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Abstract 

The original Box-Cox method attempts to transform the response variable of a 

regression model such that it follows a Normal linear model with constant 

variance. We extend the method to generalized linear models (GLMs) based on 

natural exponential dispersion (NED) distributions. Thus a power, λ, is sought 

such that yλ follows a GLM based on a NED with constant dispersion. Extensions 

to NEDs with non-constant dispersions are also considered. We apply the method 

to a two-group blink rate study. 

 

Key Words: Box-Cox transformation, generalized linear models, exponential 

dispersion models, blink rate, interblink interval. 

 

1. Introduction 

 

The original Box-Cox method is based on an attempt to transform the response variable 

of a regression model such that it follows a Normal linear model with constant variance 

(Box and Cox (1964)). We extend target models from linear models based on the Normal 

distribution with constant variance to generalized linear models (GLMs) based on natural 

exponential dispersion (NED) distributions with constant dispersion. Thus a power, λ, is 

sought such that yλ follows a GLM based on a NED with constant dispersion. Extensions 

to NEDs with non-constant dispersions are also considered. 

 

We apply the method to a two-group blink rate study (Johnston et al (2013) provide 

clinical details as well as an alternative analysis based on time series methods). The study 

comprised 10 Healthy and 11 Dryeye subjects whose blinks, N(i), were counted over 

recorded time intervals, T(i) (Figures 1 and 4). Time intervals ranged from 5.7 to 14.5 

minutes, while blink counts ranged from 64 to 651. We consider two responses: blink 

rate, BR = N(i)/T(i), and interblink interval, IBI = T(i)/N(i). For convenience, an identity 

link is used, and thus models such as y1/4 ~ Normal(α+βx,φ) and y1/2 ~ Gamma(α+βx,φ) 

are compared. Likelihood computations were carried out using the nlmixed procedure of 

SAS 9.3 (2011). 

 

2. Theory  

 

GLMs were originally based on natural exponential distributions with a single mean 

parameter depending on a vector of predictors, xi. Thus yi ~ NE(μi), where μi = g(xiβ) 

with inverse link g (Nelder and Wedderburn (1972), McCullagh and Nelder (1983, 

1989)). These include the one parameter Poisson as well as the Normal, Gamma, and 

Wald with known dispersions. Natural exponential distributions were investigated by 

Morris (1982), and subsequently generalized by Jorgensen (1987, 1997) to natural 

exponential dispersion (NED) distributions containing an additional dispersion 
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parameter, φ. Thus for a NED-based GLM with constant dispersion, yi ~ NED(μi, φ), 

where μi = g(xiβ). Important examples include the Normal(μi, φ), Gamma(μi, φ), and 

Wald(μi, φ) with unknown dispersions, as well as an extension of the Poisson containing 

an unknown dispersion, PoisED(μi, φ). 

 

In what follows we suppress the subscript i with the understanding that yi ~ NED(μi, φ) 

for a NED with constant dispersion, while yi ~ NED(μi, φi) for a NED with non-constant 

dispersion. Equation (1) gives the log-likelihood for a single observation y ~ NED(μ,φ). 

Here d(y,μ) is the deviance and a(y,φ) is a normalizing term free from μ.   
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When a(y,φ) is not in closed form, equation (1) can be approximated by equation (2). 

Here v(y) is the variance function evaluated at y, such as v(y) = y2 for the Gamma. In this 

paper we use exact likelihoods (1) for the Normal, Gamma, and Wald, and an 

approximate likelihood (2) for the PoisED. The approximation allows us to treat the 

PoisED as a continuous NED with variance proportional to the mean. 
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NEDs maintain two central properties of the Normal, namely separability and robustness. 

As used here, separable likelihoods enable means to be estimated separately from 

dispersions, and robust models provide consistent maximum likelihood estimates for 

means even under misspecified distributions. 

 

In addition to the canonical NEDs noted above, we encounter two types of transformed 

NEDs which are neither separable nor robust in the above senses. The first type are 

power transformations of NEDs (eg y ~ (Gamma)2) corresponding to inverse power 

transformations of the response (eg y1/2 ~ Gamma). The second type are NEDs for which 

the dispersion depends on the mean, or equivalently, for which the variance function, 

v(μ), is noncanonical. For example, the canonical setup for the Gamma is {y ~ 

Gamma(μ,φ) with v(μ) = μ2}, while a noncanonical setup is {y ~ Gamma(μ, φ = ψ/μ2) 

with v(μ) = 1}. 

