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Abstract
It is challenge to model medication taking behavior and eventually to predict the change of be-

havior, especially for those vulnerable patients (e.g. substance abusers). With the help of modern
technology (e.g. Wisepill device), we are able to monitor the medication taking behavior in real
time. In the meanwhile, after a few minutes delay of detecting the events and analyzing the events,
a real time intervention can be generated to communicate with patients directly by the packages of
Python, such as text messages to the mobile phone of the patients. The statistical methods that can
be used to model the complexity of the medication taking events and to predict the future missed
dosage are important for designing the personalized module of the device and therefore personalized
intervention. This intervention not only will improve the medication adherence, but the personal-
ized intervention will help to build up the correct medication behavior in the future. In this talk,
we use Non-Homogeneous Poisson Process (NHPP) to model the sequence of medication taking
during the day. The six hour window (3 hours before and after the dose schedule time) is considered
as valid medication taking event. The daily real time medication events were monitored for more
than 16 week by Wisepill device. We will model the extreme event of medication taking (outside
the designed medication event window). Eventually, we use the model to predict the non-adherence
events (missing medication event of the day). Therefore a customized intervention for adherence of
medication could be performed on patients in the real-time.
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1. Introduction

It is very challenge to model medication taking behavior and eventually to predict the
change of behavior, especially for those vulnerable patients with HIV positive. Adher-
ence to medication is used to describe taking your medication exactly as prescribed - at the
right times, in the right doses and following any special dietary restrictions.Those drug-
positive patients have significant worse medication adherence than those drug-negative pa-
tients (Hinkin et al., 2007) and substance use is significantly associated with the treatment
failure. Non-adherence can lead to poor patient outcomes and increased healthcare costs.

Wisepill devices (Haberer et al., 2010) is a real-time adherence monitor using Smart
Pill Box and and Internet technologies. It use GSM (Global System for Mobile) communi-
cation chip to send an electronic medication event record to a central management system
(Wisepill Web Server) whenever medication is taken. The Wisepill system records patient
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adherence by recording real-time date and time of device opening events directly to a web
database.

Non-Homogeneous Poisson Process (NHPP) is a general extension of Homogeneous
Poisson Process. The intensity function is not a constant but changes over time. In this
paper, the maximum likelihood estimation (MLE) is used to estimate the intensity function
of the behavior in the exponential Fourier series developed in 2013 (Drazek, 2013).

In section 2, we discuss the theory of MLE method for estimate the intensity function
and inter-arrival time. The probability for kth event to be coming in certain small time
period is derived. In section 3, the methodology in section 2 is applied to a real study
which monitors the medication event behavior of HIV patients who are substance abusers.
The intensity function in exponential Fourier format is derived for the medication behavior.
In section 4, we discuss the conclusion and some limitation of the methodology. Some
future directions about NHPP are also discussed.

2. Methods

In order to derive the final format of the maximum likehood extimation of intensity function
of Non-Homogeneous Poisson Process (NHPP), we need the detail notation for all the
formulas. In the next subsection, a set of notations for NHPP is illustrated.

2.1 Notation

In below, we will use t to denote the time. We assume the counting process N(t) is a Non-
Homogeneous Poisson Process (NHPP) with intensity function λ (t) (Karlin et al. 1975).
N(T ) is the number of events from (0,T ) and we assume N(0) = 0. We use λ (t) to describe
how the Poisson process changes in time, which is usually called the intensity function. We
use capital Λ(t) to denote the expected number of events of NHPP on the time interval (0, t),
where

Λ(t) =
∫ t

0
λ (s)ds, t > 0

Here for each 0 < t1 < t2 < · · ·< tn, N(t1), N(t2)−N(t1), · · · , N(tn)−N(tn−1) are indepen-
dent random variables. The inter-arrival times (arriving time) are s1 = t1,s2 = t2 − t1, · · · ,
sn = tn − tn−1. Therefore, the probability of having k arrivals or k events during the time
(t, t + x) is,

P(N(t + x)−N(t) = k) =
(Λ(t + x)−Λ(t))k

k!
e−(Λ(t+x)−Λ(t)) (1)

