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Abstract 
The performances of the recently proposed 3pod sensitivity test design of Wu and Tian 

(2014), along with variations of the 3pod design, were compared to the original Neyer D-

Optimality design (1994) used in the SenTest software through multiple simulated runs of 

different sizes, combinations of initial test parameters, and variations of test designs. 

Three performance metrics were used to evaluate the first two phases of the designs: 

percentage of tests without a zone of mixed responses (“wasted runs”), and the Mean 

Squared (truncated) Errors of both the mean and standard deviation. There was no overall 

design that had the best measure of performance for all metrics, sample size, or for all 

sets of test parameters. Designs that performed the best by one metric were not always 

the best when evaluated against other measures; designs that performed the best in some 

sets of test parameters performed worse in others. While there was little difference 

between various test designs for most sets of test parameters, there was a marked 

decrease in efficiency for the initial stage or sub phase of Wu and Tian when compared 

with the Neyer D-Optimal for test parameters substantially different from the underlying 

population. Additional simulation was conducted comparing various methods for extreme 

quantile estimation. The simulation showed that the c-optimal approach in the SenTest 

software yielded estimates with smaller MSE than the other designs studied. 
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1. Introduction 
 

Sensitivity tests are often used to estimate the parameters associated with latent 

continuous variables that cannot be measured. A typical application is determining the 

initiation characteristics of a hot-wire initiator used in an automotive air bag inflator. The 

initiator functions when current is applied to the wire embedded in energetic material. 

Current through the wire causes it to heat, and thus heat the energetic material close to 

the wire to its ignition temperature. Each initiator is assumed to have a critical initiation 

current level or threshold. Currents larger than this threshold level will cause the 

individual initiator to start the reaction to deploy the air bag (often called a success or 

response), while currents below this threshold will not lead to the initiator functioning 

(often called a failure or no response). Repeated testing of any initiator is not possible; a 

current that is not sufficient to cause initiation will nevertheless often cause a change in 

the interface between the wire and energetic material. To measure the probability of 

response, samples are tested at various current levels, and the reaction or lack thereof is 

noted. 

 

The efficiency of a sensitivity test for providing estimates of the population parameters, 

or for providing estimates of extreme levels is a function of the algorithm used to pick the 

test levels. The population parameters estimates are often determined by computing 

Maximum Likelihood Estimates (MLEs) of the population parameters. Silvapulle (1981) 
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showed that unique Maximum Likelihood Estimates (MLEs) will be obtained only if the 

successes and failures overlap; that is, the smallest success is smaller than the largest 

failure. Some of the earliest methods, such as the up-and-down or Bruceton method 

(Dixon and Mood, 1948) were designed, in the days before electronic calculators were 

available, to make estimates of the population parameters and their confidence intervals 

easier to calculate. Other methods, such as the Neyer D-Optimality design (often called 

the Neyer test and used in SenTest software) (Neyer, 1994) and the Three-phase Optimal 

Design of Sensitivity Experiments (dubbed 3pod) (Wu and Tian, 2014) were designed to 

provide efficient estimates, either of the population parameters, or of extreme levels. 

Both of these tests utilize an initial phase to yield unique MLEs of the parameters, and 

then use a D-Optimality approach to refine these estimates. As was shown by Banerjee 

(1980), a test method which concentrates the test levels near to the two D-Optimal points 

of approximately µ ± 1.1381 σ will yield statistics with variations that approach 

σ
2
/(0.392N) for µ and σ

2
/(0.507N) for σ, where N is the sample size. 

 

Many other test methods, too numerous to mention here, have been adopted in the past. 

The reader is directed to consult the references in this paper for discussions of other 

methods. 

 

This paper discusses recent simulation conducted on the Neyer test (Neyer, 1994) and the 

3pod test (Wu and Tian, 2014). Wu and Tian compared these two methods, along with 

the Bruceton method. Their study was divided into two parts, an initial study to determine 

how often each of these three test methods yielded “successful” results. Quoting from Wu 

and Tian (2014) we have “A sequential experimental run of size n is called successful if 

its data satisfy the overlapping pattern in eq. (5). If not, it is said to be wasted.” The 

simulation consisted of conducting runs until there were 1000 successful runs. Their table 

2 shows that under some conditions, there were many more wasted runs than successful 

runs for the Up-and-Down test, many wasted runs for the Neyer (1994) test as well, but 

few wasted runs for the 3pod test method. The large number of wasted runs reported in 

Wu and Tian (2014) for the Neyer test (1994) has been briefly discussed in a paper (Ray, 

Roediger, and Neyer, 2014) which is summarized in the following paragraph. 

