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1 Introduction

In today’s times, Markov Chain Monte Carlo (MCMC) methods have everyday use in
Statistics and other disciplines like Computer Science, Systems Biology and Astronomy.
This technique of generating random samples even from very high dimensional spaces
involving very complicated data likelihoods and posterior distributions has simplified many
pressing real life problems in recent times. In particular, Bayesian computation, simulation
from complex posterior distribution and asymptotics of Bayesian algorithms have benefited
a lot from this mechanism (see Gelfand and Smith [GS90], Tierney [Tie94], Gilks et al
[GS96]). A very standard approach of simulating from multivariate distributions is to
use the Metropolis-Hastings (MH) algorithm [Has70][MRR53] using the random walk
proposal. We refer to such algorithm as the Random Walk Metropolis Hastings (RWMH)
algorithm. The convergence and optimal scaling of this algorithm has been extensively
studied [RGG97]. However, despite the advances, there are certain glaring problems that
one may encounter while using RWMH. For very high dimensional, non-standard target
distributions, choosing the scales optimally is not feasible in practice, and hence, attempts
of jointly updating the parameters using RWMH face serious drop in the acceptance rate,
which, in turn, leads to poor convergence. Methods of adpatively selecting the scales usu-
ally take very large number of iterations to even converge to the optimal scales; particularly
in complex and very high-dimensional situations, this exercise is computationally burden-
some in the extreme. The alternative method of updating the parameters sequentially is not
only computationally burdensome in high-dimensional problems, high posterior correlation
among the parameters usually cause very slow convergence. These issues are discussed in
much detail in [DB13b].

The TMCMC methodology proposed in Dutta and Bhattacharya [DB11] tries to ad-
dress these problems. The methodology uses simple deterministic transformations using
(typically) a single random variable having an appropriately chosen proposal density. In
this paper, we primarily study one version, termed as the Additive TMCMC (ATMCMC)
method, and deal with the ergodic behavior of the chain in high dimensions. Our aim is to
present a comparative study of ATMCMC and the standard RWMH algorithm with respect
to their ergodic behaviors.
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This paper is organized as follows. In Section 2, we present the ATMCMC algorithm
and discuss the intuition behind this algorithm. In Section 3, we discuss some theoretical
results regarding the ergodic behavior of the chain. Section 4 focuses on how to optimally
select the proposal density for the chain when the target density has a product structure.
In Section 5, we present the comparative simulation study of ATMCMC and RWMH and
analyze the results.

2 Algorithm

We first briefly describe how additive TMCMC (ATMCMC) works. We explain it for the
bivariate case – the multivariate extension would analogously follow. Suppose we start at a
point (x1,x2). We generate an ε > 0 from some pre-specified proposal distribution q defined
on R+. Then in additive TMCMC we have the following four possible “move-types”:

(x1,x2)→ (x1 + ε,x2 + ε)

(x1,x2)→ (x1 + ε,x2− ε)

(x1,x2)→ (x1− ε,x2 + ε)

(x1,x2)→ (x1− ε,x2− ε)

(1)

This means we are moving along two lines in each transition from the point (x1,x2), one
parallel to the line y = x and the other parallel to the direction y =−x. Each of the four
transitions described above are indexed as Ik for the kth transition, where k varies from 1
to 4 in the bivariate case, and in general from 1 to 2d in Rd . For simplicity we assume
that the move-types are chosen with equal probability; see Dutta and Bhattacharya [DB11]
for the general case. As with the standard RWMH case, we do attach some probabilities
with accepting/rejecting the proposed move such that the reversibility condition is satisfied
thereby guaranteeing convergence. Formally, the algorithm may be presented as follows.

Algorithm 2.1. Suppose we are at xn = (x1,x2, · · · ,xd) at the nth iteration.

1. Generate ε ∼ g(·) on R+.

2. Select randomly one move type and define

b1,b2, · · · ,bd
iid∼ DiscrUni f{−1,1}

y = (x1 +b1ε,x2 +b2ε, · · · ,bdε) (2)

α(x,ε) = min
{

1,
π(y)
π(xn)

}
(3)

3. Set xn+1 =

{
y with prob. α(xn,ε)
xn with prob. 1−α(xn,ε)

}

Now we intuitively discuss why ATMCMC is a better option compared to the RWMH
algorithm. Firstly, we tested using simulation experiments (all conducted in MATLAB
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Figure 1: Computation time (in MATLAB R2013b) of one run of 100,000 iterations with RWM
and TMCMC algorithms corresponding to dimensions varying from 2 to 50 with target density
being product of N(0,5) and the proposal density for additive TMCMC being T N>0(0,1) (truncated
N(0,1) left truncated at 0) and for RWMH proposal, every component has N(0,1) distribution. It
is observed that TMCMC has consistently less computation time compared to RWM, specially for
higher dimensions.

