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Abstract
In pursuit of the perfect March Madness bracket we aimed to determine the most effective model

and the most relevant data to predict match-up probabilities. We present an ensemble method of
machine learning techniques. The predictions made by a support vector machine, a Naive Bayes
classifier, a k nearest neighbors method, a decision tree, random forests, and an artificial neural
network are combined using logistic regression to determine final matchup probabilities. These
machine learning techniques are trained on historical team and tournament data. We discuss the
performance of our method in the two stages of Kaggle’s March Machine Learning Madness com-
petition and compare it to the performance of the winning team, One Shining MGF (OSMGF).
We also assess our performance using a generalizable simulation-based technique and in this way
compare our performance to that of OSMGF and the performance of predictions based on seed.

Key Words: ensemble method, NCAAB, machine learning

1. Introduction

Every March, as the NCAA Men’s basketball tournament approaches, millions of fans
fill out a bracket predicting which teams they think have what it takes to be champions.
Along with bragging rights, competitions for correct brackets can lead to monetary re-
wards (Dizikes, 2014). This year the stakes were raised by two parties: Warren Buffett,
who offered a billion dollars for a perfect bracket; and Kaggle (a website that hosts predic-
tive modeling competitions), who teamed up with Intel to give a monetary award to the top
team in its March Machine Learning Mania competition. Most fans choose their bracket
based on their intuition, but what kind of statistical models can be used to predict basketball
game wins, and how accurate can predictions based on these models get?

In this paper we present an ensemble method of machine learning techniques for pre-
dicting NCAA basketball games using external team data. We discuss our approach’s per-
formance in the Kaggle competition and compare it with the performance of the winning
team, One Shining MGF. We evaluate our predictions using a generalizable simulation-
based technique 1.

1.1 Previous Work

Many have attempted to predict the outcome of NCAA games using different combinations
of data inputs and modeling techniques, but no consensus has been reached on a standard
or “best” technique. Smith and Schwertman (1999) used seed to predict margin of victory,
and Carlin (1996) assessed the predictive performance of team strength and regular season
point spread.

In general, predicting the outcomes of college basketball games is more challenging
than for professional games due to the greater variability in team performance from season

∗Smith College
†University of Utah
‡Smith College
1The idea for this technique came from One Shining MGF.
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to season. New players are introduced on a yearly basis, and team dynamics change much
more frequently. Measuring strength in team over various seasons will also depend on the
strength of schedule in each season.

These challenges placed on NCAA basketball modeling can partially be addressed by
machine learning, since these algorithms can identify recurring trends that remain obscure
to a sports fan or even expert (Schumaker, Solieman, and Chen, 2010). Dean Oliver identi-
fied the “Four Factors”—shooting, turnovers, rebounding, and free throws—that best quan-
tify success in college basketball and optimize predictive modeling accuracy (Oliver, 2004).
Zimmermann, Moorthy, and Shi (2013) used the Four Factors along with adjusted efficien-
cies to predict match outcomes for the 2008–2009 through 2012–2013 seasons. They fo-
cused primarily on decision trees, artificial neural networks, Naive Bayes, rule learners, and
random forests. They identified neural networks and Naive Bayes as the best performers
in their experiment. Further, they concluded that there is an upper threshold on machine
learning predictive accuracy of 75%.

It is clear that an effective prediction strategy for NCAA games requires a blend of in-
formative data inputs and machine learning techniques that perform best given the training
data. What may be considered a favorite machine learning technique may have poor per-
formance if trained on irrelevant data. Prediction becomes even more difficult as one must
both optimize the variables to train the model on and the model itself.

