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Abstract 
Non-detects are data whose values are left-censored at a limit of detection (LOD). Data 
with non-detects arise in fields as diverse as metabolomics, environmental monitoring, 
and AIDS research. To analyze data with non-detects, methods such as maximum-
likelihood estimation and multiple imputation have been deployed, but these methods 
require fitting a model whose error term follows the Normal or other parametric 
distribution. A simple, non-parametric alternative was proposed by Helsel (2005), in 
which data with non-detects are ‘flipped’ or converted into right-censored forms by 
subtracting them from a suitably large number, then analyzed via Kaplan-Meier curves 
and the log-rank test. In a simulation study, we investigated the performance of Helsel’s 
method on normally distributed data subjected to left-censoring at an LOD. We found 
that Gehan’s generalized Wilcoxon test, a weighted version of the log-rank test, had 
significantly more power to detect group differences than the standard log-rank test. 
Here, we explore whether Gehan’s test continues to be superior to the log-rank test when 
the left-censored data are generated using alternatives to the normal distribution. 
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1. Introduction 
 
Non-detects are data whose values are left-censored at a limit of detection (LOD). Data 
with non-detects arise in various disciplines such as metabolomics, environmental 
monitoring, and AIDS research. To analyze data with non-detects, sophisticated methods 
such as maximum-likelihood estimation and multiple imputation have been deployed, but 
these methods require the investigator to fit the data to a model whose error term follows 
the Normal, Logistic, Gamma, or other brand-name parametric distribution. If the 
incorrect distribution is used, the validity of the investigator’s analysis can be 
compromised. A simple, non-parametric alternative was proposed by Helsel (2005)1, in 
which data with non-detects are ‘flipped’ or reflected into right-censored forms by 
subtracting them from a suitably large number, then analyzed via standard survival-
analysis methods using Kaplan-Meier curves and the log-rank test. Because this method 
is nonparametric, there is no need to pick a brand-name distribution, and thus no model 
misspecification. For an exploratory comparison of groups for an endpoint difference in 
the presence of non-detects, Helsel’s method has much intuitive appeal.  
 
But in a recent simulation study2, we compared several methods, including Helsel’s, for 
their power to detect a difference of 0.5 standard deviations (SDs) between the means of 
two groups that had normally distributed data subjected to left-censoring at an LOD. We 
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found that the log-rank test had significantly less power to detect the difference than 
Gehan’s generalized Wilcoxon test, a weighted version of the log-rank test that gives 
more weight to earlier survival times.  
 
An important feature of our recent study2 was that the two groups being simulated had 
normal distributions with equal variances, but different means. In other words, the two 
groups followed a location-shift model, not a proportional-hazards model. The difference 
between the two types of model is illustrated in Figure 1 using “Weibull plots” or plots 
of ln(–ln(Survival)) versus X, where “Survival” is the survival distribution function of X 
for each group, and “ln(·)” denotes the natural logarithm of the term inside the 
parentheses. In a Weibull plot, data that follow a proportional-hazards model maintain 
constant vertical distance between the two groups’ curves, whereas data that follow a 
location-shift model maintain constant horizontal distance between their curves. Only 
distributions that form straight lines on Weibull plots can follow both models 
simultaneously; the only distributions that do this are exponential and Weibull 
distributions when X is a log-transformed variable, and smallest extreme-value 
(“Gompertz”) distributions when X is the untransformed variable of interest. 
 
In short, by adhering to a location-shift model, the normally distributed data of our recent 
simulation study2 automatically violated the proportional-hazards assumption. Allison3 
states that the log-rank test has more power than Gehan’s test when the group differences 
follow a proportional-hazards model, but that Gehan’s test “is more powerful than the 
log-rank test in situations where event times have log-normal distributions with a 
common variance but with different means in the two groups”. This explains why the 
log-rank test had less power than Gehan’s test in our recent study2, if we assume that 
Allison meant common variance with different means after logarithmic transformation.   
 
