cow is 

still alive or dead at any specific time. In this approach, the response variable was 

considered as a binary trait and analyzed either using a linear or threshold model 

(VanRaden and Klaaskate, 1993; Jairath et al., 1998; Vollema and Groen, 1998; 

Boettcher et al., 1999, Sewalem et al 2007). Typically such type of data has a skewed 

distribution and analysis using traditional linear models may not be appropriate. Survival 

analysis using a proportional hazard model as suggested by (Smith and Quaas, 1984) is 

an alternative method for animal breeding survival data. Ducrocq et al. (1988) showed 

that proportional hazard models could be used for the analysis of length of productive 

life. Ducrocq and Solkner (1998) developed the Survival Kit typically used by animal 

breeders for large populations using a Weibull model (Ducrocq, 2002, Sewalem et al., 

2004, Sewalem et al., 2005) where several covariates are fitted as a linear effect.  
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 Generally, in dairy cattle production there are several environmental factors 

(covariates) that influence the survival of cows and those factors need to be accounted in 

the model in order to get reliable estimates. In this regard Sewalem et al. (2005) studied 

longevity of Canadian dairy cows using censored linear regression model that included 

several covariates. In those analyses some of the continuous covariates are grouped and 

fitted to the model as a class effect. This grouping of covariates may also result in loss of 

information. In addition, some covariates may have nonlinear effects on the response 

variable. In this case, the traditional linear models or kernel smoothing methods fail to 

incorporate both linear and nonlinear covariate effects. On the other hand, when a large 

amount of covariates have nonlinear effects, the multivariate kernel smooth suffers from 

the “curse of dimensionality’’. The covariate effects in the current model are addressed in 

a semiparametric fashion, which offers better flexibility in modelling the relationship 

between the failure time and the covariates than the existing models. Hence, application 

of the current model is worthy of a full investigation using a larger data set that may 

include frailty model that accounts the genetic effect of the animal.  

As a concluding remark in the present study, we are demonstrating the results for 

single-index model under random censorship. The results may provide some insights 

which may be potentially useful in analysis of dairy cattle breeding data in the future 

which currently suffer with the curse of dimensionality. 
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