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Abstract 
Burr Type III and Type XII distributions have been mainly used in statistical modeling of 
events in a variety of applied mathematical contexts such as fracture roughness, life 
testing, meteorology, modeling crop prices, forestry, reliability analysis, and in the 
context of Monte Carlo simulation studies. A preponderance of the applications 
associated with the Burr Type III and Type XII distributions are based on the method of 
moments (MOM). However, estimators of conventional skew and kurtosis can be 
substantially (a) biased, (b) dispersed, or (c) influenced by outliers. To obviate these 
problems, a characterization of Burr Type III and Type XII distributions based on the 
method of percentiles (MOP) is introduced and contrasted with the MOM in the context 
of estimation and fitting theoretical and empirical distributions. The methodology is 
based on simulating Burr Type III and Type XII distributions with specified values of 
medians, inter-decile ranges, left-right tail-weight ratios (a skew function), and tail-
weight factors (a kurtosis function). Evaluation of the proposed procedure demonstrates 
that the estimates of left-right tail-weight ratios and tail-weight factors are substantially 
superior to their MOM-based counterparts of skew and kurtosis in terms of relative bias 
and relative efficiency–most notably when heavy-tailed distributions are of concern.  
    

1.   Introduction 
The cumulative distribution functions (cdfs) associated with Burr Type III and Type XII 
distributions are given as (Burr, 1942, equations (11) and (20)) 
 
𝐹𝐹(𝑥𝑥)III = (1 + 𝑥𝑥𝑐𝑐)−𝑘𝑘,  

 
(1) 
 

𝐹𝐹(𝑥𝑥)XII = 1 − (1 + 𝑥𝑥𝑐𝑐)−𝑘𝑘, (2) 
 

where 𝑥𝑥 ∈ (0,∞), 𝑐𝑐 and 𝑘𝑘 are real-valued shape parameters that are also used to compute 
the values of mean and standard deviation of a distribution. The parameter 𝑐𝑐 is negative 
for Type III and positive for Type XII, whereas the parameter 𝑘𝑘 is positive for both Type 
III and Type XII distributions (Headrick, Pant, & Sheng, 2010).  

 Burr Type III and Type XII distributions have received much of the attention 
because they include several families of non-normal distributions (e.g., the Gamma 
distribution) with varying degrees of skew and kurtosis (Headrick et al., 2010; 
Tadikamalla, 1980; Rodriguez, 1977; Burr, 1973). Burr Type III and Type XII 
distributions have been primarily used for statistical modeling of events arising in a 
variety of applied mathematical contexts. Some examples of such applications include 
modeling events associated with forestry (Gove, Ducey, Leak, & Zhang, 2008; Lindsay, 
Wood, & Woollons, 1996), fracture roughness (Nadarajah & Kotz, 2007; 2006), life 
testing (Wingo, 1993; 1983), operational risk (Chernobai, Fabozzi, & Rachev, 2007), 
option market price distributions (Sherrick, Garcia, & Tirupattur, 1996), meteorology 
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(Mielke, 1973), modeling crop prices (Tejeda & Goodwin, 2008), software reliability 
growth (Abdel-Ghaly, Al-Dayian, & Al-Kashkari, 1997), reliability analysis (Mokhlis, 
2005), and in the context of Monte Carlo simulation studies (Pant & Headrick, 2013; 
Headrick et al., 2010).  

  The quantile functions associated with (1) and (2) are expressed as (Headrick et 
al., 2010, Equations (5) and (6)) 
 
𝑞𝑞(𝑢𝑢)III = �𝑢𝑢−1 𝑘𝑘⁄ − 1�

1 𝑐𝑐⁄
, 

 
(3) 
 

𝑞𝑞(𝑢𝑢)XII = �(1 − 𝑢𝑢)−1 𝑘𝑘⁄ − 1�
1 𝑐𝑐⁄

, 
 

(4) 
 

where 𝑢𝑢~𝑖𝑖𝑖𝑖𝑖𝑖 Uniform (0, 1)  with cdf  𝑢𝑢  and pdf  1. The shape of a Burr distribution 
associated with (3) or (4) is contingent on the values of the shape parameters (𝑐𝑐 and 𝑘𝑘), 
which can be determined based on method of moments (MOM) or method of percentiles 
(MOP). 