R2013b) that our algorithm requires less computational time to run compared to RWMH
(see Fig 1).

Secondly, and more importantly, ATMCMC is expected to have much higher acceptance
rate than RWMH. We discuss this as follows.

In a standard RWMH algorithm in d dimensions, we need to generate d many εi’s,
for i ∈ {1,2, · · · ,d}. For simpliicty of illustration, assume that the target density π is the
product density, π = ∏

d
i=1 f () of iid components f . Then the acceptance rule for RWMH

comprises the ratio

π(x+ ε)

π(x)
=

d

∏
i=1

f (xi + εi)

f (xi)
.

If d is very large, then, by chance, we may obtain some very small or large values of
εi ∼ q(·) (note that 5% observations are expected to lie outside the 95% confidence region
and these are the points that are problematic). This would result in certain very small values
of f (xi +εi) for some i and thereby drastically reduce the above ratio. So, the chain has the
problem of remaining stuck at a point for a long time. Note that ATMCMC uses only one ε

to update all the co-ordinates using sign change and this counters the above problem. So, we
can expect a much higher acceptance rate for ATMCMC over the RWMH algorithm. But
there are two pertinent questions here. Firstly, how much can we improve on the RWMH
algorithm in terms of the acceptance rate? Secondly, how would the sample we get using
the ATMCMC method compare to the RWMH algorithm in terms of the convergence of the
iterates to the target density and the mixing among the iterates once the target is attained?
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We address the first issue in Section 4 and the second in Section 5.

3 Ergodic Properties of ATMCMC

In case of Markov chains on discrete spaces, there is a well-established notion of irreducibil-
ity. However, on general state spaces, such a notion no longer works. This is why we define
ψ irreducibility. A Markov chain is said to be ψ-irreducible if there exists a measure ψ

such that
ψ(A)> 0 =⇒ ∃n with Pn(x,A)> 0 ∀x ∈ χ (4)

where χ is the state space of the Markov chain (in our case, it would most often be Rd for
some d). For convergence of the process, we must ensure that it is µ-irreducible, where µ

is the Lebesgue measure. We also need additional concepts of aperiodicity and small sets.
A set E is said to be small if there exists n > 0 , δ > 0 and some measure ν such that

Pn(x, ·)> δν(·) x ∈ E (5)

A chain is called aperiodic if the g.c.d of all such n for Eqn 5 holds, is 1. All
these concepts of µ-irreducibility, aperiodicity and small sets are very important for laying
the basic foundations of stability. The following theorem due to Dutta and Bhattacharya
[DB11] establishes these properties for the ATMCMC chain.

Result 3.1. Let π be a continuous target density which is bounded away from 0 on Rd . Also,
let the proposal density q be positive on all compact sets on R+. Then, every non-empty
bounded set in Rd is small, and this can be used to show that the chain is both λ -irreducible
and aperiodic.

A proof of this result can be found in Dutta and Bhattacharya [DB11], along with a
graphical interpretation; see also Dey and Bhattacharya [DB13a]. In fact, in Dutta and
Bhattacharya [DB11], a stronger result has been proved that for any n > d (d represents
the dimensionality of the state space), the minorization condition is satisfied. From the
monorization condition, λ irreducibility follows trivially. Aperiodicity follows because the
above result is true for all n > d and the g.c.d of such n is 1.

Let P be the transition kernel of a ψ-irreducible, aperiodic Markov chain with the
stationary distribution π . Then the chain is geometrically ergodic if ∃ a function V ≥ 1,
which is finite at least one point, and also constants ρ ∈ (0,1) and M (< ∞), such that

||Pn(x, ·)−π(·)||TV ≤MV (x)ρn ∀n≥ 1, (6)

where ||ν ||TV denotes the total variation norm, defined as

||ν ||TV = sup
g:|g|≤V

ν(g)