 

3. Method 

 

Our generalization of the Box-Cox method allows for transformations to models based on 

nonlinear mean functions and non-Normal distributions. We consider transformations of 

Normal, PoisED, Gamma, and Wald distributions, with canonical variances proportional 

to 1, μ, μ2, and μ3, respectively. Transformations of y are compared by AIC (Akaike 

(1974)). 
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Box and Cox used an extended power family incorporating log(y) as λ = 0 in a limiting 

sense. This extension does not apply to non-Normal NEDs, and instead we use the simple 

power family, yλ, which excludes log(y). While the log transformation is still of interest 

for non-Normal NEDs (provided y > 1), the transformation is distinct from the power 

family. In terms of the AIC profile, AIC(log) is an isolated point off the smooth AIC(λ) 

profile, which contrasts with the Normal case where AIC(log) is a point on the profile at 

λ = 0. We emphasize the new role played by log(y) because of the striking result that all 

AIC profiles in our study coincide at λ = 0, despite the fact that LogNormal, LogPoisED, 

LogGamma, and LogWald distributions are certainly not the same thing. 

 

We now consider log-likelihoods for y which correspond to the transformation z = yλ, 

where yλ ~ NED(μ,φ). The log-likelihood for z = yλ, lz(μ,φ; z), is given by equation (1) or 

equation (2) above. It follows that the log-likelihood for y = z1/λ, l(μ,φ; y), is obtained by 

substituting yλ for z in lz(μ,φ; z) and adding a log-jacobian term based on dz/dy, as shown 

in equation (3). 
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We use nomenclature in keeping with the long-established relationship between the 

Normal and LogNormal. In this case, z = log(y) ~ Normal, and y = exp(z) ~ exp(Normal) 

is said to follow a LogNormal distribution, with log-likelihood l(μ,φ; y) given by 

equation (4). Similarly, if z = y1/2 ~ Gamma, then y = z2 ~ (Gamma)2 is said to follow a 

SqrtGamma distribution, and more generally, if z = yλ ~ NED, then y = z1/λ ~ (NED)1/λ is 

said to follow a λ-NED distribution. 
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The log-jacobian term contains no parameters, so estimates from yλ ~ NED and y ~ 

(NED)1/λ are identical even though their likelihoods differ. For Box-Cox purposes, 

however, this distinction is critical because models can be compared by AIC only if their 

responses are identical. For example, y ~ Gamma and y1/2 ~ Gamma cannot be compared 

directly, but only via comparison of y ~ Gamma and y ~ (Gamma)2. 

 

4. Example 1: AIC(λ) profiles: Four NED distributions  

 

In this section we apply the generalized Box-Cox method using blink rate (BR) as the 

response. The scatter plot of BR against group (0 = Healthy, 1 = Dryeye) is shown in 

Figure 1. For each NED, we fit a sequence of models y ~ (NED)1/λ corresponding to 

transformations yλ ~ NED over a grid of λ in [–1, 1]. For reasons noted previously, λ = 0 

was excluded, except in the Normal case where λ = 0 represents log(y). The resulting 

AIC profiles are depicted in Figure 2.  
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Figure 1. Scatter plots for Blink Rate against group. Groups comprise 10 Healthy (x=0) 

subjects and 11 Dryeye(x=1) subjects 

 

Figure 1 suggests two mildly right-skewed distributions with variances increasing with 

means. As a result, the Normal-based Box-Cox method favors λ = 0 and use of log(y) ~ 

Normal(μ,φ), where μ = 2.5 + 0.67x. The generalized Box-Cox method finds little to 

choose between log(y) ~ Normal, y1/4 ~ PoisED, y ~ Gamma, and y ~ Wald, with AICs of 

162.1, 161.9, 160.7, and 160.5, respectively. However, we are inclined to remain on the 

original scale and select y ~ Gamma(μ,φ), where μ = 13.2 + 15.3x. 

 

 
Figure 2. AIC(λ) vs λ for BRλ following a GLM based on the Normal, PoisED, Gamma, 

and Wald  
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5. Example 2: AIC(λ) profiles: Four Gamma(p) distributions 

 

We now illustrate a variant of the above for the Gamma with various noncanonical 

variance functions. This illustrates the use of the Box-Cox method for a class of 

distributions wider than the standard NEDs, and also sheds light on our main NED 

application above.  

 

We consider Gamma models with variances proportional to 1, μ, μ2, and μ3, and refer to 

the new distributions as Gamma0, Gamma1, Gamma2, and Gamma3, respectively. These 

variance functions imply non-constant dispersions of ψ/μ2, ψ/μ, ψ, and ψμ respectively (ψ 

is constant, but μ depends on i), and thus GLMs based on these distributions are not 

robust, with the exception of Gamma2 (the standard Gamma).  

