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Abstract: Hurricanes are one of the costliest natural disasters in the United
States. After more than two decades of relatively little hurricane activity,
the past decade saw heightened hurricane activity and more than $200 bil-
lion in damage in 2004 and 2005.This study analyzes U.S. hurricane damages
from 1900-2012. Based on this analysis we propose an extreme value model
for predicting extreme hurricane damage. Finally, a simulated hurricane se-
ries are generated by Bootstrap sampling to quantify the uncertainty in the
inference of extreme return levels of hurricane losses.
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1 Introduction

Hurricanes are responsible for the enormous loss of life and the massive
monetary costs around the U.S. Gulf Coast. The purpose of this study is
to quantify the economic risk of hurricanes. More specifically we want to
predict magnitude of hurricane damage (return level) for a specific return
period.Monte Carlo simulation is used to generate hurricane series based
on proposed empirical model. A total 10000 hurricane event is generated
by bootstrap resampling approach to measure the variability of estimates
obtained from the empirical model.

The paper is organized into five sections: the first describes the damage
data that are used in the analysis; the second introduces a brief descrip-
tion of extreme value model and generalized Pareto distribution(GPD); the
third proposes a GPD model for hurricane damage; the fourth describes the
uncertainty measurement in the inference of extreme return levels of the
proposed model through simulated hurricane series; and the fifth discusses
the conclusion of the paper.
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2 Data

We analyze the hurricane losses in the United States. Pertinent data span
the years 1900-2012. Data have been taken from the National Oceanic and
Atmospheric Association’s National Hurricane Center (NOAA). In order to
accurately compare historic loss amounts, a proper normalization method
has been used to account for inflation, changes in population and wealth
along the affected areas. Pielke-Landsea(2008)[1] normalization procedure
has been used to normalize the data to 2014 values.

3 Extreme Value Model and Generalized Pareto
Distribution(GPD)

Extreme value analysis is a branch of statistics dealing with the extreme
deviations from the median of probability distributions. It seeks to assess,
from a given ordered sample of a given random variable, the probability of
events that are more extreme than any previously observed.

3.1 Classical Extreme Value Model

Let X1, X2, · · · , Xn be a sequence of independent random variables with
common distribution function F . Extreme value analysis focuses on the sta-
tistical behavior of

Mn = max{X1, X2, · · · , Xn}

In applications, the Xi usually represent values of a process measured on a
regular time-scale, for example hourly measurements of sea level, or daily
mean temperature so that Mn represents the maximum of the process over
n times units of observation[2]. If n is the number of observations in a year,
then Mn corresponds to the annual maximum.

In theory the distribution of Mn can be derived exactly for all values of
n:

Pr{Mn} = Pr{X1 ≤ z, · · · , Xn ≤ z}
= Pr{X1 ≤ z}, · · · , P r{Xn ≤ z}
= {F (z)}n

(3.1)

In practice, we might not have the distribution function F but according
to the extremal eypes theorem (Fisher and Tippett, 1928 [5]) if there exist
sequences of constants {an} > 0 and {bn} such that
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Pr{(Mn − bn)/an ≤ z} −→ G(z) as n −→∞

where G is a non-degenerate distribution function, then G belongs to one of
the following families:
I: Gumbel family:

G(z) = exp

{
− exp

[
−

(
z − b
a

)]}
, −∞ < z <∞ (3.2)

II: Frechet family:

G(z) = exp

{
−

(
z − b
a

)−α}
, z > b; 0, z ≤ b (3.3)

III: Weibull family:

G(z) = exp

{
−

[
−

(
z − b
a

)−α]}
, z < b; 0, z ≥ b (3.4)

for parameters a > 0, b and, in case of families II and III, α > 0.

Families I, II and III are termed as extreme value distributions. These three
classes can be combined into a single family of models having distribution
function of the form.

G(z) = exp

{
−

[
1 + ξ

(
z − µ
σ

)−1/α]}
(3.5)

defined on the set {z : 1 + ξ(z − µ)/σ > 0}, where the parameters satisfy
−∞ < µ < ∞, σ > 0 and −∞ < σ < ∞. This is the generalized extreme
value (GEV) family of distributions.

For modeling extremes of a series of independent observations data are
blocked into series of block maxima to which the GEV distribution can be
fitted.Often the blocks are chosen to correspond to a time period of length
one year, in which case n is the number of observations in a year and the
block maxima are the annual maxima. Parameters of the model can be
estimated by maximum likelihood estimation method. From the estimated
parameters the return level for different return periods can be easily ob-
tained.
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3.2 Threshold Model and Generalized Pareto distribution(GPD)

Modeling only block maxima is a wasteful approach to extreme value anal-
ysis if other data on extremes are available. In this case the r largest order
statistic model(Threshold Model) is a better alternative.

Consider again X1, X2, · · · , Xn be a sequence of independent random vari-
ables with common distribution function F . Then for suitably high threshold
u, the execedences y(= x − u), conditional of X > u, approximately follow
GPD having the distribution function:

H(y) = 1− (1 +
ξy

σ
)−1/ξ (3.6)

defined on {y : y > 0 and (1 + ξy/σ) > 0} and for some σ > 0 and ξ.

To fit the GPD model we need to select an appropriate threshold. A number
of methods are available to select the threshold of the data. Among them
mean excess plot and threshold choice plot are widely used. The return
levels for different return period can be easily calculated from inferred gen-
eralized Pareto model. The m-year return level is

xm = µ+
σ

ξ
[(mζu)ξ − 1] (3.7)

where ζu = λ× Pr(X > u) and λ = rate for extreme events.