Apart from ensuring geometric rate of convergence of the Markov chain, another utility
of geometric ergodicity is that one can apply Central Limit Theorem to a wide class of
functions of the Markov chain, and hence, one can also investigate stability of these ergodic
estimates (see Roberts, Gelman and Gilks [RGG97]). A very standard way of checking
geometric ergodicity is a result that involves the Foster-Lyapunov drift criteria. P is said to
have a geometric drift to a set E if there is a function V ≥ 1, finite for at least one point and
constants λ < 1 and c < ∞ such that
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PV (x)≤ λV (x)+ c1E(x), (7)

where PV (x) =
∫

V (y)P(x,y)dy is the expectation of V after one transition given that one
starts at the point x. Theorems 14.0.1 and 15.0.1 in Meyn and Tweedie [MT93] establish the
fact that if P has a geometric drift to a small set E, then under certain regularity conditions,
P is π-almost everywhere geometric ergodic and the converse is also true.

The first result we present is basically adaptation of a result due to Mengersen and
Tweedie [MT96]. We now show a sufficient condition that would ensure that Eqn 7 holds.

Lemma 3.1. If ∃ V such that V ≥ 1 and finite on bounded support, such that the following
hold:

limsup
|x|→∞

PV (x)
V (x)

< 1 (8)

PV (x)
V (x)

< ∞ ∀x. (9)

Then this V satisfies the geometric drift condition in Eqn 7, and hence the chain must be
geometrically ergodic. Also, if for some V finite, the geometric drift condition is satisfied,
then the above condition must also hold true.

Result 3.2. If π , the target density, is sub-exponential and has contours that are nowhere
piecewise parallel to {x : |x1|= |x2|= · · ·= |xd |}, then the additive TMCMC chain satisfies
geometric drift if and only if

liminf
‖x‖→∞

Q(x,A(x))> 0, (10)

where A(x) denotes the acceptance region when x is updated, and Q(x,A(x)) denotes the
probability of the acceptance region under the ATMCMC proposal distribution associated
with the density q(·) of ε .

A proof of this result is given in Dey and Bhattacharya [DB13a]. A similar result
holds true for the RWMH algorithm as well (see Jarner and Hansen [JH00] and Roberts
and Tweedie [RT96]) except that there we do not need the constraint that the contours
are not piecewise parallel to {x : |x1| = |x2| = · · · = |xd |}, but this is true for most den-
sities we commonly encounter. Even if this condition is not satisfied, we can still show
geometric ergodicity for a modified TMCMC chain with moves from (x1,x2, · · · ,xd) to
(x1+b1c1ε1,x2+b2c2ε2, · · · ,xd +bdcdεd) where ci’s are some positive scalars not all equal.

4 Optimal Scaling of Additive TMCMC

In this section, we shall restrict our focus on target densities that are products of iid compo-
nents π = ∏

d
i=1 f and the proposal density for ε is given by T N>0(0, l2

d ), where l is called
the scaling term of the proposal. This section will be dedicated to obtaining the optimal
value of this scaling l and determining the limiting expected acceptance rate of ATMCMC
under the optimal scaling scenario. If the variance of the proposal density is very small, then
the jumps will be of smaller magnitude and this would mean the Markov chain would take
very many iterations to traverse the entire state space, and in the process, the convergence

5

JSM 2014 - Section on Statistical Computing

4209



0 100 200 300 400 500 600 700 800 900 1000
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

 

 
RWMH path
TMCMC path

(a) Small proposal variance sample path

0 100 200 300 400 500 600 700 800 900 1000
−4

−3

−2

−1

0

1

2

3

4

 

 
RWMH path
TMCMC path

(b) Large proposal variance sample path

Figure 2: The graphical representation of a co-ordinate for a 5-dimensional chain with target
density being product of N(0,1) densities and the values of the scaling factor l for the two cases are
taken to be l = 0.8 and l = 8 respectively for the two scenarios a) and b) depicted in the graph

rate would be very small. On the other hand, if the variance is very large, then our algorithm
will reject too many of the moves. An instance of this argument is depicted in Fig 2.

There is an extensive theory on optimal scaling of RWMH chains (see Beskos, Roberts
and Stuart [BRS09], Bedard [Bed09] [Bed07], Neal and Roberts [NR06], Roberts, Gelman
and Gilks [RGG97]). The magic number for RWMH has been the optimal acceptance rate
value of 0.234, which has been achieved through maximization of speed of the process for a
wide range of distributions - iid set up, some special class of independent but non-identical
set up, as well as a dependent set-up. For our purpose, we have developed an optimal
scaling theory for ATMCMC where we have optimized the diffusion speed of our process
to obtain optimal acceptance rate for ATMCMC. We present a rough sketch of our approach
here, for detailed analysis we refer the reader to Dey and Bhattacharya [DB13b].