 

Unfortunately, the algorithm that Wu and Tian used to represent the Neyer test is not the 

same one illustrated in the flow chart in the original paper (Neyer, 1994), nor the 

simulation conducted to demonstrate the results, nor does it correspond to the algorithm 

coded into SenTest
TM, 1

 and earlier Optimal
TM

 that have been in use in multiple 

laboratories. The confusion may have been caused by the wording in Neyer (1994), 

which could be interpreted differently than the flow chart. “Once at least one success and 

failure have been obtained, a binary search is performed until the difference between the 

lowest success and highest failure is less than the estimate for sigma.” would have been 

better stated as “Once at least one success and failure have been obtained, a binary search 

is performed whenever the difference between the lowest success and highest failure is 

less than or equal to the (possibly revised) guess for sigma.” This paper focuses on 

comparing the Neyer test (the version represented by the flow chart and used in the 

SenTest software, hereafter called SenTest) and 3pod algorithms. The comparison was 

similar to that conducted in the first part of the Wu and Tian (2014) simulation study to 

determine the number of wasted runs, but is expanded to include more test conditions. 

Additional simulation was conducted comparing the various methods for extreme 

                                                 
1
 SenTest is sold by Neyer Software LLC. 
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quantile estimation. The simulation showed that the c-optimal approach yielded estimates 

with smaller MSE. 

 

2. Comparison of the Neyer SenTest and 3pod test methods 

 
As will be shown in the following discussion, the first two phases of the SenTest and 

3pod algorithms are similar in many ways. Both of the algorithms can be described using 

the terms shown in Table 1. Most of the terms are identical in both Neyer (1994) and Wu 

and Tian (2014). 

 

Table 1: List of common definitions 

 

Term Description 

µmin Experimenter’s guess for the Lower limit of the mean 

µmax Experimenter’s guess for the Upper limit of the mean 

σg Experimenter’s guess for the standard deviation 

xi Test level of sample i 

yi Result of Test i (0 or 1) 

k1 Number of tests with success 

k0 Number of tests with failure 

M0 The largest x value among the yi s with y = 0 

m1 The smallest x value among the yi s with y = 1 

xmax max(x1, x2, …, xn) 

xmin min(x1, x2, …, xn) 

 

The first phase for both tests is an initial search phase. This part of the test is designed to 

find the region where the responses are mixed. Wu and Tian (2014) describe three stages 

or sub phases of phase I in their paper; this work will divide their second stage into two 

different stages. The phases and stages are taken from Wu and Tian (2014). Table 2 

gives a brief description of some of the major differences between the two methods; the 

full explanation of the method requires many pages. The reader is suggested to consult 

the individual papers for the far more detailed explanation of each of the test methods. 

 

3. Discussion of the differences between the SenTest and 3pod test methods 
 

3.1 Stage I1, obtain at least 1 response and 1 no response 
The first stage is designed to find the appropriate experimental range by obtaining at least 

one response and one non-response. 

 

There are two main differences between the I1 stages of the two test methods. The first 

difference is that 3pod picks the first two test levels at the start of the test, whereas 

SenTest picks a single test level based upon the results of all previous test results. Thus, 

3pod has the possibility of achieving a zone of mixed results after testing the first two 

items, with two additional tests to perform if this happens. However, using the 

recommended minimum range for µmax - µmin ≥ 6 σg, these first two test levels would be at 

least 3 σg apart. The highest probability of getting sample 1 to respond and sample 2 to 

not respond would be if the test levels were equidistant from the population mean. In 

such a case when the σg exactly matches population standard deviation, the probability of 

achieving overlap on the first 2 tests is approximately 0.45%. When the range for µmax - 

µmin is larger than the minimum, or if the population standard deviation were smaller than 
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σg, the probability would be even lower. However, if the population standard deviation 

were much larger than σg, the probability approaches 25%. 