The probability of s1 > x and total events N(T ) > n is denoted by A(x,n), which de-
scribes the probability that the first event happens after time x, and there are total of n events
by time T . It can be derived from (Yakovlev et al., 2005),

A(x,n) = P
(

s1 > x
∩

N(T ) = n
)

=
1

Λ(T )
× e−Λ(x)× (Λ(T )−Λ(x))n

n!
e−(Λ(T )−Λ(x)) (2)

=
e−(Λ(T )

Λ(T )
× (Λ(T )−Λ(x))n

n!
(3)

Here 1
Λ(T ) is a normalization constant (the inverse of the expected number of events from

(0,T )), e−Λ(x) is the probability to have no arrivals on the interval (0,x), and the rest of the
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formula is the probability of having exactly n events from (x,T ). These probability can be
multiplied together is because of the independence of number of events between (0,x) and
(x,T ).

The next useful quantity is the probability of kth event during (y,y + dy). We use
B(x,y,k,n) to denote it (Yakovlev et al., 2005).

dB(x,y,k,n) = P
(

tk ∈ (y,y+dy)
∩

sk+1 > (y+ x)
∩

N(T ) = n
)

=
1

Λ(T )
× (Λ(y))k−1

(k−1)!
e−Λ(y)

× λ (y)dy× e−(Λ(y+x)−Λ(y))

× (Λ(T )−Λ(y+ x))n−k

(n− k)!
e−(Λ(T )−Λ(y+x)) (4)

= λ (y)dy
e−(Λ(T )

Λ(T )
(Λ(y))k−1

(k−1)!
(Λ(T )−Λ(y+ x))n−k

(n− k)!
(5)

The probability is calculated by multiply the following items. First 1
Λ(T ) is the normal-

ization constant similar as in A(x,n). The next term in (4) describes the probability of
having exactly (k− 1) events during time (0,y). λ (y)dy is the number of events at time
y. e−(Λ(y+x)−Λ(y)) denotes the probability for no arrivals from (y,y+ x). The last item in
(4) is the probability of having exactly (n− k) events from (y+ x,T ). The idea of calcu-
lating B(x,y,k,n) is to divided the time interval (0,T ) into sub-intervals (0,y), (y,y+dy),
(y,y+ x), and (y+ x,T ). Then the events that happened in these sub-intervals are indepen-
dent. Therefore, the probability can be multiplied to calculate the quantity. With the two
important probability at hand, we are ready to derive the inter-arrival time s and therefore
the MLE of intensity function λ (t).

2.2 Inter-Arrival Time

The inter-arrival time describes the arrival time for the next events in NHPP. There is close
form for the density function of this quantity (Yakovlev et al., 2005). The survival function
for this random variable s is the probability of having the next events after time x. The
survival function for an inter-arrival time S > x is derived from both A(x,n) and the quantity
B(x,y,k,n),

G(x) = P(S > x)

=
∞

∑
n=1

A(x,n)+
∞

∑
n=2

n−1

∑
k=1

∫ T−x

0
dB(x,y,k,n)

=
∞

∑
n=1

A(x,n)+
∞

∑
n=2

n−1

∑
k=1

∫ T−x

0
dB(x,y,k,n)

=
1

Λ(T )

∫ T−x

0
λ (y+ x)e−(Λ(y+x)−Λ(y))dy (6)

The survival function satisfied G(0) = 1 and G(T ) = 0. Based on G(x), we can derive the
probability density function (pdf) of the inter-arrival time x is given by (1−G(x))′ - the
derivative of negative survival function,

−G′(x) =
1

Λ(T )

(∫ T−x

0
λ (y+ x)e−(Λ(y+x)−Λ(y))λ (y)dy

)
+

1
Λ(T )

λ (x)e−Λ(x)

(7)
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There are some special notes for this density function. The first arrival density is missing
in the integral part, but the summation second term will compensate. Also, the pdf to have
the inter-arrival time xi+1, given ∑i

m=1 si = y is,

λ (y+ x)e−(Λ(y+x)−Λ(y)) (8)

The density function of the inter-arrival time can be used to predict the time that next
possible event may come. After model the past events with NHPP, the intensity function
λ (t), which is estimated by MLE method in the next sub-section, can be calculated. Based
on the density for next arrival time can be derived. However, the numerical estimation is
not trivial. We will not discuss how this can be estimated in the numeric form.