We assume that f is Lipschitz continuous and satisfies the following conditions:

(C1) E

{ f
′
(X)

f (X)

}8
 = M1 < ∞. (11)

(C2) E

{ f
′′
(X)

f (X)

}4
 = M2 < ∞. (12)

We define Ut
d = Xd

[dt],1, the sped up first component of the actual Markov chain. Note

that this process makes a transition at an interval of 1
d . As we set d→∞, meaning that as the

dimension of the space blows to ∞, the sped up ATMCMC process essentially converges to
a continuous time diffusion process.

For our purpose, we define the discrete time generator of the TMCMC approach, as

6
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GdV (x) =
d
2d ∑ bi ∈ {−1,+1}

∀i = 1, . . . ,d



∫
∞

0

[(
V (x1 +b1ε, . . . ,xd +bdε)−V (x1, . . . ,xd)

)

×
(

min
{

1,
π(x1 +b1ε, . . . ,xd +bdε)

π(x1,x2, . . . ,xd)

})]
q(ε)dε.

(13)

In the above equation, we may assume that V belongs to the space of inifinitely differen-
tiable functions on compact support (see, for example, [Bed07]) for further details).

Note that this function is measurable with respect to the Skorokhod topology and we
can treat Gd as a continuous time generator that has jumps at the rate d−1. Given our
restricted focus on a one dimensional component of the actual process, we assume V to be
a function of the first co-ordinate only. Under this assumption, the generator defined in (13)
is a function of only ε and b1, and can be rephrased as

GdV (x) =
d
2

∫
∞

0
∑

b1∈{−1,+1}

[(
V (x1 +b1ε)−V (x1)

)
×Eb2,...,bd

(
min

{
1,

π(x1 +b1ε, . . . ,xd +bdε)

π(x1, . . . ,xd)

})]
q(ε)dε,

(14)

where Eb2,...,bd is the expectation taken conditional on b1 and ε .
First we show that the quantity GdV (x) is a bounded quantity.

GdV (x) ≤ dE{b1,ε} [V (x1 +b1ε)−V (x1)]

= dV
′
(x1)E{b1,ε}(b1ε)+

d
2

V
′′
(x∗1)E{b1,ε}(ε

2)

≤ l2MV ,

(15)

where x∗1 lies between x1 and x1 +b1ε and MV is the maximum value of V
′′
.

We derive the limit of GdV (x) as d→ ∞ that will give us the infinitesimal generator of
the associated diffusion process for the ATMCMC chain. It can be shown that

Proposition 4.1. If X ∼ N(µ,σ2), then

E
[
min

{
1,eX}]= Φ

(
µ

σ

)
+ e

{
µ+ σ2

2

}
Φ

(
−σ − µ

σ

)
, (16)

where Φ is the standard Gaussian cdf.

Using this proposition, we can write
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E
∣∣∣∣
b1ε

[
min

{
1,

π(x1 +b1ε, . . . ,xd +bdε)

π(x1, . . . ,xd)

}]

= Φ

(
η(x1,b1,ε)− (d−1)ε2

2 I√
(d−1)ε2I

)
+ eη(x1,b1,ε)Φ

(
−
√
(d−1)ε2I−

η(x1,b1,ε)− (d−1)ε2

2 I√
(d−1)ε2I

)
= W(b1ε,x1).

(17)

Note that using Taylor series expansion around x1, we can represent η(x1,b1,ε) as

η(x1,b1,ε) = b1ε [log f (x1)]
′
+

ε2

2
[log f (x1)]

′′
+b1

ε3

3!
[log f (ξ1)]

′′′
, (18)

where ξ1 lies between x1 and x1 + b1ε . Again re-writing b1ε as l√
d

z∗1, where z∗1 follows a
N(0,1) distribution, η and W can be expressed in terms of l and z∗1 as

η(x1,z∗1,d) =
lz∗1√

d
[log f (x1)]

′
+

l2z∗1
2

2!d
[log f (x1)]

′′
+

l3z∗1
3

3!d
3
2
[log f (ξ1)]

′′′
(19)

and

W(z∗1,x1,d) = Φ

η(x1,z∗1,d)−
z∗1

2l2

2 I√
z∗1

2l2I

+ eη(x1,z∗1,d)Φ

− z∗1
2l2I
2 −η(x1,z∗1,d)√

z∗1
2l2I

 . (20)

The last line follows as the expression η(x1,b1,ε) depends on b1 and ε only through the
product b1ε .