 

Table 2: Table 2: Brief description of the differences between the 2 methods 

 

Phase / 

Stage 

Goal / End 

condition 

SenTest (Neyer) 3pod (Wu and Tian) 

I1 Obtain both  

0 & 1 

(k0 & k1 > 0) 

x1= 
�

�
 µmin+ 

�

�
 µmax 

xi+1= max{(µmax + xmax)/2, xmax  

       +2σg, 2 xmax - xmin}  

        until yi+1 = 1 

xi+1= min{(µmin + xmin)/2, xmin  

       -2σg, 2 xmin - xmax}   

        until yi+1 = 0 

Expand test range 

exponentially 

x1= 
�

�
 µmin+ 

�

�
 µmax 

x2= 
�

�
 µmin+ 

�

�
 µmax 

xi+1= µmax +1.5(i-1) σg  

            until yi+1 = 1 

        µmin -1.5(i-1) σg  

            until yi+1 = 0 

Expand test range linearly 

I2(i) 

(b) 

Reduce m1- 

M0 

return to this 

stage when 

σg changes 

Whenever m1- M0 > 1 σg: 

xn+1 = MLE µ (σ free) 

Binary search 

Whenever m1- M0 ≥ 1.5 σg: 

xn+1 = MLE µ (σ fixed @ σg) 

I2(i) 

(c,d) 

Achieve 

overlap 

m1< M0 

xn+1 = D Optimal point using 

σg for σ. Set σg = 0.8 σg and re-

enter I2(i)(b) if no overlap. 

xn+1 = m1 + 0.3 σg (k0 > k1) or 

xn+1 = M0 + 0.3 σg (k0 ≤ k1) 

Use other one if no overlap. 

Set σg = 
�

�
 σg and re-enter 

I2(i)(b) if no overlap 

I3 Enhance 

overlap 

Not applicable Test one item at (M0 + m1)/2 

or two items at (M0 + m1)/2 ± 

σg   

II D-optimality Choose level which 

maximizes determinant of 

Fisher information matrix 

Choose level which 

maximizes determinant of 

Fisher information matrix 

 
The second main difference is in the algorithm used to expand the search region when the 

first few test levels result in all responses or all no responses. Consider the case that the 

first 2 test results are no responses. The 3pod test would choose x3= µmax +1.5 σg, x4= µmax 

+3 σg, x5= µmax + 4.5 σg, and so on, increasing the test range linearly (after the first 2 

tests) with the test number until a response is achieved. The SenTest method would 

choose x2 = 
�

�
 µmin + 

�

�
 µmax, x3 = µmax, x4 = 2 µmax - µmin, increasing the test range 

exponentially with the number of tests until a response is achieved. The SenTest initial 

search phase was designed to efficiently obtain both responses and non-responses if the 

parameter guesses are close to the population parameters, while also ensuring that the 

algorithm finds both responses and non-responses when the parameter guesses differ 

from the population by orders of magnitude. 

 

The SenTest stage I1 algorithm would be expected to be completed with fewer samples 

than 3pod when the population mean was well outside the interval [µmin, µmax]. The 

simulation reported later validates this expectation. 
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3.2 Stage I2(i)(b), reduce the separation interval 
This stage is designed to reduce the length of the separation interval [M0, m1] (M0 < m1) 

to less than (or equal to) a specified multiple of σg. This stage is always used in the 

SenTest method, and is used in the 3pod method in all cases except where overlap is 

obtained on the first 2 tests as described above. This stage is unique among the stages in 

that the exit criteria depend on a relative measure instead of absolute criteria; 

furthermore, it can be re-entered after passing the exit criteria when σg is reduced. 

 

There are 2 main differences between the two methods. The 3pod method finds the MLE 

for µ using σ = σg. SenTest uses a binary search. This is equivalent to finding the MLE 

for µ, allowing σ to vary; because the MLE for µ is the middle of the separation interval 

when there is no overlap. When the separation interval is large compared with σg there is 

little difference between the 2 methods. The second difference is that the 3pod method 

may switch to the next stage slightly earlier because it switches at a larger multiple of σg. 

 
3.3 Stage I2(i)(c,d), achieve overlap 

This stage is designed to achieve an overlap interval [m1, M0], where m1< M0; it ends 

when overlap is achieved. SenTest uses the D-Optimal approach of finding the test point 

that maximizes the determinant of the Fisher information matrix, with µ chosen as the 

midpoint of the separation interval and σ set equal to σg. To insure that the algorithm 

achieves overlap, if overlap is not achieved SenTest multiples σg by 0.8, and returns to 

the previous stage, I2(i)(b), to test for the ending condition. 3pod uses an alternate 

approach of testing 0.3 σg outside both limits of the separation interval. If overlap is not 

achieved with either of the two test levels, then 3pod multiples σg by 2/3, and returns to 

the previous stage, I2(i)(b),  to test for the ending condition. 

