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Abstract 

The continuous wavelet transform allows for the estimation of the spectral characteristics 

of a time series as a function of time. We make use of this to employ cross wavelet 

transforms and wavelet coherence analysis in investigating commonalities in the time-
frequency behavior of the eight subcomponents of the CPI. Cross wavelet transforms 

allow for assessment of common power structures across series, while coherence analysis 

is in effect a localized correlation measure that can reveal the strength of co-movements 
of the series over time and frequency and any changes in that strength. The goal is to 

provide a foundation for the development of a weighting scheme across the 

subcomponent series for an alternative measure of core inflation. Rather than dropping 
some of the subcomponents completely to arrive at a core measure, the goal is to extract 

the common frequency components of all of the subcomponent series to develop an index 

based on actual co-movements in all prices over particular time scales. Initial results 

indicate strong correlations between some subcomponents at certain time scales and 
frequencies and less for others, along with significant changes in these over time. 
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1. Introduction 
 

Inflation in the general level of prices in the economy is an important concern of 

economists, as well as of policymakers and the general public. Accurately measuring 
price inflation in a manner useful for tracking the state of the economy and developing 

policy reactions to it is a daunting task and a variety of alternative measures have been 

developed over time in an effort to more closely track trend, or “core”, inflation. These 
measures seek to reduce transitory volatility in prices in order to isolate an underlying 

signal for generating more useful forecasts for determining potential policy actions to be 

undertaken. Core measures of price inflation have come in a variety of forms in the 

literature and have included exclusionary methods, such as leaving the volatile food and 
energy components out of the Consumer Price Index (CPI) – the most well-known 

measure of core inflation – as well as a number of other techniques. These methods have 

included trimmed mean and weighted median measures, as well as measures that make 
use of variance-weighting the index components or using weights based on regression 

coefficients.
1
  

 
In this paper we discuss the preliminary work being done in development of another 

alternative measure that, while similar in context to some of the component smoothing 

measures that have been discussed in the past,
2
 intends to take quite a different approach 

using wavelet methods. The goal of this research is to provide a foundation for the 
development of a weighting scheme across the subcomponent series for an alternative 

measure of core inflation. As the current study developed out of previous work, it is 

useful to first review and discuss that work before getting into the present strand of 
research. 

 

2. Background to current study 

 

The current study is a result of previous work the author has done with Jane Binner and 

Richard Anderson
3
 on a wavelet based measure of core inflation, which was in itself an 

extension of the work done in Anderson et al (2007). The goal of that work was to derive 

an alternative measure of core inflation using wavelet methods as a filtering/denoising 

mechanism. Our extension was intended to wavelet filter the CPI subcomponent indices 

and then reconstruct the All Items Index from these filtered subcomponents. In doing this 

the goal was to develop a core inflation measure that would avoid excluding any of the 

series that go into constructing the overall CPI, thus extracting the underlying signal 

retaining all of the sub-index components. While working on this, we became aware of 

two papers making use of wavelet filtering in their own attempts at developing alternative 

                                                             
1 See Detmeister (2011) and Detmeister (2012) for good discussion of and comparison of the 

effectiveness for forecasting of many different core inflation measures. See also Dolmas and 

Wynne (2008) for discussion of a joint Federal Reserve Bank of Dallas Federal Reserve Bank of 

Cleveland research conference entitled “Price Measurement for Monetary Policy”, as well as 
references to the papers presented at the conference. 
2 Ibid. 
3 Jane Binner is currently Chair of Finance in the Department of Accounting and Finance at the 

University of Birmingham and Richard G. Anderson is recently retired from his position as Vice 

President and Economist at the Federal Reserve Bank of St. Louis. 
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core inflation measures. These were Dowd et al (2011) and Baqaee (2010). As these 

papers used wavelet methods in filtering only the overall price indexes they studied,
4
 we 

were undeterred in our efforts to filter the CPI subcomponents in an effort to improve 

upon the results given in the first of these papers. Before considering our preliminary 

results in this phase of the study, it is worth taking a detour to briefly discuss wavelet 

methods in general. 