1.2 Objectives

Our goal was to identify key factors in predicting NCAA tournament wins and to find a
model that would perform well in the Kaggle competition.
The Kaggle competition had two stages:

1. Predict outcomes of the past five NCAA Tournaments

2. Predict outcomes of the 2014 NCAA Tournament

For each stage we submitted a list ŷ of probabilities (values between 0 and 1) that each
team in the tournament would defeat every other team in the tournament, regardless of
whether this match-up actually occurs. For this year, this was m = 2278 predictions 2. We
were judged based on the log-loss L(y|ŷ), or the predictive binomial deviance, of the games
that actually occurred:

L(y|ŷ) =−1
n

n

∑
i=1

[yi · log(ŷi)+(1− yi) · log(1− ŷi)] ,

where n is the actual number of games played in the tournament (67), yi is the actual binary
outcome of each game, and ŷi is the corresponding submitted probability 3. If the opponents
in game i are teams A and B, then ŷi(A,B) is the predicted probability that team A beats team
B, and ŷi(B,A) = 1− ŷi(A,B).

The goal is to find a set of predictions ŷ that minimizes L(y|ŷ) for the unknown outcome
vector y. This scoring method heavily penalizes being simultaneously confident and wrong.
If we say Team A will beat Team B with probability 1 and Team B wins, then our log-loss
is infinite (although Kaggle bounded the log-loss function to avoid infinite scores). At the
same time, it is important to balance between being too conservative and too confident. If
we are too conservative (e.g. ŷ ≈ 0.5), then we will never accrue points, but if we are too
confident, we make ourselves vulnerable to huge losses.

2Note that in addition to the canonical 64 team tournament, there are now 4 play-in games. This brings the
total number of potential matchups to

(68
2
)
=
(n+1

2
)
= 2278.

3Note here that i ranges over the n = 67 values of yi, not the m = 2278 values of ŷi.
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1.2.1 Benchmarks

Kaggle provided benchmarks to surpass for each stage of the competition. These relatively
simple, public predictive models were informative.

Stage One

• Seed Benchmark: uses only the teams’ tournaments seeds (ranging from 1 (best) to
16 (worst)). For each game i, suppose that team A is stronger than team B, and let
si(A),si(B) be the corresponding seeds. Then,

ŷi(A,B) = 0.50+0.03 · (si(B)− si(A)) .

The seed benchmark can be derived by fitting an OLS regression model to the differ-
ence in seeds in the past tournaments.

• Rating Percentage Index (RPI) Benchmark: transforms the RPI, a measurement of
team strength rpi(A) with a higher number being better, into a rating R(A) and then
uses the difference in two teams’ ratings Ri(A)− Ri(B) to determine the winning
percentage.

R(A) = 100−4 · log(rpi(A)+1)− rpi(A)/22

ŷi(A,B) = 1/(1+10−(Ri(A)−Ri(B))/15)

• Chess Metric:

1. Assign each team the same rating of 50.

2. GameScore = 1/(1+10−PointDi f f erential/15)

3. RatingDi f f =−15 · log10(1/GameScore−1)

4. Add RatingDi f f to the team’s rating.

5. Recalibrate after each iteration so that the average rating is 50.

6. Iterate to converge to a stable solution.

Stage Two At the beginning of Stage Two, all teams submitted their lists of predicted
probabilities ŷ. As the 2014 Tournament unfolded, entries in the outcome vector y were
revealed. Let y∗ ∈ {0,1}n be the outcome vector corresponding to the actual 2014 Tourna-
ment.

• All Zeros Benchmark: This is the benchmark where one chooses a zero probability
for each game (ŷ0 = 0). One will not lose infinite points as Kaggle bounds the log-
loss function away from infinity, but one will lose the maximum number of points
for each wrong prediction, and gain the maximum number of points for each correct
prediction. This number turned out to be L(y∗, ŷ0) = 19.19—this is the worst score
that you could get in the competition.

• All 0.5 Benchmark: This is the “coin flip” benchmark where one chooses ŷ0.5 = 0.5
for each game. One will lose the same amount of points on each game (ln(0.5) ≈
0.693). Thus, L(y∗, ŷ0.5) = 0.693.
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j Model β̂ j 95% CI for β j exp(β̂ j) 95% CI for exp(β j)

0 Intercept -4.41 [-5.37, -3.45] 0.01 [0.00, 0.03]
1 SVM 0.45 [-0.39, 1.29] 1.57 [0.68, 3.63]
2 Naive Bayes 0.54 [0.01, 1.07] 1.72 [1.01, 2.92]
3 KNN 1.35 [0.38, 2.32] 3.86 [1.46, 10.18]
4 Decision Tree 5.91 [5.27, 6.55] 368.71 [194.42, 699.24]
5 Random Forest 1.40 [0.55, 2.25] 4.06 [1.73, 9.49]
6 ANN -1.24 [-1.81, -0.67] 0.29 [0.16, 0.051]

Table 1: Coefficients from Ensemble Logistic Regression Model. Note the large coefficient
for the decision tree model.