2.3 Maximum Likelihood Estimate for the Intensity function

The estimation method for intensity function is based on the exponential Fourier transfor-
mation, which guarantees the intensity function is positive (Drazek, 2013). Suppose we
have the data from the sample π = {x1,x2, · · · ,xn}. Recall, some notations in section 2.1,
we denote Λ = Λ(T ) =

∫ T
0 λ (x)dx for the total number of events happened until time T .

Therefore, the probability of observe n events is e−Λ Λn

n! . The probability of observing xi

is λ (xi)
Λ . Therefore the probability of observing the sample π is calcuated as ∏ λ (xi)

Λ . The
likelihood of observing the sample π is

L(λ ,π = {x1,x2, · · · ,xn}) = e−Λ Λn

n!
×∏ λ (xi)

Λ
(9)

If the sample is ordered as x1 < x2 < · · · < xn, the likelihood of getting the ordered
sample is

L(λ ) = e−Λ Λn

n!
×∏ λ (xi)

Λ
×n!

= e−Λ ∏λ (xi)

= e−
∫ T

0 λ (x)dx ∏λ (xi) (10)

Therefore, the Log-likelihood is (Drazek, 2013),

l(λ ) = log(L(λ )) =−
∫ T

0
λ (x)dx+

n

∑
i=1

logλ (xi) (11)

To find the best λ (t) based on log-likelihood is not easy, we will restrict to a certain
family of functions - Exponential Fourier series, where

λ (x) = exp

(
a0 +

n

∑
j=1

b j sin(2π
x
T

f j)+ c j cos(2π
x
T

f j)

)
(12)

• The fitted model is controlled by changing n and f j = j f1, assume f1 = 1.

• The function is always non-negative. The model is periodic.

Fourier series are well established in the literature. The R code for estimating the intensity
function is developed by Drazek in 2013. The data in this paper was analyzed by R studio
(2012).
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3. Results

CARE study is short for Centralized off-site adherence enhancement intervention. CARE
study is a collaboration between Univeristy of California, Los Angeles (UCLA), Yale Uni-
versity, and Los Angeles Biomedical Research Institute. Part of the study collect the medi-
cation behavior data using real-time event monitor - Wisepill device (Harberer et al., 2010).
The procedure for the data collection and for how the device works to collect real-time data
is shown in Figure 1. The Wisepill device is a pill box containing the medication and the
SIM card connecting to the central server in South Africa (SA). When the patient open the
device to take medication, the signal of device openning is sent to the server in SA. Mean-
while, UCLA team will detect the event with a 24 hour running computer program. The
real-time event from the second patient taking medication to UCLA detecting the event is
less within 10 minutes. There is further interaction function, such as sending text messages
to the patient’s cell phone, which is beyond the scope of this paper.

Figure 1: How does the Wisepill work

One example of the data collected from one patient from November 5, 2012 to February
12, 2013 is shown in Figure 2. To examine when these patients take their medications, we
illustrate the dose timing intervals using one patient as an example. At the beginning, the
dose timing intervals were irregular and this patient was missing some doses. The pattern at
the later part of the study indicated that this patient was able to maintain perfect adherence
with a regular schedule of taking medication. He was scheduled to take the medication
at 10 in the morning and 7 in the afternoon, after the intervention in the study. In this
paper, we model the data at the beginning stage, where no intervention is performed. The
medication taking behavior can be treated as random events.