 

2.1. Wavelet Analysis 

This discussion follows closely the development in Gencay et al. (2002), chapter 4. The 

familiar Fourier analysis allows the decomposition of a time series into its component 

frequencies using sine and cosine as basis functions. Wavelet analysis is somewhat 

analogous to this, but expands the set of basis functions that are permissible. In addition, 

wavelet analysis allows for decomposition of a time series across both frequency and 

scale, unlike the Fourier transform which only generates frequency components. In this 

way, we are allowed a much richer view of a time series’ dynamics than is obtainable 

using Fourier methods. 

 

A wavelet, ψ(t), is a function of time that satisfies the admissibility condition   
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with Ψ(f) being the Fourier transform of ψ(t). A wavelet is also required to have unit 

energy 
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This means that a wavelet must have non-zero entries, but these cancel each other out 

over the length of the function. Figure 1 gives an example of two wavelet basis functions 

from the same family, known as the “least asymmetric” (LA) family of wavelets.
5
 The 

wavelets shown here are the LA(4) and LA(8) versions, with the number indicating the 

approximate length in time (support) of the non-zero elements of the basis functions. 

Note again that these elements must average to zero for all wavelets. 

 

                                                             
4 While the first of these papers sought to develop a core inflation measure for the U.S. based on 

the CPI, the latter paper focused on New Zealand price level measures in its efforts.  
5 This family is also known as the “symlet” family of wavelet basis functions, although they are 

clearly not perfectly symmetric. 
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Figure 1: Two Wavelet Functions from the Least Assymetric Family, LA(4) and LA(8) 

 

2.1.1 Wavelet Transforms 

A continuous wavelet transform (CWT) of a time series x(t) is a projection of that series 

onto a wavelet function 
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 denoting a wavelet basis function, such as the LA(8), that 

is stretched or compressed by the dilation parameter s and shifted over t = 1, ..., T by the 

shift parameter u. The projection then generates wavelet coefficients that are functions of 

s, representing the scale of the analysis, and u, representing location. A large wavelet 

coefficient indicates high correlation between the shape of the wavelet function and the 

time series at that scale of analysis and particular point in time. The CWT, then, provides 

a complete representation of these coefficients for all values of u and s. This is called a 

decomposition or analysis of the series. The series can then be reconstructed or 

synthesized from the wavelet coefficients by using an inverse transform.  

 

Because the CWT is continuous and retains information on the parameters and 

coefficients at every scale and location, there is a large amount of information generated 

from its application. As it turns out, we can downsample the wavelet coefficients from 

the CWT by using a discrete wavelet transform (DWT). This collects only the minimum 

number of coefficients necessary to exactly reconstruct the initial series, or signal. This 

number will vary by scale of analysis with a critical sampling requiring 2 js  and

2 ju k   , where j and k index the dilations and translations used in the analysis.  

 

The DWT can be expressed in matrix form as an application of the filter and using 

filtering terminology from signal processing. Let x be a vector of length 2JT    (dyadic 

length). Then we can apply the wavelet filter W to obtain W  x , where Wx is the 
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convolution of the matrix DWT filter, W, and the vector time series.
6
 The resulting ω is 

the matrix of wavelet coefficients at each scale j = 1, ..., J, that is 

  1 2 ...
T

J J   ω   

Each j is thus a vector of wavelet coefficients associated with scales of length 

12 j

j
 7

 and νj is a vector of scaling coefficients which just gives the averages over 

scale length 2J
, the length of the series.  

 

2.1.2 Multi-Resolution Analysis 

A multi-resolution analysis (MRA) is an additive decomposition of a time series using 

the DWT to generate the coefficients for different values of the parameters s and u from a 

critical sampling decomposition across time and scale. The wavelet coefficients are then 

used to reconstruct the elements of the signal at each of the different scales of analysis. 

This can be represented 
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where dj is known as the wavelet detail at scale j and J represents the maximum scale 

available given the particular time series being analyzed. Note that dJ+1 is the detail 

associated with νJ in the matrix of wavelet coefficients above and is just equal to the 

sample mean of x. This means that each observation xt is a linear combination of wavelet 

detail coefficients across all scales of analysis. 