To produce a valid Burr Type III or Type XII pdf, the quantile function 𝑞𝑞(𝑢𝑢) in 
(3) or (4) is required to be a strictly increasing monotone function of 𝑢𝑢 (Headrick et al., 
2010). This requirement implies that an inverse function (𝑞𝑞−1) exists such that the cdf 
associated with 𝑞𝑞(𝑢𝑢)  in (3) or (4) can be expressed as 𝐹𝐹�𝑞𝑞(𝑢𝑢)� = 𝐹𝐹(𝑢𝑢) = 𝑢𝑢 . 
Differentiating both sides of this cdf with respect to 𝑢𝑢 yields the parametric form of the 
pdf for 𝑞𝑞(𝑢𝑢) as 𝑓𝑓�𝑞𝑞(𝑢𝑢)� = 1 𝑞𝑞′(𝑢𝑢)⁄ . The simple closed-form expressions for the pdfs 
associated with (1) and (2) can be given as (Burr, 1942)  
 
𝑓𝑓(𝑥𝑥)III = −𝑐𝑐𝑘𝑘𝑥𝑥𝑐𝑐−1(1 + 𝑥𝑥𝑐𝑐)−(𝑘𝑘+1), 

 
(5) 
 

𝑓𝑓(𝑥𝑥)XII = 𝑐𝑐𝑘𝑘𝑥𝑥𝑐𝑐−1(1 + 𝑥𝑥𝑐𝑐)−(𝑘𝑘+1), (6) 
 

 

 

pdf 

 

 

Figure 1: The pdf of the Burr Type III distribution with skew (𝛾𝛾3) = 3 and kurtosis 
(𝛾𝛾4) = 65. The solved values of 𝑐𝑐 and 𝑘𝑘 used in (5) are: 𝑐𝑐 = −4.4067 and 𝑘𝑘 = 0.7551, 
which are also associated with the values of parameters and their estimates in Table 1.  
 

Table 1: MOM-based parameter values of skew (𝛾𝛾3) and kurtosis (𝛾𝛾4) and MOP-based 
parameter values of left-right tail-weight ratio (𝜉𝜉3) and tail-weight factor (𝜉𝜉4) with their 
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corresponding estimates for the pdf in Figure 1. Each bootstrapped estimate (Estimate), 
associated 95% bootstrap confidence interval (95% C.I.), and the standard error (SE) 

were based on resampling 25,000 statistics. Each statistic was based on a sample size of 
𝑛𝑛 = 500. 

 
Skew: 𝛾𝛾3 = 3 Kurtosis: 𝛾𝛾4 = 65 

Estimate: 𝛾𝛾�3 95% C.I. SE Estimate: 𝛾𝛾�4 95% C.I. SE 
2.256 2.239, 2.273 0.00860 13.29 13.02, 13.57 0.14210 

  
Left-right tail-weight ratio: 𝜉𝜉3 = 0.6464 Tail-weight factor: 𝜉𝜉4 = 0.4888 

Estimate: 𝜉𝜉3 95% C.I. SE Estimate: 𝜉𝜉4 95% C.I. SE 
0.6467 0.6459, 0.6476 0.00041 0.4879 0.4876, 0.4883 0.00017 

 