However, this explanation immediately raises two questions. One, would the log-rank test 
continue to have less power than Gehan’s test if the error term in our location-shift model 

Proportional-Hazards models Location-Shift models 

ln(–ln(S1(x)))=d+ln(–ln(S0(x))) 
 Constant vertical distance on plots of 

ln(–ln(Survival)) vs X. 

ln(–ln(S1(x)))=ln(–ln(S0(x+Δ))) 
 Constant horizontal distance on plots of 

ln(–ln(Survival)) vs X. 
Figure 1: Illustration of of the use of “Weibull plots” to distinguish between data that 
follow proportional-hazards models and data that follow location-shift (or equal-
variance) models. Weibull plots are plots by group of ln(–ln(Survival)) versus X, where 
“ln(·)” denotes the natural logarithm of the term inside the parentheses. In most Weibull 
plots, X=ln(Time), but in our Weibull plots, X is more general. 
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followed parametric alternatives to the normal distribution? Two, how would the log-rank 
test compare in power to Gehan’s test if we simuated data from distributions that 
simultaneously followed both the location-shift and proportional-hazards model? To 
answer these two questions, we undertook the simulation study presented in this paper. 
For our models’ error terms, we used the following five distributions: Normal (reference; 
symmetric), Student’s t and Logistic (both heavy-tailed symmetric), Gompertz (left-
skewed), and Gumbel (right-skewed). For each distribution, we simulated a two-group 
location-shift model with increasing amounts of difference between the groups. We also 
simulated increasing rates of left-censoring, in order to continue framing our questions in 
the context of Helsel’s flipped-data method for data with non-detects. We note that the 
Gompertz and Gumbel distributions have mirror-image density functions, so that flipping 
Gumbel-distributed data converts it into Gompertz-distributed data, and vice versa.   
 

2. Methods 
 
All simulations and analyses were conducted using SAS v9.3 (The SAS Institute, Inc., 
Cary, NC). In particular, the LIFETEST Procedure was used to compare flipped data for 
group differences via the Log-rank and Wilcoxon tests. The SAS documentation for the 
LIFETEST Procedure states that the Wilcoxon test “is also referred to as the Gehan test 
or the Breslow test”; hence, we use Gehan’s test to mean the Wilcoxon test that is 
implemented in the LIFETEST Procedure. This is important because Olmsted4 and others 
have noted that the LIFETEST Procedure with the Wilcoxon option computes the same 
rank-statistics vector, but a different covariance matrix, compared to those that would be 
computed using Gehan’s original test procedure.  
 
2.1 Data Simulation 
For five distributions d (see below), uncensored data Uij|d were generated as follows:  

  | | | | ζ|ε , ε ζ σ , {1,2}, {1,2,...,60},ij d i ij d ij d ij d dU k i j    
 

where i indexed group, j indexed observation within group, Δ (the distance between 
group means) ranged from 0 to 1 by 0.25, ki = +0.5 & –0.5 for i = 1 & 2, respectively, 
and the error term εij|d had SD = 1 by construction. The ζij|d (with SD = σζ|d) followed the 
“standard” distribution (with location=0 and scale=1) from one of five location-scale 
families of distributions d having the following names:  
 (1) the d=Normal distribution, 
 (2) the d=Logistic distribution, 
 (3) the d=Student’s t distribution with 8 degrees of freedom, 
 (4) the d=Gompertz distribution with ζij<0 allowed,   
 (5) the d=Gumbel distribution.  
In practice, we generated pij from the Uniform(0,1) distribution, and computed each of 
the five ζij|d from the same pij as: 

    
 1

|ζij d d ijp 
 

where 1
d
 (pij) denotes the inverse CDF of pij for the distribution d in question. 

Left-censored data Yij|d and censoring indicators Iij|d were generated as: 

   | | | | tCR|, 0 if LOD , orij d ij d ij d ij d dY U I U  
 

   | tCR| | | tCR|LOD , 1 if LODij d d ij d ij d dY I U  
 

where tCR, the target censoring rate, ranged from 0.02 to 0.58 by 0.08, and LODtCR|d was 
set equal to the tCRth quantile of εij|d. For each combination of d, Δ, and tCR, 2500 
simulated data sets were generated; the empirical censoring rate was determined for each 
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such combination as the proportion of censored Yij|d (i.e., the proportion of non-zero Iij|d) 
aggregated across the 2500 simulations. 
 