 

The four AIC profiles are depicted in Figure 3. For λ > 0, Figure 3 maintains the order of 

Figure 2 in terms of variance functions. Thus Gamma models with v(μ) = 1 and v(μ) = μ3 

are the worst and best models in Figure 3 in a similar way as Normal and Wald models 

are the worst and best models in Figure 2. This reflects the fact that, given sufficiently 

different means, the fit of a NED is strongly influenced by its variance function. But fit 

also depends on distributional shape, and the fact that AIC profiles in Figure 3 for the 

Gamma2 and Gamma3 are further apart (160.7 – 159.5 = 1.2 at λ = 1) than AIC profiles 

for the Gamma and Wald in Figure 2 (160.7 – 160.5 = 0.2 at λ = 1) suggests that BR has 

a Wald-like variance function and a Gamma-like shape. 

 

 

 
Figure 3. AIC(λ) vs λ for BRλ following a GLM based on Gamma(p), p = 0,1,2,3 
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6. Example 3: Choosing BR vs IBI on original scale 

 

In this section we discuss a problem where the choice of response involves the choice of 

transformation. The particular setting is for a study involving “rates” and “paces”, in our 

case blink rate, BR = N(i)/T(i), and interblink interval, IBI = T(i)/N(i). Both are directly 

interpretable (as blinks per minute, and minutes per blink), and are equivalent as data but 

not as responses. Scatter plots of (a) BR against group, and (b) IBI against group are 

shown in Figure 4. 

 

 
Figure 4. Scatter plots for 10 Healthy (x=0) and 11 Dryeye(x=1) subjects: (a)Blink Rate 

(BR), (b)Interblink Interval (IBI) 

 

From the viewpoint of the Box-Cox method, special features of this problem are (a) only 

two transformations are considered, y and z = 1/y, (b) both y and z are directly 

interpretable, and (c) the intention is to analyze either y or z on the raw scale. For 

simplicity we focus on the Gamma distribution. Figure 5 shows the AIC profile for IBI 

(purple line, right axis) along with the AIC profile for BR (green line, left axis) shown 

previously. 

 

 
Figure 5. AIC(λ) vs λ for BRλ and IBIλ following a GLM based on the Gamma 
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A direct comparison of BR (AIC = 160.7) and IBI (AIC = -73.4) is meaningless because 

the responses are different. However, a legitimate comparison can be made by comparing 

BR for λ = -1 and λ = 1, which corresponds to comparing IBI and BR as responses. The 

difference in AICs is 164.5 – 160.7 = 3.8 units in favor of BR. The same result obtains if 

IBI is used as the reference response. In this case, a comparison of IBI for λ = 1 and  

λ = -1 corresponds to a comparison of IBI and BR as responses, again giving a difference 

in AICs of -73.4 – (-77.2) = 3.8 units in favor of BR. These and other details of the group 

comparison are provided in Table 1. 

 
                       Dryeye  Healthy          

Response  Model    n   mean1   mean0     diff     se     p-value   AIC 
BR        Gamma    21  28.55   13.21     15.34   5.17    0.003    160.7  

BR       (Gamma)-1  21  0.055   0.093    -0.038   0.020   0.048    164.5  

 

IBI       Gamma    21  0.055   0.093    -0.038   0.020   0.048    -73.4  

IBI      (Gamma)-1  21  28.55   13.21     15.34   5.17    0.003    -77.2 

 

Table 1. Dryeye vs Healthy: BR and IBI assuming Gamma and Inverse Gamma models 

 

7. Conclusion 

 

Box and Cox introduced a useful method based on transforming the response variable of 

a regression model to follow a Normal linear model with constant variance. The 

usefulness and popularity of the method stemmed from the accessibility of the Normal 

linear model in years following 1964. Ryan and Woodall (2005) list Box and Cox (1964) 

as the 19th most-cited paper in statistics in the post-war era (approximately 1945 through 

2004).  

 

The main aim of our paper has been to generalize the Box-Cox method while retaining its 

robustness (Example 1). To this end, we generalize the target model from a linear model 

based on a Normal with constant variance to a GLM based on a NED with constant 

dispersion. As a particular example, we applied the method to the choice between 

reciprocal responses (y and 1/y) in a context in which both are far from Normal (Example 

3). This example, a direct generalization of the first example in Box and Cox (1964), 

actually motivated our paper.   

 

In addition, we explored an extension of Box-Cox methods to a larger class of 

distributions, namely GLMs based on NEDs with noncanonical variance functions 

(Example 2). This class of GLMs is of some interest in its on right. 
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