 

Designs using this 3pod stage would be expected to perform slightly better (worse) than 

SenTest when the guess for σ was significantly larger (smaller) than the population value. 

The simulation reported later validates this expectation. 

 

3.4 Stage I3, enhance the overlapping regions 

This phase is intended to enhance the overlap region by obtaining more points in this 

region. If M0 - m1 ≥ σg, one test is run at (M0 + m1)/2; otherwise tests are run at the 2 

levels (M0 + m1)/2 ± 0.5 σg. SenTest has no corresponding stage. 

 

Designs using this 3pod stage would be expected to perform slightly better (worse) than 

SenTest for estimating the mean (standard deviation) since the test points chosen by this 

design would typically be closer to the mean than the 2 D-Optimal points. There should 

be no difference between designs that use this 3pod stage and those that don’t in the 

determination of wasted runs. The simulation reported later validates these expectations. 

 

4. Simulation Plan 
 

It was relatively easy to incorporate the code to perform a sensitivity test according to the 

3pod method into a previous version of the SenTest software called Optimal. In order to 

determine the effects on efficiency, the 4 stages discussed previously were coded 

separately, with the option to configure the software at run time to incorporate either the 

SenTest or 3pod version of each of the 4 stages. To get the original SenTest, the 

simulation ran the test with the switch “/q0”. To turn on just 3pod stage I1, while keeping 

the rest as SenTest, required the switch “/q1”. 3pod Stage I2(i)(b) alone required the 
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switch “/q2”. To use 3pod as defined with all 4 stages based upon 3pod requires the 

switch “/q15”. Simulation was conducted on all 16 possible combinations of the 4 stages. 

 

The simulation was conducted similarly to the original Neyer (1994) scheme with a given 

sample size and a fixed number of 4000 runs, as opposed to the Wu and Tian (2014) 

approach of conducting tests until there were 1000 runs with an overlap region. The 

larger number of runs (4000 to 1000) was chosen to reduce the statistical variation in the 

results. The population parameters were “fixed” at a mean of 0 and a standard deviation 

of 1. To account for any differences in test efficiency due to the exact position of the 

mean with respect to the test limits, the population mean was changed for each test by a 

mean offset with a uniform distribution between ± 1 σ. Tests were run with different sets 

of the test parameters µmin, µmax, and σg. All of the simulations were run with test 

parameters µmin = µg - 4σg and µmax = µg + 4σg, where µg is the experimenter’s guess for 

the mean, and σg is the experimenter’s guess for the standard deviation. Simulation runs 

were conducted with σg = (
�

�
,
�

�
,
�

�
, 1, 2, 4, 8) σ and µg = µ, as well as σg = 

�

�
 σ and µg = µ + 

(2, 4, 8) σ. The simulation was repeated for each of the designs studied using the same 

threshold values. Threshold files were generated that contained 100 threshold values 

distributed as N(0,1). These threshold files were used by the test software to determine 

the response. Thus, tests with one sample size have the same initial test levels and 

responses as all tests with a smaller sample size. Moreover, the simulation with different 

sets of experimenter guesses and different test designs all used the same set of data. 

 

Three different metrics were used to evaluate the performance of the tests: the percentage 

of time the test failed to yield an overlap (similar to the “wasted runs” in Wu and Tian, 

2014), the Mean Squared (truncated) Error (MStE) of the estimate of the mean, and the 

MStE of the estimate of the standard deviation. Because there are often “wild” estimates 

of the parameters when analyzing tests, especially with small sample sizes, the errors for 

any test were truncated to be no larger than 2 σ (2 since σ = 1) for all of the simulations 

reported in the next section. 

 

Simulation Results 

 

The simulations with 4000 runs showed similar results to the runs of 1000; the only 

difference is that the curves were smoother with the runs of 4000 versus the runs of 1000. 