We took the data from one patient in a month, with our intervention for his or her medi-
cation behavior. The data is the time measured in seconds of medication behavior over a
30-day period. The total number of openning events in the 30 days period (from April 1,
2013 to April 30, 2013) is 63376. We assume in the sub-partition (every 6 hours) there
is homogeneous Poisson process. A NHPP is used to model the combination of different
homogeneous Poisson process.
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Figure 2: One example of medication taking events

Table 1: Medication events for 30-day period

time secondtime second
01APR13:00:00:00 1680393600 0
01APR13:00:02:00 1680393720 120
01APR13:00:08:00 1680394080 480
01APR13:00:08:00 1680394080 480
01APR13:00:09:00 1680394140 540

... ...
30APR13:23:56:00 1682985360 2591760
30APR13:23:57:00 1682985420 2591820
30APR13:23:58:00 1682985480 2591880
30APR13:23:59:00 1682985540 2591940

The exponential Fourier format intensity function is as,

λ (x) = exp

(
a0 +

n

∑
j=1

b j sin(2π
x
T

f j)+ c j cos(2π
x
T

f j)

)

Use n = 0 to n = 5 to find the optimal fits to the graph, the estimate coefficients for
a0,b1,c1,b2,c2,b3,c3, · · · ,b5,c5. We estimate the frequencies used were f1 = 1, f2 = 2 f1, f3 =
3 f1, · · · etc. for simpler estimation as in (Drazek, 2013). The parameters which are supplied
by the user are {T,x,n, f j}, where T is the total observing time, x is the current time and n
is the nubmer of events. As shown from the R code below, the value of a0 is almost constant
for all n values. However is decreases slowly as n increases, until n = 5. For n = 0, we
have expa0 =−9.05. This is the value of the intensity of the homogeneous Poisson process
for the whole process in 30 days.

We compare the pattern of the intensity function for different number of combinations
of homogeneous Poisson process. The output intensity functions are plotted at the below
figures for n = 2, n = 3, n = 4, and n = 5 (Figure 3). This estimation is unbiased for λ
(Drazek, 2013). The nature of intensity function is periodic. We assume the medication
behavior is also periodic. Therefore, we can use the periodic Fourier series to estimate the
intensity function.
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Table 2: Parameters for intensity function λ

n a0 b1 c1 b2 c2 b3 c3 b4 c4 b5 c5

0 -9.050
1 -9.042 0.033 -0.072
2 -9.330 0.000 -0.034 -0.712 0.827
3 -10.982 2.706 1.294 -1.438 1.294 0.888 0.978
4 -9.923 1.100 -0.609 1.572 0.179 1.212 1.905 -0.007 0.928
5 -11.561 -1.793 -0.824 -2.654 4.009 -0.333 1.857 1.923 -0.321 0.923 -0.586

The plots of the opening events using the intensity functions are shown in Figure 4 for
n = 1,2,3,4. The main peak and troughs match the data well when n = 3, which indicates
a good fit of λ when n = 3. When n = 1,2, the model does not fit the data. When n ≥ 4,
there is over fit.

4. Discussion

In this paper, we use Non-Homogeneous Poisson Process (NHPP) to model the real-time
events of medication behavior. The medication behavior itself is complicated and difficult
to model statistically. We hope to find the periodic pattern of the missing dosage and
therefore we can predict the missing events. Ideally, we can based on the individualized
intensity function of medication events predict the skipped event. An customized, effective,
and costless intervention could be developed for each patient.

Medication adherence among the HIV patients who are also substance users is very
challenge. The study use the real-time medication event monitor to observe the pattern
that a patient taking the medication. The medication events are modeled by NHPP and
eventually estimate the personalized intensity function. The function can therefore be used
to estimate the inter-arrival time. If the inter-arrival time is greater than expected, some
action may be necessary, such as text message reminder for the patients to take his or her
medication.

Although we have close form of the density function of inter-arrival time, the numeric
solution is not available in this paper. In the future, we can work on derive the explicit so-
lution for estimating the next arrival time of the event, e.g. NewtonRaphson method. There
is another limitation in this paper. We do not define the best fit for the density estimation.
The density estimation is estimated by the pattern of the judgment of investigator, which
is subjective and may not be accurate for modeling the pattern of the medication behavior.
A goodness of fit test for the final estimation of intensity function is needed to verify the
model.
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Figure 3: Exponential Fourier Estimation of Intensity function
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Figure 4: Medication events with intensity function n=1,2,3,4
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