Now we consider the Taylor series expansion around x1 of the term

dEz∗1

[(
V
(

x1 +
z∗1l√

d

)
−V (x1)

)
W(z∗1,x1,d)

]
= dEz∗1

[{
V
′
(x1)

z∗1l√
d
+

1
2

V
′′
(x1)

z∗1
2l2

d
+

1
6

V
′′′
(ξ1)

z∗1
3l3

d
3
2

}
W(z∗1,x1,d)

]
.

(21)

From (20) it is clear that W(z∗1,x1,d) is continuous but not differentiable at the point 0.

Using Taylor series expansion of the terms Φ

(
η(x1,z∗1,d)−

z∗1
2l2

2 I√
z∗1

2l2I

)
, eη(x1,z∗1,d) and Φ

(
− z∗1

2l2I
2 −η(x1,z∗1,d)√

z∗1
2l2I

)
about η = 0, we obtain the expression of Gd(V (x) as

GdV (x) =V
′
(x1)

l2

2
[log f (x1)]

′
Ez∗1

[
z∗1

2V (z∗1)
]
+

1
2

V
′′
(x1)l2Ez∗1

[
z∗1

2V (z∗1)+O(d−
1
2 )
]
.

(22)
where

V (z∗1)→ 2Φ

(
−|z

∗
1|l
√
I

2

)
= 2

[
1−Φ

(
|z∗1|l
√
I

2

)]
. (23)
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The infinitesimal generator GV (x) obtained as the limit of the GVd(x) has therefore a
simpler form

GV (x) = h(l)
[

1
2
(log f )

′
(x1)V

′
(x1)+

1
2

V
′′
(x1)

]
. (24)

This is the form of the generator for a Langevin diffusion process with

hAT MCMC(l) = 4l2
∫

∞

0
z2

Φ

(
−
√

z12l2I
2

)
. (25)

The function h is called the diffusion speed and we maximize this quantity with respect
to l to derive the optimal scaling. For our case, lopt =

2.4√
I

and we plug this value in the
formula for asymptotic expected acceptance rate to obtain

αopt = 4
∫

∞

0
Φ

(
−
|u|lopt

√
I

2

)
φ(u)du. (26)

For RWMH too, the diffuion process is Langevin but the form of the diffusion speed is
somewhat different (see Roberts, Gelman and Gilks [RGG97]):

hRWMH(l) = 2l2
Φ

(
−l
√

I
2

)
. (27)

It was noted in [RGG97] that the limiting expected acceptance rate corresponding
to optimal scaling in RWMH is 0.234, while for that for the optimal scaling in additive
TMCMC is 0.439 which is almost twice as that of RWMH. It is to be noted that the optimal
scale of RWMH is lopt =

2.4√
I
, which, up to the first decimal place, is the same as that

of ATMCMC. The graphs of the diffusion speeds over different l for ATMCMC and for
standard RWMH are presented in Fig 3.

Note that the diffusion speed at lopt is higher for RWMH compared to additive TMCMC
(ATMCMC) implying that once stationarity is reached, there will be faster mixing among
the iterates in RWMH compared to ATMCMC. However, an interesting observation is that
if l deviates slightly from lopt , the diffusion speed of RWMH drops much faster compared
to that of ATMCMC. Thus, ATMCMC is much more robust compared to RWMH with
respect to the scaling. This is very important in complex and high-dimensional practical
situations where achieving the optimal scaling usually turns out to be infeasible; recall the
discussion regarding this in Section 1. Although our above analysis holds true only for
the case when all the components of the product density are iid, however, this condition
can be relaxed to include independent components with appropriate scaling and inherent
regularization properties as in Bedard (2009) [Bed09] and Dey and Bhattacharya (2013)
[DB13a] and also to non-regular component densities in Dey and Bhattacharya [DB14].

Also, in all the calculations we have done so far and in the consideration of the diffusion
speed and its implications, we must keep in mind our inherent assumption that the process is
in stationarity. The major question to address now is that which chain has faster convergence
to stationarity. We address this in the next section via simulation studies.
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Figure 3: The plot of the diffusion speed with respect to the scaling factor l for RWMH and
ATMCMC chains.