Some of the problems associated with conventional moment-based estimators are 
that they can be (a) substantially biased, (b) highly dispersed, or (c) influenced by outliers 
(Headrick, 2011; Hosking, 1990), and thus may not be good representatives of the true 
parameters. To demonstrate, Figure 1 gives the graph of the pdf associated with Burr 
Type III distribution with skew (𝛾𝛾3) = 3 and kurtosis (𝛾𝛾4) = 65. Note that the pdf in 
Figure 1 has been used in studies such as Karian and Dudewicz (2011) and Headrick and 
Pant (2012). Table 1 gives the parameters and sample estimates of skew and kurtosis for 
the distribution in Figure 1. Inspection of Table 1 indicates that the bootstrap estimates 
(𝛾𝛾�3  and 𝛾𝛾�4) of skew and kurtosis (𝛾𝛾3  and 𝛾𝛾4 ) are substantially attenuated below their 
corresponding parameter values with greater bias and variance as the order of the 
estimate increases. Specifically, for sample size of 𝑛𝑛 = 500, the values of the estimates 
are only 75.2%, and 20.45% of their corresponding parameters, respectively. The 
estimates (𝛾𝛾�3 and 𝛾𝛾�4) of skew and kurtosis (𝛾𝛾3 and 𝛾𝛾4) in Table 1 were calculated based 
on Fisher’s 𝑘𝑘 -statistics formulae (see, e.g., Kendall & Stuart, 1977, pp. 299-300), 
currently used by most commercial software packages such as SAS, SPSS, Minitab, etc., 
for computing the values of skew and kurtosis (where 𝛾𝛾3,4 = 0 for the standard normal 
distribution). 

Another unfavorable quality of conventional moment-based estimators of skew 
and kurtosis is that their values are algebraically bounded by the sample size (𝑛𝑛) such 
that |𝛾𝛾�3| ≤ √𝑛𝑛 and 𝛾𝛾�4 ≤ 𝑛𝑛 (Headrick, 2011). This constraint implies that if a researcher 
wants to simulate non-normal data with kurtosis 𝛾𝛾4 = 65 as in Table 1, and drawing a 
sample of size 𝑛𝑛 = 30 from this population, the largest possible value of the computed 
estimate (𝛾𝛾�4) of kurtosis (𝛾𝛾4) is only 30, which is only 46.15% of the parameter.  

 The method of percentiles (MOP) introduced by Karian and Dudewicz (2000) in 
the context of generalized lambda distributions (GLDs) is an attractive alternative to the 
method of moments (MOM) and can be used for estimating shape parameters and fitting 
distributions to real-world data. The MOP-based GLDs are superior to the MOM-based 
GLDs for fitting theoretical and empirical distributions that cover a wide range of 
combinations of skew and kurtosis (Karian & Dudewicz, 2000). Some qualities of the 
MOP-based procedure in the context of GLDs are that (a) MOP-based procedure can be 
used to estimate parameters and obtain GLD fits even when the conventional moments 
associated with a class of GLDs do not exist, (b) the MOP-based procedure for solving 
equations for the GLD parameters is relatively more accurate than the MOM-based 
procedure, and (c) the relatively smaller variability of MOP-based sample estimators 
enables more accurate GLD fits than that achieved through the MOM-based approach 
(Karian & Dudewicz, 2000). Also, Kuo and Headrick (2014) have demonstrated that the 
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MOP-based characterization of Tukey’s 𝑔𝑔-and-ℎ distributions is superior to the MOM-
based characterization in terms of distribution fitting, estimation, relative bias, and 
relative error. For example, for the Burr Type III pdf  in Figure 1, the MOP-based 
estimates (𝜉𝜉3 and 𝜉𝜉4) of left-right tail-weight ratio and tail-weight factor (𝜉𝜉3 and 𝜉𝜉4) in 
Table 1 are relatively closer to their respective parameter values with much smaller 
variance compared to their conventional MOM-based counterparts. Inspection of Table 1 
shows that for the sample size of 𝑛𝑛 = 500, the values of the estimates are on average 
100.05% and 99.82% of their corresponding parameters. 