• Seed Benchmark: Denoting the seed benchmark predictions by ŷs, we had L(y∗, ŷs)=
0.600.

Additionally, the mean score L(y∗, ŷ) over all entries ŷ was 0.576, while the median
score was 0.566. One Shining MGF’s winning score was 0.529.

2. Model

Our prediction model was an ensemble method of machine learning predictions based on
team data retrieved from the NCAA website. In the following sections we outline our
approach.

2.1 Ensemble Method

Ensemble methods are commonly used in classification problems. These methods allow
predictions based on different models to be combined, often using a type of voting schema,
to determine one final prediction. The benefit to using an ensemble method is that we can
leverage the information gleaned from different methods, combining the benefits from each
method while hopefully negating or minimizing the flaws in each. Ensemble methods have
been used to combine predictions from different machine learning techniques in order to
increase stability and to more accurately classify test cases (Dietterich, 2000). The combi-
nation of methods can also reduce the variance of the predictions as they are less sensitive
to irregularities in a training set (Valentini, 2003).

The most basic ensemble method is to average the results from a set of predictions. In
this way, an ensemble method can avoid extreme predictions. Ideally, we want to assign
optimal weights to each group of predictions.

In order to ensure that our predictions were in (0,1), we fit a logistic regression model
where each explanatory variable is a prediction from one machine learning technique, and
the response is the binary outcome.

Our model takes the form:

yi(A,B) =
1

1+ e−
(

β0+β1·ŷ
(1)
i (A,B)+···+β6·ŷ

(6)
i (A,B)+εi

) ,
where each ŷ( j)

i (A,B) is a prediction from machine learning technique j for the proba-
bility that team A beats team B in game i. The fitted coefficients β̂ j’s are the optimal weights
yielded by the logistic regression model. These estimates and 95% confidence intervals for
them are shown in Table 1.
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Team A Team B ŷi ŷ(1)i ŷ(2)i ŷ(3)i ŷ(4)i ŷ(5)i ŷ(6)i
Dayton Ohio State 0.73 0.51 0.13 0.71 0.71 0.19 0.27

Stephen F. Austin VCU 0.96 0.94 0.56 1.00 0.87 0.54 0.27

Table 2: Example of Model Predictions for Dayton vs. Ohio State and Stephen F. Austin
vs. Virginia Commonwealth University

For example, consider the games between Dayton and Ohio State and also Stephen F.
Austin and VCU (which actually occurred in the Round of 64). The final and component
predictions generated by our model are shown in Table 2. We can see that we were more
confident that Stephen F. Austin was going to beat VCU than we were about Dayton beating
Ohio State. This is due to the difference in the decision tree prediction (ŷ( j)

i ) and the very
high confidence in the SVM and KNN predictions.

2.2 Data

Each machine learning technique was trained on historic team data from the past five sea-
sons of NCAA tournament games. Let X = (x1,x2, . . . ,xp) be the matrix of data inputs,
where each row corresponds to one game and each column records the difference in a sin-
gle statistic x`, for `= 1, . . . , p, over the course of the season for the two teams in that game.
Then each of the ŷ( j) was trained on input X .

Kaggle provided regular season wins, losses, point differences, dates, and game loca-
tions (home/away) as well as tournament wins, losses, point differences, seeds, and dates
of games. We collected additional team data from the NCAA (2014) and from a team rank-
ings website (Greenfield, 2014). Extra data for seasons earlier than the past five years was
not accessible via our web scraping methods, and some teams had missing data for some
of the variables. This limited our training set, which required complete cases, and our use
of all of the data provided by Kaggle, as we could only use the subset of the historical data
provided that corresponded to the time period of data that we collected.