2.2 Data Analysis 
To implement Helsel’s method, both the left-censored Yij|d and the uncensored Uij|d from 
each distribution were respectively “flipped” into right-censored forms Xij|d and Wij|d as: 

   | | ;ij d d ij dX C Y 
  | | ,ij d d ij dW C U 

 
where the constants Cd were chosen to assure that both Xij|d and Wij|d were always 
positive. For the overall performance assessment, groups were tested for difference in 
Xij|d via Gehan’s test and the log-rank test at values of Δ ranging from 0.00 to 0.75. To 
separate more effectively the effect of censoring on power from random fluctuations of 
the simulation, both Xij|d and Wij|d were tested at Δ=0.50. Power was estimated as the 
proportion of test results yielding P<0.05, and reported with 95% confidence limits that 
were estimated using asymptotic normality. Adherence of the simulated data to both 
location-shift and proportional-hazards models was assessed visually at Δ=0.50 for each 
distribution d by combining all 2500 simulations per d, computing log(–log(Survival)) 
versus the aggregated Xij|d, and plotting the results in Weibull plots. 
 

3. Results and Discussion 
 
(Table 1 and Figures 2–6 have been placed after the References section.) 
 
3.1 Empirical versus Target Left-censoring Rates 
Table 1 shows the empirical left-censoring rates obtained for each target left-censoring 
rate, and how they varied with the error distribution and the distance Δ between group 
means. As expected, the empirical rate was very nearly equal to the target rate (1) when 
Δ=0, and (2) when the target rate was 50% on the symmetric error distributions. 
Otherwise, the empirical rate differed at most by 3.2 percentage points from the target 
rate, indicating that the simulation’s actual left-censoring probability remained close to its 
target value when Δ was large.  
 
3.2 Operating Characteristics of the Log-rank and Gehan’s Tests 
3.2.1 Type I Error, all distributions 
When Δ=0, power equals Type I error, and power curves become Type I error curves in 
Figures 2A through 6A (top left panel of each figure). In Figure 2A, both tests had 
stochastically equal Type I error curves, and all but one of the sixteen 95% CIs on the 
Type I error curves contained the nominal alpha of 0.05. The alert reader will notice that 
the Type I error curves of Figures 3A through 6A are identical to those of Figure 2A. 
This is because of the way we constructed the Wij|d, the censoring thresholds, and the Xij|d. 
When Δ=0, Wij|d = Cd–εij|d, the censoring thresholds on each Wij|d lie at Cd–LODtCR|d, and 
Xij|d = Wij|d if Wij|d < Cd–LODtCR|d. The different εij|d and LODtCR|d are monotone 
transformations of the same pij and tCR, and each such transformation has an inverse. 
Thus, for fixed i and j, but varying d, the five different Wij|d, Xij|d, and Cd–LODtCR|d are 
monotone transformations of each other. This means that, when i and j are fixed while d 
varies when Δ=0, (1) if the Xij|d are censored for at least one d, then they are censored for 
all d, and (2) the five uncensored Xij|d have the same rank regardless of d. Because the 
log-rank and Gehan’s tests are rank-based tests, they therefore give the same result on 
Xij|d for different d when Δ=0, thereby leading to identical Type I error curves for the 
different d in Figures 2A through 6A.  
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Of course, these invariance relations are broken when Δ>0, and in consequence, the 
power curves in Figures 2A through 6A are readily seen to vary with the distribution d 
when Δ>0.  
 