 In view of the above, the main purpose of this study is to characterize the Burr 
Type III and Type XII distributions through the method of percentiles (MOP) in order to 
obviate the problems associated with method of moments (MOM)-based estimators. 
Specifically, the purpose of this study is to develop a methodology to simulate Burr Type 
III and Type XII distributions with specified values of medians (𝜉𝜉1), inter-decile ranges 
(𝜉𝜉2), left-right tail-weight ratios (𝜉𝜉3), and tail-weight factors (𝜉𝜉4).  

 The remainder of the paper is organized as follows. In Section 2, a brief 
introduction to method of moments (MOM)-based procedure for solving equations of 
skew (𝛾𝛾3)  and kurtosis (𝛾𝛾4)  for the shape parameters (𝑐𝑐 and 𝑘𝑘)  associated with 
univariate Burr Type III and Type XII distributions is given. Provided in Section 3 is a 
brief introduction to method of percentiles (MOP) along with a procedure for 
characterizing the Burr Type III and Type XII distributions based on the MOP. 
Specifically, the MOP-based systems of equations associated with Burr Type III and 
Type XII distributions are derived for determining the shape parameters (𝑐𝑐 and 𝑘𝑘) for 
specified values of left-right tail-weight ratios (𝜉𝜉3) , and tail-weight factors (𝜉𝜉4) . In 
Section 4, a comparison between MOM- and MOP-based Burr Type III and Type XII 
distributions is presented in the contexts of fitting theoretical and empirical distributions 
and estimation of parameters. Numerical examples and the results of simulation are also 
provided to confirm the derivations and compare the MOP-based procedure with the 
conventional MOM-based procedure. In Section 5, the results of the simulation are 
discussed. 

  

2. Method of Moments (MOM)-based System 

The method of moments (MOM)-based values of mean (𝜇𝜇), standard deviation (𝜎𝜎), skew 
(𝛾𝛾3), and kurtosis (𝛾𝛾4) associated with a Burr Type III or Type XII distribution can be 
given as (Headrick et al., 2010, p. 2211, Equations 14-17) 

𝜇𝜇 = (Γ[1 + 1 𝑐𝑐⁄ ]Γ[𝑘𝑘 − 1 𝑐𝑐⁄ ]) Γ[𝑘𝑘]⁄  (7) 

σ = �(Γ[1 + 2 𝑐𝑐⁄ ]Γ[𝑘𝑘]Γ[𝑘𝑘 − 2 𝑐𝑐⁄ ] − Γ[1 + 1 𝑐𝑐⁄ ]2Γ[𝑘𝑘 − 1 𝑐𝑐⁄ ]2) Γ[𝑘𝑘]�  (8) 

𝛾𝛾3 = {Γ[1 + 3 𝑐𝑐⁄ ]Γ[𝑘𝑘]2Γ[𝑘𝑘 − 3 𝑐𝑐⁄ ]
− 𝑐𝑐−2(6Γ[1 𝑐𝑐⁄ ]Γ[2 𝑐𝑐⁄ ]Γ[𝑘𝑘]Γ[𝑘𝑘 − 2 𝑐𝑐⁄ ]Γ[𝑘𝑘 − 1 𝑐𝑐⁄ ])
+ 2Γ[1 + 1 𝑐𝑐⁄ ]3Γ[𝑘𝑘 − 1 𝑐𝑐⁄ ]3}
/{Γ[1 + 2 𝑐𝑐⁄ ]Γ[𝑘𝑘]Γ[𝑘𝑘 − 2 𝑐𝑐⁄ ] − Γ[1 + 1 𝑐𝑐⁄ ]2Γ[𝑘𝑘 − 1 𝑐𝑐⁄ ]2}3 2⁄  