Additional Data Collected

Rebound Margin Assists Per Game
Blocked Shots Per Game Difference in Steals Per Game
Turnover Margin Assist-Turnover Ratio
Field Goal Percentage Field Goal Percentage Defense
Three Point Field Goals Per Game Three Point Field Goal Percentage
Free-Throw Percentage Team Ratings Power Index (RPI)
Difference in Conference RPI

2.2.1 Ranking

We included two other factors in our model, team and conference rankings, using the
PageRank algorithm. PageRank was initially used to improve the efficiency of search
queries on the Internet (Page, Brin, Motwani, and Winograd, 1999).

Briefly, webpages are represented by nodes in a graph with directed edges connecting
nodes if a link to one website exists on another. Thus, if webpage A has a web link that
directs the user to webpage B, the associated graph has a directed edge from node A to node
B. The edges are weighted with respect to how many incoming edges a node possesses.
These ideas can be further extended to other fields, in particular, to sports.
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Ranking basketball teams is analogous to ranking webpages. The associated graph
would have nodes representing basketball teams and directed edges between teams that
have played each other with the edge directed towards the winning team (Govan, Meyer,
and Albright, 2008). The edges are weighted based on point differentials during regular
season games.

The weighted adjacency matrix is then adapted by dividing each value in the matrix
by the sum of every element in the matrix (sum of point differentials for every game) to
make a transition matrix for a Markov process. By multiplying the transition matrix and a
starting vector, with the number of rows equal to the number of columns in the transition
matrix and with each entry being the reciprocal of the number of columns, one can repeat
the multiplication by the transition matrix to produce a stationary result that represents the
steady-state value of each row (team). These values can then be ranked to create a team
ranking.

In this way the teams are ranked based on the total weights on incoming edges. A
dominant team will have many edges entering its node, with few edges leaving. The edge
weights will contribute to the magnitude of their dominance. The resulting team and con-
ference rankings were used as inputs in our model.

2.3 Machine Learning

For reasons illustrated above, we wanted to use many different machine learning tech-
niques and leverage them against one another so that we would gain the benefits from each
and hopefully mitigate the weaknesses of each. We used Support Vector Machines, Naive
Bayes, k-Nearest Neighbor, Decision Trees, Random Forests, and Artificial Neural Net-
works. In what follows we give a brief overview of these techniques. Readers seeking
further clarity should consult Tan, Steinbach, and Kumar (2006) or Hastie, Tibshirani, and
Friedman (2009).

2.3.1 Support Vector Machines

Each game in the training set X has a series of characteristics based on the difference
in team statistics and a label yi (win or loss). These can be plotted in a p-dimensional
Euclidean space. The support vector machine then finds the hyperplanes w ·X −b = 1 and
w ·X = 0 with the greatest distance between them that partitions the space such that wins
and losses are separated (where w is the normal vector to the plane and ||w||b is the offset of
the hyperplane from the origin along w (Burges, 1998)). To obtain probabilities, a logistic
model is fit to the decision values for each binary classifier (Platt, 1999).

Let the output of an SVM be f (X). Then

ŷ(1)i (A,B) = Pr(yi = 1| f (X)) =
1

1+ exp(Q · f (X)+V )
,

where Q and V are parameters chosen through maximum likelihood estimation from a
training set made up of coordinates ( f (X)i,yi).

2.3.2 Naive Bayes

This method is based on Bayes Theorem:

Pr(X |Y ) = Pr(Y |X) ·Pr(X)

Pr(Y )
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Given a matrix of attributes X we want to predict the label or class y for each row in
X . This method works to maximize Pr(y|X) by choosing y = ŷ that maximizes Pr(X |y).
To determine this, we assume that the attributes are independent (a dubious assumption) so
that we can use Pr(X |ŷ) = Pr(x1|ŷ) ·Pr(x2|ŷ) · · ·Pr(xp|ŷ) (where x` is the `th column of X)
which can be determined from the data (Manning, Raghavan, and Schütze, 2008).