To assess the accuracy of the GPD model various diagnostic plots are used.
Among them probability plot, quantile plot and density plot are commonly
used to check the goodness-of-fit of the model [3].

4 Modeling Hurricane data with Generalized Pareto
distribution (GPD)

This study focuses on the economic damage related to hurricane from 1900-
2012.A histogram of the aggregate nominal losses is shown in Fig 4.1(a). The
obvious upward trend is deceptive as it does not take into account change
in inflation, population, or wealth. A bar plot of the normalized losses is
shown in Fig 4.1(b). The bar plot shows that historically second highest
hurricane lose occurred in the last decade, 2001-2010, whereas the highest
hurricane damage happen in 1921-1930, the decade of Great Miami.

JSM 2014 - Section on Risk Analysis

4359



00−10 21−30 41−50 61−70 81−90 01−10

Year

B
as

e 
E

co
no

m
ic

 D
am

ag
e(

B
ill

io
n)

0
50

10
0

15
0

(a) Total base damage over period
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(b) Total normalized damage over period

Figure 4.1: Total hurricane damage, 1900-2012

The probability histogram (Fig 4.2) shows that the data follow the long
tailed distribution. A standard technique for modeling such long tail data
is the GPD.
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Figure 4.2: Probability Histogram

To fit the GPD model we need to select appropriate threshold first. Several
graphical approaches are available to select the threshold. However, the
most commonly used method is the mean excess (ME) plot. From the
ME plot (Fig.4.3) we can see that after 25 the graph shows approximate
linearity.Therefore a a better threshold could be 25.
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Figure 4.3: Mean Excess plot

Having determined a threshold, the parameter of the generalized Pareto
distribution can be estimated by maximum likelihood method or by other
estimation techniques.From our data we get the maximum likelihood esti-
mates as

σ̂ = 41.90623 and ξ̂ = 0.06729

Now using the return level formula (Eq.3.7) we can obtain approximate hur-
ricane damage for a specific return period. Table 4.1 shows hurricane losses
X(T = t) for different return periods T . For example, at return period 50
the estimated hurricane damage is approximately 106.740 billion.

Table 4.1: Magnitude of hurricane damage for a return period

Return period (Year) Return level(Billion)
20 64.614
30 82.935
50 106.740
100 140.378
200 175.622

Diagnostic plots for the fitted GPD are shown in Fig. 4.4. The plots sug-
gest that the proposed Pareto model is reasonable for modeling this data set.
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Figure 4.4: Diagnostic plots

5 Quantifying uncertainty of the estimates of em-
pirical model

Using generalized Pareto model to infer extremal behavior of hurricane dam-
age data is a common practice. A difficulty arises, however, in measuring
statistical properties such as mean, variance, etc. of such return level es-
timates.We can find these properties of the estimates by drawing repeated
samples of same size from the population of interest, a large number of times
[4]. This resampling method is known as “naive” sampling. But the prob-
lem is that sampling again and again with Monte Carlo simulation from
the same population causes to arise only a small degree of variability of the
estimates.

However, potentially much greater uncertainties arise from sampling error
in the the inference of the hurricane model itself.Therefore we generate a
sample from the population and this sample is used as a “surrogate pop-
ulation”, for next steps of measuring properties of a statistic. A number
of samples are then taken with replacement from the sample at hand. For
each case we estimate the parameter of interest. And so we have a set of
values of the estimator of the parameter. From this set of values we can
calculate different statistical properties of the estimate of the parameter of
interest.This resampling method is known as bootstrapping.

For uncertainty measure of extreme return levels of the empirical model we
generate 10000 extreme hurricane series based on the proposed model. Here
we make the following assumptions. First, that hurricane model is based on
112 years of historical records. Second, that the number of extreme hurri-
canes affecting is 241, that is the hurricane model is based on 241 data.
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Then we generate 100 samples of size 241 from the original 10,000 simulated
values allowing with replacement. From each sample we calculate the maxi-
mum likelihood estimates σ̂ and ξ̂ of the parameters, and then return levels
for return periods m = 20, 30, 50, 100, 200, and 500. Therefore for each
return period we have 100 values of return level. From this set of values we
calculate the mean return level, sample standard deviation of these return
level (standard error).For each of the specified return levels, the information
is summarized in Table 5.1. We also report the coefficient of variation, and
95% confidence intervals for return level estimates.

Table 5.1: Results obtained from Bootstrap samples

Return Mean Standard Coefficient of 95% Lower 95% Upper
Period Return Level error variation Limit Limit
20 58.25 0.54 0.93 57.19 59.31
30 77.99 0.79 1.01 76.45 79.54
50 103.89 1.14 1.09 101.66 106.14
100 141.03 1.81 1.28 137.48 144.58
200 180.70 2.82 1.56 175.17 186.23
500 237.57 4.84 2.04 228.07 247.06

From table 5.1 we can see the location of the distribution increases with
the return period. The variability also increases since there is greater un-
certainty with increased model extrapolation. Finally, we observe that the
coefficients of variation for return level estimates increase with the return
period, reflecting the magnification of uncertainty under extrapolation.We
can see clearly the expected return level with 95% upper and lower limit for
a specific return period from the return level plot (Fig. 5.1).
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Figure 5.1: Return Level plot

6 Conclusion

The analysis highlights the forming of a model which predicts the possible
economic damage associated with a future hurricane event in United States
Gulf Coast and Atlantic shore of Florida.The propose model shows that the
potential damages from hurricanes will be growing at an alarming rate that
may place severe burdens on society.The analysis should provide a caution-
ary warning for hurricane policy makers.
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