Thus, the results reported here are mainly of the simulation with 4000 runs. The graphs in 

Figure 1 and Figure 2 show the results of some of the simulations for determining the 

percentage of tests that resulted in no overlap. The other graphs show similar results. In 

most cases, the 3pod design was slightly more efficient at yielding overlap results 

compared with Sentest. The right graph in Figure 1 shows an example of the largest 

advantage of 3pod over SenTest. However, the SenTest design is much more efficient at 

yielding overlap when the experimenter’s guess for the range of the mean is far from the 

population mean, as shown in the right graph of Figure 2. 

 

To test which stage(s) of 3pod were responsible for this behavior, simulations were run 

with the SenTest stage I1 and the rest of the 3pod stages (/Q14) as well as 3pod stage I1 

and the rest of the SenTest stages (/Q01). The simulation clearly showed that the weak 

performance of 3pod for the stage I1 when the mean was far from the experimenter’s 

guess was due to the linear search algorithm of 3pod stage I1 as shown in the right graph 

of Figure 3. The left graph shows one example where the 3pod method (/Q15) was less 

efficient than /Q14. This ranking of wasted runs occurred for almost all of the simulations 
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conducted and for most of the mixtures of SenTest and 3pod stages. The weak 

performance of the 3pod stage I1 was also found when evaluated by the ability to 

estimate the population parameters. 

 

 
Figure 1: Fraction of “wasted runs” when µg = µ and σg = 1 (left), and σg = 8 (right) 

 

 
Figure 2: Fraction of “wasted runs” when σg = 1/8 and µg = µ (left), and µg = µ + 8 σg 

(right) 

 
Figure 3: Fraction of “wasted runs” when µg = µ and σg = 1 (left), and µg = µ + 4 σg 

and σg = 1/8 (right) 
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As will be shown in the following graphs, efficiency in reaching overlap results is not 

strongly correlated with efficiency in determining parameter estimates. The major 

exception is that the designs that perform poorly in finishing stage I1 also perform poorly 

in determining parameter estimates. 

 

The graphs in Figure 4 through Figure 13 show the results of the simulations for 

determining the estimate of the mean and standard deviation for 6 of the 16 test designs 

studied. The 6 designs chosen for the graphs were the 5 best performing test designs plus 

3pod.  The graphs show the results expressed in units of σ
2
 / MStE (µ), and σ

2
 / MStE (σ) 

where MStE is the Mean Squared truncated Error, with a truncation of ± 2 σ. This 

truncation was rarely needed in the data analysis, but would protect against a single wild 

estimate of the parameter. The figures show that when σg ≤ σ, most of the test designs 

yield estimates for µ with greater precision than expected for a D-Optimal test. This can 

be explained by the fact that the estimate for σ is biased towards the low side, resulting in 

testing closer to the mean than the 2 D-Optimal points, which results in greater efficiency 

for estimating the mean at the expense of less efficiency for estimating the standard 

deviation. Except for the cases where the estimated range for the mean is far from the 

actual population mean (see Figure 12 and Figure 13) the efficiency curves of the 16 

variations of test design are all similar, with each design performing the best for some 

combination of population parameter guesses and/or sample size. 

 

 
Figure 4: Efficiency of determining µ (left) & σ (right) when σg = 1/8 

 

 
Figure 5: Efficiency of determining µ (left) & σ (right) when σg = ¼ 
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Figure 6: Efficiency of determining µ (left) & σ (right) when σg = ½ 

 

 
Figure 7: Efficiency of determining µ (left) & σ (right) when σg = 1 

 

 
Figure 8: Efficiency of determining µ (left) & σ (right) when σg = 2 
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Figure 9: Efficiency of determining µ (left) & σ (right) when σg = 4 

 

 
Figure 10: Efficiency of determining µ (left) & σ (right) when σg = 8 

 

 
Figure 11: Efficiency of determining µ (left) & σ (right) when σg = 1/8 & µg = 2 σ 
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Figure 12: Efficiency of determining µ (left) & σ (right) when σg = 1/8 & µg = 4 σ 

 