ŷ(2)i (A,B) = Pr(yi = 1|X1,X2, ...Xp)

=
1

Pr(X1, ...,Xp)
·Pr(yi = 1) ·∏

`

Pr(X` = x`|yi = 1)

2.3.3 k-Nearest Neighbor

This method uses the same beginning framework as the support vector machine. We still
have each training set game labeled according to the difference in team statistics. For each
new game lacking a label, we can obtain all of the same difference statistics. Then, the
labeled points closest in Euclidean space to the new point, “vote” to determine the label of
the new game. For example, if 3 out of 5 nearest neighbors are winners, then the new point
will be assigned to be a winner, or given a 0.6 probability of winning.

Given a candidate game xi ∈Rp, find the k observations in X that are closest to xi in Eu-
clidean distance. Let (z1, . . . ,zk) be this set of observations, and y1, . . . ,yk the corresponding
outcomes. Then the k-Nearest Neighbor prediction is:

ŷ(3)i (A,B) =
1
k
·

k

∑
j=1

y j .

2.3.4 Decision Tree and Random Forest

Decision trees split a data set using a set of binary rules that make up the branches of the
tree. Sets further down in the tree contain increasingly similar class labels. The objec-
tives are to produce the purest sets possible and to be able to classify any object based on
comparison of features to the rules in the tree.

A random forest is a bootstrap of the decision tree. Like in the standard bootstrap
method, the available training data can be resampled to build many different decision
trees (Efron, 1979). Additionally, the random forest method takes a random subset of avail-
able predictors to build its new decision tree. By resampling both the cases and the input
variables, many decision trees are grown. Final classification decisions are made based on
a majority rule of the many decision trees.

Given a decision tree with height k, let Pr(rd) be the probability associated with node d
on branch path r. Then the probability of success for a new case is:

ŷ(4)i (A,B) = ∏
d

Pr(rd).

For the random forest of m trees where Pr(r(d, j)) is the probability associated with node
d on branch path r on decision tree j, the probability of success for a new case is:

ŷ(5)i (A,B) =
1
m ∑

j
∏

d
Pr(r(d, j)).
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2.3.5 Artificial Neural Networks

The artificial neural networks model was inspired by biological neural networks. An ANN
model contains nodes connected with directed links as neurons in the brain are connected
by axons. The algorithm has input nodes representing the attributes (dataset variables) and
output nodes, which is the model output. In between, there are intermediate nodes and
links which define the strength of the connection between the input and output nodes. The
algorithm determines the optimal weights needed to characterize each strength.

Intermediate nodes Z = (Z1, ...Zm) are derived from linear combinations of the inputs:

Zm = σ(α0m +α
T
m ·X) ,

where the α’s are the optimal weights for the strength of each node and σ(v) is the sigmoid
function: 1

1+e−v .
The inputs then pass through these intermediate nodes via the following function:

T = β0 +β
T
1 ·Z

where the β ’s are another set of optimal weights.
Finally the probability of a success Pr(y = 1) in a binomial setting is (Hastie et al.,

2009):

ŷ(6)i (A,B) = f (X) = T.

3. Results

3.1 Results on Historical Data

We were able to produce predictions that had a smaller log-loss than the three benchmarks
set by Kaggle in the first stage. We were in the top 10 of the Kaggle competition for a
portion of the competition, and we finished in the top 25 in this stage. Our L(y, ŷ) was
0.377, where here the outcome vector y was based on known historical tournament results.

3.2 Results on the 2014 NCAA Championship Tournament

We were less successful in the second stage. Disappointingly, we were not able to surpass
the coin flip or seed difference benchmarks. We finished in 216th place with a log loss
score of L(y∗, ŷ) = 0.865. However, we are able to tweak our model to surpass the coin flip
and seed benchmarks after the fact (see Discussion) which would have placed us in the top
125.