5 Simulation study comparison

In this section, we compare RWMH and additive TMCMC methods using two parame-
ters, one being the acceptance rate and the other, the Kolmogorov-Smirnov (KS) distance
between the empirical distribution at each time point and the target density. For the first
measure, we observed the acceptance rates of the two algorithms for varying dimesnions
and scaling factors l. The results are reported in Table 1.

Table 1 validates that for higher dimensions, under optimal scaling, the acceptance rates
of RWMH and additive TMCMC are indeed 0.234 and 0.439 respectively, as the observed
values are very close to the theoretical ones. Also, we see that for fixed dimensions, as
scaling increases away from the optimal value, the acceptance rate falls drastically for
RWMH and this worsens with increase in dimensionality. For dimensions 100 and 200,
we skipped providing the acceptance rates for scaling l = 10 as it was understandably very
small for RWMH. Comparatively, additive TMCMC is much more stable with change of
scaling even for high dimensions. This validates the robustness of the diffusion speed with
respect to scaling l in Fig 3.

For the second measure of KS distance comparison, we run a number of chains, say L,
starting from one fixed point for both RWMH and ATMCMC adaptations. Corresponding
to each time point t, we thus get L many iterates. The notion is that, as time t increases
(specially after burn-in), these L many iterates should be close to an independently drawn
random sample from the target distribution π . So, if we observe the KS statistic for the
empirical distribution of these iterates along any particular dimension with respect to the
marginal of π along that dimension, we expect the test statistic to be decreasing with time
and finally being very close to 0 after a certain time point. Now the question of interest is,
of the two approaches, ATMCMC and RWMH, for which method the graph decays faster

10
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Dim
PPPPPPPPPScaling

Test
Acceptance

rate(%)
RWMH TMCMC

2
2.4 34.9 44.6
6 18.66 29.15

10 3.83 12.36

5
2.4 (opt) 28.6 44.12

6 2.77 20.20
10 0.45 12.44

10
2.4 (opt) 25.6 44.18

6 1.37 20.34
10 0.03 7.94

100
2.4 (opt) 23.3 44.1

6 0.32 20.6

200
2.4 (opt) 23.4 44.2

6 0.33 20.7

Table 1: Table representing the acceptance rates of RWMH and ATMCMC approaches for varying
dimensions and varying scaling factors l, with the target density given by a iid product of N(0,1)
densities.

to 0? Corresponding to two different dimensions d = 10 and d = 100, and two scalings
l = 2.4 (optimal given that I= 1 for the target density product of N(0,1) components) and
l = 4, we present the two graphs of additive TMCMC and RWMH simultaneously in Fig 4
and Fig 5. Both the figures, but particularly the latter, clearly indicate faster convergence of
ATMCMC to the stationary distribution.

Therefore in conclusion it can be stated that

• ATMCMC is simple to interpret and does not depend heavily on the target density,
and additionally has much lesser computational burden and time complexity.

• Under sub-exponential target density with some regularity constraints on the target
density, the ATMCMC algorithm is geometrically ergodic.

• ATMCMC has a higher acceptance rate of 0.439 corresponding to 0.234 for the
RWMH algorithm. As observed, our algorithm is more robust to change of scale and
across dimensions. But the mixing or diffusion speed of RWMH is higher, meaning
that once stationarity is attained RWMH will provide better samples than ATMCMC.

• The KS test comparison in the simulation study shows that for high dimensions,
ATMCMC has lower KS statistic value compared to RWMH when the chain is not
stationary. This also suggests that ATMCMC reaches burn-in faster than RWMH for
higher dimensions. But once burn-in is reached, ideally the two methods should both
yield KS values close to 0 and that is why we see that the KS graphs stabilize with
time for both the approaches.
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(a) d = 30, l = 2.4.

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterate

K
−

S
 s

ta
tis

tic

 

 
RWMH
Add TMCMC

(b) d = 30, l = 4.

Figure 4: The KS distance graph for RWMH and ATMCMC chains for a 30 dimensional target
density, which is the product of iid N(0,1) components. The scalings for the two graphs are l = 2.4
and l = 4. Notice that the KS graph for ATMCMC seems to be lower compared to that of RWMH
implying faster rate of convergence for ATMCMC.
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(a) d = 100, l = 2.4.
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Figure 5: The KS distance graph for RWMH and ATMCMC chains for a 100 dimensional target
density, which is the product of iid N(0,1) components. The scalings for the two graphs are l = 2.4
and l = 4. Here the KS graph for ATMCMC is clearly lower compared to that of RWMH implying
faster rate of convergence for ATMCMC.
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