3.2.2 Power, Normal Distribution 
Figure 2A plots the simulation power of the log-rank and Gehan’s tests versus target left-
censoring rate for different values of Δ between two groups whose error terms follow the 
d=Normal distribution. When Δ>0, Gehan’s test had higher power than the log-rank test 
at all censoring rates, and when Δ≥0.50, the 95% CIs on the power curves usually did not 
overlap for censoring rates <50%. For Δ=0.50, the left panel of Figure 2B plots the 
power of the log-rank and Gehan’s tests versus the empirical censoring rate. To separate 
the effect of censoring rate from random fluctuations of the simulation, the two tests were 
applied to both the censored Xij|d and their uncensored versions Wij|d. Power of both tests 
decreases as the empirical censoring rate increases, as one would expect. The right panel 
of Figure 2B shows the Weibull plot for the two groups, and confirms that the 
proportional-hazards assumption fails to hold for this location-shift model with normal-
distributed data.  
 
3.2.3 Power, Heavy-tailed Symmetric Distributions 
Figure 3A and Figure 4A plot the power of the two tests versus target left-censoring rate 
for different values of Δ between groups whose error terms follow the symmetric heavy-
tailed distributions, d=Logistic (3A) and d=Student’s t8 (4A). The two figures have very 
similar-looking power curves. When Δ>0, Gehan’s test had higher power than the log-
rank test at all censoring rates, and the power curve’s 95% CIs did not overlap at low 
censoring rates. Interestingly, the power of the log-rank test rises towards the power of 
Gehan’s test as the censoring rate increases. The left panels of Figure 3B and Figure 4B 
demonstrate that this is not a quirk of the simulation: Power of the log-rank test, when 
applied to the censored Xij|d, increased significantly with the censoring rate relative to its 
power when applied to their uncensored versions Wij|d, at least through 40% censoring. 
Under the same circumstances, power of Gehan’s test began decreasing as the censoring 
rate increased above 20%. The right panels of Figure 3B and Figure 4B show the 
corresponding Weibull plots for these heavy-tailed symmetric distributions. Both plots 
show curves that are nearly straight and parallel lines at low data values, with pronounced 
curvature (and pronounced decrease in vertical distance) setting in at high data values 
corresponding to censoring rates <40%. Thus, most of the violation of the proportional-
hazards assumption appears to occur at data values that would not be observed under a 
40% censoring rate. At first glance, this suggests that a progressive increase in the 
censoring rate (up to around 40%) progressively removes more and more of that part of 
the data that violates the proportional-hazards assumption, thereby leading to an increase 
in the log-rank test’s power. However, it must be noted that the same progressive increase 
in censoring rate also removes progressively more of those parts of the curves where the 
vertical distance is relatively small, such that those parts that remain have increased 
average vertical distance. Since the vertical distance represents ln(HR), the natural log of 
the hazard ratio between groups, an increase in its average could be the true explanation 
why the log-rank test’s power increased.     
 
3.2.4 Power, Gompertz Distribution before Flipping 
Figure 5A plots the power of the two tests versus target left-censoring rate for different 
values of Δ between groups whose error terms follow the left-skewed d=Gompertz 
distribution before flipping. (After flipping, the error terms become Gumbel-distributed.) 
For Δ>0, Gehan’s test has significantly more power than the log-rank test at almost all 
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left-censoring rates examined. Strangely, at all censoring rates examined, the power of 
Gehan’s test was approximately constant with censoring rate while the power of the log-
rank test rose monotonically with censoring rate. The left panel of Figure 5B confirms 
this behavior at Δ=0.50, and also shows that the power of Gehan’s test on the censored 
version of the data is stochastically equal to its power on the uncensored version of the 
same data. The Weibull plot of Figure 5B explains some of this strange behavior. At low 
values, the curves are steep and have large vertical distances between them, whereas at 
high values, the curves are shallow and have small vertical distances between them. As 
the shallower parts of the curves are progressively trimmed off from the right by more 
and more censoring, the steeper parts that remain have a progressively larger average 
vertical distance between them (and thus progressively larger average ln(HR)), thereby 
increasing power of the log-rank test. Why power of Gehan’s test stays constant with 
censoring rate is harder to explain. However, we note that the shallow regions of the 
curves correspond to the long right tails of the flipped distributions; these long right tails 
contribute disproportionately to the group variances. As the increased censoring trims the 
tails progressively from the right, the variances of what remains will shrink markedly. 
Perhaps the boost in power that results from shrinking variances is enough to offset the 
loss of power that one expects from increased censoring, so that the overall power of 
Gehan’s test stays constant with censoring under these circumstances.   
 