To illustrate which teams had the best chance of winning the tournament based on
our predictions, we simulated 1000 random tournaments using ŷ as probabilities. Table 4
shows the top ten most likely champions and the number of Final Four appearances of these
teams. We note that in this “Year of Upsets”, many top-seeded teams which we predicted
to fare well were eliminated in the early rounds of the tournament. A complete bracket
showing how our predictions fared in the actual tournament is shown in Figure 1. Note that
the eventual champion UConn had very poor odds of winning the tournament under our
predictions, since we had 95% confidence that Villanova would beat them in the Round of
32.

Nevertheless, we predicted 41 out of 66 games correctly, and we were particularly
strong in the South and East where we predicted 25 out of 33 games correctly. We predicted
several upsets correctly, including Dayton’s run to the Elite Eight and Steven F. Austin over
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Team 1 Name Team 1 Seed Team 2 Name Team 2 Seed Prediction Point Difference Log-Loss
New Mexico 7 Stanford 10 0.98 -5 3.85
Massachusetts 6 Tennessee 11 0.97 -19 3.59
Kansas 2 Stanford 10 0.97 -3 3.48
Connecticut 7 Villanova 2 0.05 12 3.09
New Mexico State 13 San Diego State 4 0.95 -4 2.95
NC State 12 Xavier 12 0.07 15 2.72
Mercer 14 Tennessee 11 0.90 -20 2.35
NC State 12 Saint Louis 5 0.90 -3 2.31
Arizona State 10 Texas 7 0.86 -2 1.97
BYU 10 Oregon 7 0.84 -19 1.81
Iowa 12 Tennessee 12 0.82 -13 1.73
Connecticut 7 Florida 1 0.18 10 1.71
Duke 3 Mercer 14 0.80 -7 1.61
N. Dakota State 12 San Diego State 4 0.80 -19 1.60
Kentucky 8 Michigan 2 0.21 3 1.54
Kentucky 8 Wichita State 1 0.23 2 1.48
Kentucky 8 Louisville 4 0.23 5 1.46
Baylor 6 Wisconsin 2 0.76 -17 1.43
Cincinnati 5 Harvard 12 0.75 -4 1.40
N. Dakota State 12 Oklahoma 5 0.25 5 1.39
Albany 16 Mt. St. Mary’s 16 0.25 7 1.38
Memphis 8 Virginia 1 0.72 -18 1.28
Oregon 7 Wisconsin 2 0.72 -8 1.27
Connecticut 7 Michigan State 4 0.38 6 0.97
Colorado 8 Pittsburgh 9 0.50 -29 0.70
Tulsa 13 UCLA 4 0.45 -17 0.60
Kentucky 8 Wisconsin 2 0.56 1 0.58
Michigan 2 Wofford 15 0.56 17 0.57
Arizona 1 Weber State 16 0.62 9 0.47
Arizona 1 Wisconsin 2 0.38 -1 0.47
Iowa State 3 North Carolina 6 0.63 2 0.46
Baylor 6 Nebraska 11 0.67 14 0.40
Harvard 12 Michigan State 4 0.32 -7 0.39
Stephen F. Austin 12 UCLA 4 0.27 -17 0.32
Baylor 6 Creighton 3 0.27 30 0.31
Dayton 11 Ohio State 5 0.73 1 0.31
Iowa State 3 NC Central 14 0.73 18 0.31
George Washington 9 Memphis 8 0.24 -5 0.28
Dayton 11 Syracuse 3 0.76 2 0.27
Kansas State 9 Kentucky 8 0.22 -7 0.25
Louisville 4 Manhattan 13 0.78 7 0.25
Delaware 13 Michigan State 4 0.19 -15 0.21
Arizona 1 Gonzaga 8 0.83 23 0.18
Connecticut 7 Iowa State 3 0.86 5 0.15
Michigan State 4 Virginia 1 0.87 2 0.14
Cal Poly 16 Wichita State 1 0.11 -27 0.11
Albany 16 Florida 1 0.11 -12 0.11
Dayton 11 Stanford 10 0.91 10 0.09
North Carolina 5 Providence 11 0.93 2 0.07
Louisville 4 Saint Louis 5 0.94 15 0.07
Eastern Kentucky 15 Kansas 2 0.06 -11 0.06
American 15 Wisconsin 2 0.06 -40 0.06
Florida 1 UCLA 4 0.95 11 0.05
Cal Poly 16 Texas Southern 16 0.95 12 0.05
Coastal Carolina 16 Virginia 1 0.05 -11 0.05
Dayton 11 Florida 1 0.04 -10 0.04
Villanova 2 Milwaukee 15 0.96 20 0.04
Stephen F. Austin 12 VCU 5 0.96 2 0.04
Arizona 1 San Diego State 4 0.96 6 0.04
Connecticut 7 St. Joseph’s 10 0.97 8 0.03
Syracuse 3 Western Michigan 14 0.97 24 0.03
Michigan 2 Tennessee 11 0.97 2 0.03
Creighton 3 La. Lafayette 14 0.97 10 0.03
Gonzaga 8 Oklahoma State 9 0.97 8 0.03
Florida 1 Pittsburgh 9 0.97 16 0.03
Michigan 2 Texas 7 0.98 14 0.02