 
Figure 13: Efficiency of determining µ (left) & σ (right) when σg = 1/8 & µg = 8 σ 
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improvement to the SenTest design. All 16 possible combinations of the 4 stages were 

analyzed to look for the design that was most efficient. The Q00 (SenTest) design was the 

most efficient design for 42 combinations of population estimates and sample sizes 

studied. The next biggest number was 25 for Q02 & Q12. The Q00 (SenTest) design also 

had the highest average Sigma^2/MSE, with an average of 5.5725, Q02 was 2
nd

 with 

5.5477, and Q08 was 3
rd

 with 5.5334. (See Table 3.) The main driver for the improved 

ranking of the Q00 design is the better performance on the estimate for the standard 

deviation. Extreme quantiles depend more on estimates of the standard deviation than the 

mean; the simulation suggests that starting with Q00 (SenTest) instead of Q15 (3pod) 

should provide estimates of extreme quantiles that have smaller MSE. Looking at the 

individual stages, it appears that there was a consistent decrease in efficiency for all 

designs when using 3pod phase I1, and a slight decrease in efficiency when using any of 

the other 3pod phases. In general, the decrease in efficiency was larger the more of the 

3pod stages were used. 
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Table 3: Comparison of the efficiency of the Various Test Designs 

Design Best Design Average Sigma^2/MSE 

  Best Mu Best Sigma Best Total Avg Mu Avg Sigma Avg Total 

Q00 15 27 42 7.1628 3.9821 5.5725 

Q01 1 16 17 6.0896 3.7415 4.9155 

Q02 10 15 25 7.1522 3.9432 5.5477 

Q03 0 16 16 6.1091 3.7435 4.9263 

Q04 6 10 16 7.1901 3.8621 5.5261 

Q05 9 1 10 6.3105 3.6563 4.9834 

Q06 3 15 18 7.1495 3.9140 5.5318 

Q07 0 3 3 6.2066 3.7483 4.9775 

Q08 22 2 24 7.2374 3.8293 5.5334 

Q09 2 1 3 6.1512 3.6188 4.8850 

Q10 7 1 8 7.1849 3.7858 5.4853 

Q11 1 3 4 6.1802 3.5838 4.8820 

Q12 14 11 25 7.1462 3.7551 5.4507 

Q13 17 1 18 6.3200 3.6173 4.9687 

Q14 6 2 8 7.0942 3.7755 5.4348 

Q15 7 1 8 6.2922 3.6645 4.9784 

 

Estimating Extreme Quantiles 
 

A significant portion of the Wu and Tian (2014) paper is devoted to the third and final 

phase of their design which is optimized to provide an efficient estimate of an extreme 

quantile. Such an approach was very briefly discussed in the original D-Optimality paper 

by Neyer (1994), but was not the main focus of that work. SenTest and previously 

Optimal have had the ability to be run optimized for finding a single quantile. 

 

It is relatively easy to modify the D-Optimal algorithm to one designed to find the point 

that maximizes information about a single quantile, say xp, where p represents the 

probability. Maximizing information about xp instead of the determinant of the 

information matrix results in a c-optimal design. For probabilities less extreme than the 

two Sigma-Optimal points (approximately µ ± 1.575 σ, or within the approximate range 

5.8% – 94.2%) c-optimality is achieved by testing at the point estimate. In this case, the 

test design is similar to the MLE recursive method of Wu (1985). Note however, that the 

estimate for xp is computed from the MLE of the population parameters, and not by the 

next stimulus . For more extreme quantiles, c-optimality is achieved by testing at the two 

Sigma-Optimal points, with the ratio of the upper and lower points determined by how 

extreme the level is; this ratio approaches 50% as xp approaches 0 or 1. 

 

Simulation of various designs was conducted to determine their efficiency in estimating 

extreme quantiles. There are several slightly different approaches for this effort. The first 

approach was to use a method similar to that described in Wu and Tian (2014): perform a 

D-optimal design for a fixed quantity, and then to switch to a c-optimal design for the 

remaining samples. Tests conducted to this approach are labeled Neyer D#1-C#2 in Table 

4. The second approach was to perform the phase 1 of the Neyer D-optimal design and 
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then to switch to the c-optimal design instead of the D-optimal design at the start of phase 

II (once overlap occurred). This approach is identified as Neyer P# in Table 4. A third 

approach is to start with the c-optimal approach in stage I2(i)(c,d), testing at the c-optimal 

point computed by using the estimate σg for σ. This approach is identified as Neyer C# in 

Table 4. The final approach is to use the D-Optimal method throughout. Table 4 shows 

the results of the analysis; the data for the 3pod, Wu, and RMJ tests were copied from 

Wu and Tian (2014) with the results for µg = 9, 10, 11 averaged since there was little 

variation between the simulations for different µg. As before, the simulation conducted 

for this paper had a uniform distribution between ± 1 for µg. 