 

Table 1: Monthly Frequency Resolution by Detail Level 

 

Level (j) Monthly Frequency Resolution 

1 1 - 2 

2 2 - 4 

3 4 - 8 

4 8 - 16 

5 16 - 32 

6 32 - 64 

 

It is not necessary to do a complete decomposition across all scales. A partial wavelet 

transform can be obtained up to scale JP, s.t. JP < J, which just decreases the number of 

wavelet coefficients in the matrix above and increases the number of scaling coefficients, 

PJ . This idea extends to the MRA as well. We can choose to reconstruct only the details 

we are interested in, leaving something known as a wavelet smooth, or approximation, to 

represent the rest. This is represented as 

                                                             
6 The details of this convolution and the pyramid scheme used to implement it are beyond the 

scope of this article. For references see Gencay et al. (2002), Percival and Walden (2000), and 

Mallat (1989). 
7 This means that for j = 1, the scale is of length 20 = 1 and when j = 2, the scale is of length 21 = 2, 

and so on ... 
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so while jd represents the variability of a time series at each scale j , js is an 

accumulation over the remaining scales that becomes smoother as j J . This leads 

also to the definition of a wavelet rough, 

 
1

j

j k
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r d


  

which sums the lower scale, or high-frequency, details of the time series. Thus we can 

represent x as the decomposition j js r x , although the typical MRA gives a number 

of the low scale details in addition to the wavelet smooth. In fact, in the example that 

follows we will report a partial wavelet transform of the series of interest up to level J = 

6. Instead of the wavelet rough, we report the details at each scale, along with the wavelet 

smooth 6s . In other words, our MRA will be the decomposition 

 6 1 2 3 4 5 6.s d d d d d d      x   

 

Recall that the detail at each level indicates the contribution to the overall variability of 

the series from components with scales of length 
12 j

. Figure 2 indicates this frequency 

resolution for each detail level for the monthly data utilized. The first panel, labeled s is 

the original signal that is then broken out into its time/frequency components. Levels 1 

through 3 correspond with the lower time-scale high-frequency components of the signal, 

from bi-monthly (d1) through roughly semi-annual contributions (d3). The higher scales 

can be thought of as representing lower-frequency contributions over periods from 

roughly annual (d4) through 5-years (d6). The wavelet smooth (a6) is then the sum of 

those components representing variability in the series over scales longer than 2
6
 = 64 

months. Note that this approximation essentially captures the low frequency time trend of 

the series. 
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Figure 2: Multi-Resolution Analysis Example 

   

2.1.3 The MODWT 

While the DWT has many useful properties as is, it also has some limitations that make it 

not always the most desirable form for use in analyzing time series. Two of the main 

drawbacks are the requirement of a dyadic length (power of two) analysis series, 

necessary for the critical sampling to take place, and also the fact that the DWT is not 

shift invariant, essentially meaning that features present in the original time series may 

not line up exactly in the MRA details at every scale.  

 

The Maximal Overlap Discrete Wavelet Transform (MODWT) is a variant of the DWT 

that avoids these drawbacks, although at some cost that we won’t get into here.
8
 The 

main difference with the MODWT is that it does not perform just a critical sampling of 

the CWT wavelet coefficients, but instead retains much more information than is 

absolutely necessary to reconstruct the signal (although not as much as with the CWT). 

This allows us to analyze any length time series. Unlike the DWT, the MODWT is shift 

invariant as well, meaning that features in the original series will be represented at the 

correct point in time in the details of an MRA across all scales of analysis. This makes it 

very useful in detecting breakpoints, since certain types of breaks will show up across all 

                                                             
8 The interested reader is encouraged to investigate these more technical properties of wavelets in 

Gencay et al. (2002) and Percival and Walden (2000). 

JSM 2014 - Business and Economic Statistics Section

4229



scales of analysis and this can help to pinpoint the timing and perhaps nature of a 

particular break. The MODWT is what is used in our initial filtering of the CPI and its 

subcomponent indices. 

 

2.2. Wavelet Filtering of the CPI Subcomponents 

The Dowd et al (2011) paper mentioned above used a version of the MODWT to filter 

the CPI All Items index and found that, depending on the particular basis function used, 

level 4 or level 5 wavelet approximations performed as well or better than alternative 

measures of core inflation, according to testing criteria defined in their paper. Our 

preliminary results can be viewed as a natural extension of their analysis, as we end up 

also using a level 4 approximation to reconstruct the All Items index. 