Table 3: Complete Results for our submission. The Prediction column is our proposed
probability that Team 1 would beat Team 2 (ŷ), and the point differential is given from
Team 1’s perspective. Note the coin flip benchmark was 0.693.
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Figure 1: 2014 Bracket Predictions: The probabilities shown are the probability that we
gave to the winner. A number in red indicates where we were wrong, and a number in green
indicates where we were right. Note that UConn’s path is blocked by Villanova, which we
had as heavy favorites to beat them in the Round of 32.
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Seed Region Team Champions Final Four Actual Finish
1 South Florida 312 499 Final Four
2 South Kansas 176 383 Round of 32
2 East Villanova 105 239 Round of 32
1 Midwest Wichita State 98 349 Round of 32
1 West Arizona 79 360 Elite Eight
3 Midwest Duke 45 248 Round of 64
3 East Iowa State 39 282 Sweet Sixteen
4 Midwest Louisville 31 170 Sweet Sixteen
3 West Creighton 18 337 Round of 32
4 East Michigan State 14 200 Elite Eight

Table 4: Top 10 Teams by Championship Wins and Final Four appearances in 1000 simu-
lated tournaments using our predictions.

Round N L Cumulative L maxLi minLi

1 4 1.47 1.47 2.72 0.05
2 32 0.81 0.88 3.85 0.03
3 16 1.04 0.93 3.48 0.02
4 8 0.42 0.86 1.46 0.03
5 4 0.76 0.86 1.54 0.04
6 2 1.14 0.87 1.71 0.58
7 1 1.40 0.87 1.40 1.40

Table 5: Log-Loss Score by Round. Note that we did quite well in Round 4, but were
otherwise bested by the coin flip benchmark in all other rounds.

VCU (Felt, 2014). We also placed a more conservative probability that Duke would beat
Mercer at only 0.8. However, we had 23 games on which we lost more than one point (of
L), and on 8 of these games we lost over 2 points. We can see in Table 3 that we were not
expecting Stanford, Kentucky, or Connecticut to perform as well as they did, and our high
hopes for UMass, Kansas, and NC State were dashed.

In Table 5 we show our progress throughout the tournament. Our best round was the
fourth, and our worst was the initial play-in round.

4. Discussion

Although our model predicted 61% of the 2014 NCAA Championship games correctly, it
made many damaging mistakes. Our performance could have been hindered by overfitting,
an overly complex model, or an overlooked trend, among other things.

4.1 Overfitting and Smoothing

The heavy influence of the decision tree on our model, coupled with the good results on the
past tournaments, but poor results on the actual tournament, suggests that our model was
overfit to the historical data. Another possibility is that the decision tree produced only a
small number of unique values of ŷ(4) due to sparsity at the leaves.

Many of the ŷ(4) values are very extreme, and due to the size of the decision tree (max-
imum height of 8), the sample size at each leaf is small. Our training set X has 329 rows
representing the 329 complete-case games, so with these spread out among about 20 leaves,
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the average leaf contains relatively few observations. Chawla (2006) recommends smooth-
ing and bagging the leaves in this event, and presents two approaches:

• Laplacian smoothing: At each leaf, set the prediction equal to:

T P+1
T P+FP+2

,

where T P is the number of true positives that end up here from the training set, FP
is the number of false positives that end up here from the training set.