3.2.5 Power, Gumbel Distribution before Flipping 
Figure 6A plots the the power of the two tests versus target left-censoring rate for 
different values of Δ between groups whose error terms follow the right-skewed 
d=Gumbel distribution before flipping. Because flipping makes the error terms become 
Gompertz-distributed, we expect the flipped-data values to adhere to the proportional-
hazards assumption. The right panel of Figure 6B confirms that they do. In consequence, 
when Δ>0, the log-rank test has more power than Gehan’s test at all censoring rates 
examined (Figure 6A), although the two power curves trend towards convergence at high 
censoring rates. The left panel of Figure 6B shows that power of both tests decreases 
markedly with censoring rate when each test is conducted on the censored versus 
uncensored versions of the same data.  
 

4. Conclusions 
 
In our study, the log-rank test was more powerful than Gehan’s generalized Wilcoxon 
test only if the simulated data followed both a proportional-hazards model and a location-
shift model simultaneously. If the simulated data followed a location-shift model, but not 
a proportional-hazards model, then Gehan’s test was more powerful than the log-rank 
test. We note that exponentiation of data that adhere to a location-shift model results in 
data that adhere to a scale-accelerated failure-time (SAFT) model5, and that both the log-
rank test and Gehan’s test are invariant to exponentiation. Therefore, all results on our 
location-shift models (normal, logistic, student’s t, Gompertz, and Gumbel) apply equally 
to their equivalent SAFT models (lognormal, loglogistic, log-t, Weibull, and inverse 
Weibull, respectively). 
 
Our results also contained a surprise. Power of the log-rank test increased significantly 
with the censoring rate, at least as first, for the heavy-tailed symmetric distributions, 
Logistic and Student’s t with 8 degrees of freedom. And power of the log-rank test 
actually increased monotonically with the left-censoring rate for the left-skewed 
(Gompertz) distribution after it was flipped to a right-censored form. Our current thinking 
is that, in all three cases, the increase in log-rank power with censoring rate is explained 
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by an increase in the average ln(HR) between groups in the uncensored parts of the 
distributions. 
 

5. Prospects for Generalization of Results 
 
Can our result of superior Gehan’s-test power be generalized to all location-shift (and 
SAFT) models that violate the proportional-hazards assumption? We believe so, but we 
are having trouble finding unambiguous support in the literature for this. Collett6 says 
simply that the generalized Wilcoxon test is “more appropriate” than the log-rank test for 
departures from the null hypothesis that do not fit the proportional-hazards assumption, 
but does not discuss power specifically. The discussion by Allison3 of which test is more 
powerful under what assumptions seems to trace back to the seminal paper by Peto and 
Peto7. They considered “Lehmann alternatives” to the null hypothesis, which include 
proportional-hazards models, and “Normal alternatives” to the null hypothesis, which are 
location-shift models that follow the normal distribution. To these models, they applied 
the log-rank test, the probit rank test, and the Wilcoxon rank-sum test. In the absence of 
censoring, they found the following: (1) asymptotic efficiency of the log-rank test was 
100% on Lehmann-alternative models and 82% on Normal-alternative models; (2) 
asymptotic efficiency of the probit rank test was 82% on Lehmann-alternative models 
and 100% on Normal-alternative models; and (3) asymptotic efficiency of the Wilcoxon 
rank-sum test was 75% on Lehmann-alternative models and 95% on Normal-alternative 
models. Peto and Peto7 mention that the Wilcoxon rank-sum test is asymptotically 
efficient on logistic distributions related by location shift, while Kalbfleisch and Prentice8 
state that the Wilcoxon rank-sum test is the optimum rank test if the error distribution is 
logistic. Kalbfleisch and Prentice8 go on to state that the generalizations of rank tests to 
censored data are asymptotically 100% efficient if the assumed model distributions match 
the “actual” sampling distributions up to location and scaling, which supports our results 
in the specific cases of the Normal, Logistic, and (flipped) Gumbel distributions. 
Kalbfleisch and Prentice continue by noting that asymptotic relative efficiency is the 
square of the limiting correlation of the rank test used with the locally optimum test based 
on the correctly specified distribution. This, in conjunction with the similar curve shapes 
in our Weibull plots of Figures 3B versus 4B, suggests that both tests may have nearly 
the same asymptotic efficiency towards Student’s t8 distribution that they have towards 
the logistic distribution. However, nothing we have seen in the literature thus far supports 
a blanket generalization of our results to all location-shift (and SAFT) models that violate 
the proportional-hazards assumption.  
 