 

 
Figure 3: Trial Estimates with 36 Filtered Subcomponent Indexes 

 

In our reconstruction of the All Items index using the filtered subcomponents, we use the 

same relative importance multipliers (expenditure weights) as BLS does in their original 

construction of the All Items index. In fact, in our study the version of the All Items 

Index we use we construct initially using the unfiltered subcomponents and their relative 

importance measures. This allows for a more accurate basis of comparison for the filtered 

versions than just relying on the published overall All Items Index.  Below we first give 

the results from filtering 36 subcomponents of the CPI using the MODWT. For this we 

used CPI data spanning from January 1967 to December 1997. Figure 3 provides the 

resulting series from our reconstruction of the All Items Index from these filtered 

subcomponents. We then repeat the exercise using an even finer breakdown by filtering 

190 of the subcomponent indexes before reconstructing the All Items Index. The finer 

level subcomponent data was not available from earlier years, so we used data spanning 

from 1998 to 2008 for this portion of the study. These results are given in Figure 4. Note 
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that the first panel in each set of graphs contains the monthly CPI inflation rate using the 

All Items index. The second panel gives our resulting inflation series from reconstructing 

the All Items index after filtering the subcomponent indexes using the MODWT. The 

third panel indicates the inflation series that results from filtering only the All Items 

index, as done in Dowd et al (2011).  

 

 
Figure 4: Trial Estimates with 190 Filtered Subcomponent Indexes 

 

While slightly smoother series resulted from filtering the subcomponent series and then 

reconstructing the All Items index, in neither case were they sufficiently different from 

the Dowd et al (2011) results to merit pursuing further. Consideration of other 

approaches led to thie current study, intended to determine similarities in movements 

across subcomponent series and construct a core CPI index based on co-movements 

across the subcomponents. While we are still in the initial stages of this alternative 

approach, it is worth sharing some preliminary results as they indicate this may be a 

fruitful avenue of research.  

 

3. Wavelet Coherency Analysis 
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The continuous wavelet transform discussed above allows for the estimation of the 

spectral characteristics of a time series as a function of time.
9
 We make use of this to 

employ cross wavelet transforms and wavelet coherence analysis in investigating 

commonalities in the time-frequency behavior of the eight subcomponents of the CPI. 

Cross wavelet transforms allow for assessment of common power structures across 

series.
10

 Coherency is in effect a localized correlation measure that can reveal the strength 

of co-movements of the series over time and frequency and any changes in that strength.  

 

 
Figure 5: Cross Wavelet Transform and Wavelet Coherency Graphics – All Items vs ??? 

Subcomponent 

 

The goal is to provide a foundation for the development of a weighting scheme across the 

subcomponent series for an alternative measure of core inflation. Figure 5 and Figure 6 

give examples of the cross wavelet transforms and wavelet coherence between some of 

the CPI components analyzed. The top two graphics in each figure show the power 

spectrum of each series individually, indicating the energy of each series and how it 

changes across time and frequency. The cross wavelet transforms exposes regions with 

high common power and further reveals information about the phase relationship 

between the series, with the red areas indicating the highest common power at those 

                                                             
9 See Aguiar and Soares (2011) for an excellent introduction to continuous wavelet transforms and 

the use of the Cross Wavelet Transform and Wavelet Coherence in the analysis of time series data. 

Also see Aguiar-Conrariaa et al (2008), and Aguiar et al (2012) for interesting applications of 
these approaches. Grinsted et al (2004) presents a widely cited early application of these methods 

as well. Some additional applications of note include Sanderson and Fryzlewicz (2007) and Rua 

and Nunes (2009). 
10 In the interest of space we refer the reader to the articles cited above for background details on 

these measures, in particular Aguiar and Soares (2011) and the references cited within.  
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times and frequencies (note the scale to the right of each graph).. The final panel 

indicates the coherency, again with the higher levels of correlation indicated by red.  

 

 
Figure 6: Cross Wavelet Transform and Wavelet Coherency Graphics – Food and 

Beverages component vs Housing Component 

 

4. Conclusion 

 

Rather than dropping some of the subcomponents completely to arrive at a core measure, 

the goal is to extract the common frequency components of all of the subcomponent 

series to develop an index based on actual co-movements in all prices over particular 

time scales. Initial results indicate strong correlations between some subcomponents at 

certain time scales and frequencies and less for others, along with significant changes in 

these over time. 
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