• m-estimate: Here the prediction becomes

T P+b ·m
T P+FP+m

,

where b is the prior estimate of the positive class (here: b = 0.5) and m is a parameter
to control the shift towards b. Chawla (2006) recommends b ·m = 10.

Using these modifications, we were able to reduce our log-loss score to 0.596, which
was just above the seed benchmark (0.6), and represented a a large jump from our actual
Kaggle score of 0.854. We obtained similar results using bagging.

4.2 Residual Analysis

We were badly hurt by a few games in which we had false confidence in the losing team.
Some of these games were close (e.g. Arizona State lost to Texas by two points on a buzzer-
beater) and may be attributed to bad luck, but others were not (e.g. we thought UMass had
a 97% chance to beat Tennessee, but they lost by 19 points). Unfortunately, we were not
able to detect any obvious trends in these large deviance games.

4.3 The Role of Chance

To assess the extent of our bad luck vs. bad predictions, we generated a sampling distri-
bution for L(y|ŷ) by simulating 1000 random tournaments. If we operate under the null
hypothesis that our predictions are the true probabilities (i.e. H0 : y = ŷ), then we can deter-
mine how likely our log-loss score of 0.854 from the actual tournament was. Unfortunately,
this value falls in the far right tail of the distribution of the log-loss obtained from the sim-
ulation (see Figure 2). Therefore we must reject the null hypothesis that our predictions
were accurate.

We repeated this procedure for One Shining MGF’s predictions ŷmg f (i.e. H0 : y= ŷmg f ).
When we do this, we find that their log-loss score of 0.529 falls nicely in the middle of the
distribution, providing no evidence against the null hypothesis that their predictions are
correct.

Note, however, that had we been correct, our log-loss would have been smaller than
that of One Shining MGF. This reflects our success in Stage One of the competition.

Under this same procedure, the log-loss score of the seed benchmark (0.600) remains
within the acceptance region. We fail to reject the null hypothesis that the seed benchmark
probabilities are correct. However, it makes sense that the log-loss score falls to the right of
the center in light of the large number of upsets that occurred during this year’s tournament.
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Figure 3: Comparison of Our Predictions to One Shining MGF’s. Games in which we
agreed are shown are circles, and games for which we disagreed are shown as squares. If
our prediction was accurate, then the mark is filled in.
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4.4 Comparison to the Winner’s Predictions

In Figure 3, we compare our predictions to those of One Shining MGF and see significant
differences. Many of our predictions were higher than the respective predictions of the
winning team (more points to the right of the 45 degree line than the left). There were 10
games that we both got wrong and 38 that we both got right. There were 14 games that
the winning team predicted right and we predicted wrong while there were 6 games that
we predicted right that the winning team did not. The average log-loss per category can be
found in Table 6. We note that when we were correct, our Log-Loss scores were better than
One Shining MGF’s, but when we were incorrect, our scores were much worse than theirs
when they were incorrect.

Our Average Log-Loss OSMGF’s Average Log-Loss
Both Correct 0.19 0.26
Both Wrong 2.32 1.12

OSMGF Right 1.72 0.42
Us Right 0.24 1.15

Table 6: Average Log-Loss Score by Category. Note that we did better on average in the
games where we were both right.

5. Future Work

In future work, inclusion of recent data could improve our results and lead to fewer games
with a large log-loss. We did have access to the 2013–2014 regular season data, however,
we chose not to include it in the model. Our perspective was that tournament games,
which are played on a neutral court on a regular schedule, are importantly different than
regular-season games, where factors like home-court advantage have a strong influence.
Furthermore, information from regular-season games appears in the training set through
the seeds, RPI, and other seasonal aggregate measures. In light of our performance, this
perspective many need revision. Access to other statistics that are not averaged over the
season might also provide more accuracy.
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