6. Recommendation 
 
In the context of Helsel’s flipped-data method for left-censored data, we found that 
Gehan’s test had better power than the log-rank test to detect group differences, for all 
but one of the distributions we examined.  The exception was the Gumbel distribution.  In 
real-world applications, left-censored Gumbel distributions rarely occur.  These two facts 
indicate that, in most real-world applications of Helsel’s method, its power to detect 
group differences would be significantly improved simply by substituting Gehan’s 
generalized Wilcoxon test for the log-rank test. 
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Table 1 

 
Table 1: Empirical versus Target rates of left-censoring, as a function of the difference
Δ between group means for each of the five error distributions indicated at the far left 
of the table. Target left-censoring rates are the column headers; empirical left-
censoring rates are in the columns under the headers. 
 Value 

of Δ 
Target Left-censoring Rate 

0.02 0.10 0.18 0.26 0.34 0.42 0.50 0.58 

N
or

m
al

 0.00 0.020 0.101 0.180 0.260 0.340 0.422 0.500 0.582 

0.25 0.021 0.102 0.183 0.261 0.341 0.421 0.501 0.578 

0.50 0.023 0.108 0.190 0.266 0.344 0.422 0.500 0.578 

0.75 0.027 0.115 0.197 0.274 0.349 0.426 0.500 0.574 

L
og

is
ti

c 

0.00 0.020 0.101 0.180 0.260 0.340 0.422 0.500 0.582 

0.25 0.021 0.102 0.184 0.262 0.342 0.422 0.501 0.578 

0.50 0.022 0.108 0.192 0.269 0.347 0.424 0.500 0.576 

0.75 0.025 0.116 0.202 0.280 0.354 0.429 0.500 0.571 

S
tu

d
en

t’
s 

t 8
 

0.00 0.020 0.101 0.180 0.260 0.340 0.422 0.500 0.582 

0.25 0.021 0.102 0.184 0.262 0.342 0.421 0.501 0.578 

0.50 0.022 0.108 0.192 0.268 0.346 0.423 0.500 0.577 

0.75 0.025 0.116 0.201 0.279 0.353 0.428 0.500 0.571 

G
om

p
er

tz
 0.00 0.020 0.101 0.180 0.260 0.340 0.422 0.500 0.582 

0.25 0.021 0.101 0.183 0.261 0.342 0.422 0.503 0.579 

0.50 0.021 0.105 0.189 0.268 0.348 0.427 0.506 0.582 

0.75 0.022 0.109 0.196 0.277 0.357 0.436 0.511 0.584 

G
u

m
b

el
 0.00 0.020 0.101 0.180 0.260 0.340 0.422 0.500 0.582 

0.25 0.023 0.104 0.184 0.261 0.341 0.420 0.500 0.577 

0.50 0.032 0.115 0.193 0.266 0.342 0.418 0.495 0.573 

0.75 0.046 0.132 0.205 0.274 0.343 0.415 0.488 0.564 
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Figure 2 
Δ=0.00 Δ=0.25 

Δ=0.50 Δ=0.75 

Figure 2A: Power versus test procedure at α=0.05 for left-censored Normal distribution 
flipped by computing Xij=Cd–Yij, where Cd=10. Δ=difference between group means. 
 