 

Table 4: Comparison of various methods for estimating extreme quantiles. 

     RMSE 

Method D C Total Prob 

Level 

Sigma_g 

= 0.5 

Sigma_g 

= 1.0 

Sigma_g 

= 2.0 

Sigma_g 

= 3.0 

Sigma_g 

= 4.0 

Neyer D40 40 0 40 0.1 0.4379 0.4335 0.4417 0.4550 0.4634 

Neyer D25-C15 25 15 40 0.1 0.3815 0.3691 0.3815 0.3837 0.3881 

Neyer C40   40 0.1 0.3355 0.3346 0.3415 0.3468 0.3567 

Neyer P40   40 0.1 0.3333 0.3307 0.3394 0.3458 0.3569 

3pod (25,15) 25 15 40 0.1 0.4408 0.4511 0.4788 0.4493 0.4514 

Wu   40 0.1 0.4284 0.3643 0.3960 0.4318 0.4800 

RMJ 0 40 40 0.1 0.3043 0.2656 0.3082 0.3576 0.4371 
          

Neyer D60 60 0 60 0.01 0.5358 0.5402 0.5411 0.5517 0.5562 

Neyer D25-C35 25 35 60 0.01 0.4796 0.4715 0.4660 0.4783 0.4817 

Neyer D30-C30 30 30 60 0.01 0.4881 0.4717 0.4731 0.4843 0.4893 

Neyer C60   60 0.01 0.4721 0.4581 0.4776 0.4795 0.4823 

Neyer P60   60 0.01 0.4725 0.4513 0.4628 0.4666 0.4639 

3pod (25, 35) 25 35 60 0.01 0.5549 0.5682 0.5633 0.5028 0.5109 

3pod (30,30) 30 30 60 0.01 0.5791 0.5727 0.5902 0.5502 0.5575 

Wu   60 0.01 1.2803 1.1792 1.7099 1.1916 1.2667 

RMJ 0 60 60 0.01 0.4600 0.4102 0.5875 2.3509 4.9470 
          

Neyer D80 80 0 80 0.001 0.5832 0.5883 0.5721 0.5917 0.5973 

Neyer D25-C55 25 55 80 0.001 0.5127 0.5100 0.5174 0.5077 0.5228 

Neyer D35-C45 35 45 80 0.001 0.5324 0.5164 0.5158 0.5240 0.5290 

Neyer C80   80 0.001 0.5175 0.5007 0.5128 0.5109 0.5182 

Neyer P80   80 0.001 0.5063 0.5083 0.5141 0.5297 0.5294 

3pod (25,55) 25 55 80 0.001 0.7863 0.7909 0.7862 0.6899 0.7425 

3pod (35,45) 35 45 80 0.001 0.8283 0.8077 0.7807 0.7307 0.7527 

Wu   80 0.001 1.3367 1.8104 2.5391 2.0050 2.2416 

RMJ 0 80 80 0.001 0.6964 0.6027 1.4926 5.0104 8.4440 

 

Inspection of Table 4 shows that the Neyer C and P designs had similar efficiency. 

Similarly, the 2 Neyer D-C designs were comparable, with the slightly better 

performance for the design that devoted a larger fraction to the c-optimal design. A 

relative ranking of efficiency would be: 

Neyer P ≈ Neyer C > Neyer D-C > Neyer D > 3pod > Wu 

This ranking is similar for all three extreme levels, except that Wu > Neyer D > 3pod for 

the sample size of 40 and 10% probability level. The RMJ method is not included in this 

ranking since the results depend critically on the starting level. 

There are several reasons for the difference in rankings for this work compared with the 

work of Wu and Tian (2014). The first is that Wu and Tian used a different version of the 

D-optimal test as mentioned earlier in this paper. Second, the work reported in this 
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section uses analysis that depends explicitly on the probability distribution function, 

whereas the 3pod and RMJ methods have no explicit distribution dependence. As will be 

discussed in the next section, the absence of explicit distribution dependence does not 

mean that the results are not extremely dependent on the exact form of the distribution. 