Effect of censoring rate on power of tests Weibull plot of flipped data 

Figure 2B: (left panel) Effect of censoring rate on power of test procedures at Δ=0.50
(compared to uncensored version of same data) when the proportional-hazards 
assumption is violated. Error distribution is Normal before flipping. Δ, the difference 
between group means, is the constant horizontal distance between curves in (right panel) 
Weibull plot of flipped data. In both panels, the dashed vertical brown, magenta, and 
orange reference lines respectively denote empirical censoring rates of 10.8%, 19.0%, 
and 26.6%. 
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Figure 3 
Δ=0.00 Δ=0.25 

Δ=0.50 Δ=0.75 

Figure 3A: Power versus test procedure at α=0.05 for left-censored Logistic distribution 
flipped by computing Xij=Cd–Yij, where Cd=15. Δ=difference between group means. 
 

Effect of censoring rate on power of tests Weibull plot of flipped data 

Figure 3B: (left panel) Effect of censoring rate on power of test procedures at Δ=0.50
(compared to uncensored version of same data) when the proportional-hazards 
assumption is violated. Error distribution is Logistic before flipping. Δ, the difference 
between group means, is the constant horizontal distance between curves in (right panel) 
Weibull plot of flipped data. In both panels, the dashed vertical brown, magenta, and 
orange reference lines respectively denote empirical censoring rates of 10.8%, 19.2%, 
and 26.9%. 
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Figure 4 
Δ=0.00 Δ=0.25 

Δ=0.50 Δ=0.75 

Figure 4A: Power vs test procedure at α=0.05 for left-censored Student’s t8 distribution 
flipped by computing Xij=Cd–Yij, where Cd=25. Δ=difference between group means. 
 

Effect of censoring rate on power of tests Weibull plot of flipped data 

Figure 4B: (left panel) Effect of censoring rate on power of test procedures at Δ=0.50 
(compared to uncensored data version) when the proportional-hazards assumption is 
violated. Error distribution is Student’s t8 before flipping. Δ, the difference between
group means, is the constant horizontal distance between curves in (right panel) Weibull 
plot of flipped data. In both panels, the dashed vertical brown, magenta, and orange 
reference lines respectively denote empirical censoring rates of 10.8%, 19.2%, and 
26.8%. 
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Figure 5 
Δ=0.00 Δ=0.25 

Δ=0.50 Δ=0.75 

Figure 5A: Power vs test procedure at α=0.05 for left-censored Gompertz distribution 
flipped by computing Xij=Cd–Yij, where Cd=5. Δ=difference between group means. 
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Figure 5B: (left panel) Effect of censoring rate on power of test procedures at Δ=0.50 
(compared to uncensored version of same data) when the proportional-hazards 
assumption is violated. Error distribution is Gompertz before flipping. Δ, the difference 
between group means, is the constant horizontal distance between curves in (right panel) 
Weibull plot of flipped data. In both panels, the dashed vertical brown, magenta, and 
orange reference lines respectively denote empirical censoring rates of 10.5%, 18.9%, 
and 26.8%. 
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Figure 6 
Δ=0.00 Δ=0.25 

Δ=0.50 Δ=0.75 

Figure 6A: Power versus test procedure at α=0.05 for left-censored Gumbel distribution 
flipped by computing Xij=Cd–Yij, where Cd=15. Δ=difference between group means. 
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Figure 6B: (left panel) Effect of censoring rate on power of test procedures at Δ=0.50 
(compared to uncensored version of same data) when the proportional-hazards 
assumption is adhered to. Error distribution is Gumbel before flipping. Δ, the difference 
between group means, is the constant horizontal distance between curves in (right panel) 
Weibull plot of flipped data. In both panels, the dashed vertical brown, magenta, and 
orange reference lines respectively denote empirical censoring rates of 11.5%, 19.3%, 
and 26.6%. 
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