 

Estimating Extreme Quantiles with Relatively Small Sample Sizes 
 

It is difficult to obtain accurate estimates of extreme quantiles that are truly independent 

of both the assumed distribution and the test parameters with only a small sample. There 

are two general sensitivity test approaches that are used to estimate a quantile. Approach 

1 is to assume that the probability of response when tested at test parameter x is M(x), and 

that M(x) is a known cumulative distribution function, one that can be characterized by a 

small number of unknown population parameters. The approach is to conduct tests at 

various levels throughout the distribution to estimate these parameters and thus to be able 

to estimate the probability of response M(x) as a function of x. This is the approach used 

by SenTest for the results in Table 4. The accuracy of the probability response curve or 

the probability at any given point depends critically on the assumed form of M(x). 

 

Approach 2 is to assume that M(x) is an unknown cumulative distribution function whose 

first derivative is known or can be guessed at one particular point xp such that M(xp) = p 

for probability p. Test levels are chosen in the vicinity of the xp, sometimes according to 

the design xn+1 = xn – an(yn – bn), where bn -> p for large n. In many cases the test points 

will cluster around xp, with the result that a good estimate for xp is xn+1. This approach is 

not explicitly distribution dependent; however, the constants an and bn are calculated 

assuming a given distribution. Moreover, the efficiency of these methods depends 

critically on a choice for x1  that is close to the true value, as well as having a sample size 

large enough so that there are a reasonable number of both responses and non-responses 

in the vicinity of xp. The 3pod design uses a mixed approach of starting with a 

distribution specific test designed to provide estimates of the population parameters. The 

starting point for the point estimate search is calculated using this assumed distribution. 

 

Unfortunately, there is no guarantee that the function M(x) is the simple distribution 

function of a few parameters that are the basis of the distribution independence methods. 

Moreover, there is no guarantee that it is distribution function, or even that it is 

monotonic. The response of many engineered products is often governed by several 

parameters with distributions that may be approximated as normal, and thus M(x) may 

appear normal in the center of the distribution. However, most engineered products have 

specific limits for each of these parameters, and it is not unusual to receive material that 

is distributed close to one of these limits. If the cut off parameter is the largest contributor 

to the distribution, the distribution will not resemble a Gaussian. In such a case, there 

may be quite a few parameters required to characterize the distribution. In addition, the 

population could have some units that are defective and will not respond no matter what 

the stimulus is. The percentage of defects is unlikely to be governed by the same set of 

parameters as those that govern the non-defective center of the population. Finally, the 

response physics may change over the region tested, so that a higher stimulus has a 

reduced probability of response. For these reasons, unless the sample size is sufficiently 

large so that there are a number of responses and non-responses in the vicinity of xp, any 

of the test methods will have at least an implicit distribution or experimenter guess 

dependence.  
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While the problem of determining the sample size necessary to provide reasonable 

estimates of an extreme quantile, xp, independent of distribution or experimental 

parameters is difficult to analyze analytically, it is straight forward to analyze the 

opposite case of estimating the probability p of a given extreme level xp. The confidence 

intervals can be calculated exactly. To obtain a 90% confidence interval of size [0.5p to 

1.5p] for probabilities at least as extreme as 0.1, the sample size must be large enough 

that there are at least 10 of each of responses and non-responses. For example, a sample 

size of 10,000 would be required to obtain a ± 50% estimate of the probability p @ 90% 

confidence when p = 0.1%. It is not unreasonable to assume that the sample size needed 

to determine the level xp that has a probability of response of p is at least as large as the 

sample size needed to estimate the probability p if independence of distribution and 

experimental parameters is required. 

 

It is also possible to analyze a slightly different situation. If it were possible to measure 

the threshold for each individual item, then it would be possible to estimate an extreme 

quantile by measuring a large number of parts, and picking the largest value as the 

estimate of the quantile. For example, to determine the 99.9% quantile, we would need a 

sample size of 1000 to obtain an unbiased estimate, and to obtain a 95% confidence level, 

a sample of 2995 would be required (almost 3 times the inverse of the smaller of p and 

q).  In the case of sensitivity testing where there is less information to be gathered by 

testing each item, a multiplier larger than 3 would be expected.  

 

As the two preceding paragraphs suggest, a very large sample would be required to 

reliably estimate extreme quantiles that are independent of distribution and experimental 

parameters. Such large sample sizes are rarely used in practice, with the result that the 

estimate of the quantile is strongly dependent on the initial experimenter’s guess as well 

as the distribution. 
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