(9) 
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𝛾𝛾4 = ��Γ[1 + 4 𝑐𝑐⁄ ]Γ[𝑘𝑘]3Γ[𝑘𝑘 − 4 𝑐𝑐⁄ ]
− 𝑐𝑐−3�3Γ[𝑘𝑘 − 1 𝑐𝑐⁄ ](4𝑐𝑐Γ[1 𝑐𝑐⁄ ]Γ[3 𝑐𝑐⁄ ]Γ[𝑘𝑘]2Γ[𝑘𝑘 − 3 𝑐𝑐⁄ ]
− 4Γ[1 𝑐𝑐⁄ ]2Γ[2 𝑐𝑐⁄ ]Γ[𝑘𝑘]Γ[𝑘𝑘 − 2 𝑐𝑐⁄ ]Γ[𝑘𝑘 − 1 𝑐𝑐⁄ ]
+ 𝑐𝑐3Γ[1 + 1 𝑐𝑐⁄ ]4Γ[𝑘𝑘 − 1 𝑐𝑐⁄ ]3)��
∕ {Γ[1 + 2 𝑐𝑐⁄ ]Γ[𝑘𝑘]Γ[𝑘𝑘 − 2 𝑐𝑐⁄ ] − Γ[1 + 1 𝑐𝑐⁄ ]2Γ[𝑘𝑘 − 1 𝑐𝑐⁄ ]2}2�
− 3. 

(10) 

The MOM-based procedure for characterizing Burr Type III and Type XII 
distributions involves a moment-matching approach in which specified values of skew 
and kurtosis (obtained from theoretical distributions or real-word data) are substituted on 
the left-hand sides of (9) and (10) for skew (𝛾𝛾3) and kurtosis (𝛾𝛾4), respectively. Then, (9) 
and (10) are simultaneously solved for shape parameters (𝑐𝑐 and 𝑘𝑘) associated with Burr 
Type III and Type XII distributions. The solved values of 𝑐𝑐 and 𝑘𝑘 can be substituted into 
(7) and (8) to determine the values of mean and standard deviation associated with the 
Burr Type III or Type XII distributions. 
  

3. Method of Percentiles (MOP)-based System 

3.1 General Definition  

The MOP-based analogs of location, scale, skew function, and kurtosis function are 
respectively defined by median (𝜉𝜉1), inter-decile range (𝜉𝜉2), left-right tail-weight ratio 
(𝜉𝜉3), and tail-weight factor (𝜉𝜉4) and expressed as (Karian & Dudewicz, 2000, pp. 154-
155)  

𝜉𝜉1 = 𝜋𝜋𝑝𝑝=0.50 
 

(11) 
 

𝜉𝜉2 = 𝜋𝜋𝑝𝑝=0.90 − 𝜋𝜋𝑝𝑝=0.10 (12) 
 

𝜉𝜉3 =
𝜋𝜋𝑝𝑝=0.50 − 𝜋𝜋𝑝𝑝=0.10

𝜋𝜋𝑝𝑝=0.90 − 𝜋𝜋𝑝𝑝=0.50
 (13) 

 
 

𝜉𝜉4 =
𝜋𝜋𝑝𝑝=0.75 − 𝜋𝜋𝑝𝑝=0.25

𝜉𝜉2
 (14) 

 
 

where 𝜋𝜋𝑝𝑝 in (11)—(14) is the (100𝑝𝑝)th percentile and where 𝑝𝑝 ∈ (0,1) . Note that the 
quantile function 𝑞𝑞(𝑢𝑢) in (3) or (4) can be considered as a substitute of 𝜋𝜋𝑝𝑝 in (11)—(14) 
in the context of Burr Type III and Type XII distributions as 𝑢𝑢 ∈ (0,1). 

 

3.2 MOP-based Burr Type III Distribution 

Substituting 𝑞𝑞(𝑢𝑢) from (3) into (11)—(14) and simplifying the resulting expressions, the 
MOP-based system of Burr Type III distribution can be given as follows.  

𝜉𝜉1 = �21 𝑘𝑘⁄ − 1�
1 𝑐𝑐⁄

 
 

(15) 
 

𝜉𝜉2 = �(10 9⁄ )1 𝑘𝑘⁄ − 1�
1 𝑐𝑐⁄ − �101 𝑘𝑘⁄ − 1�

1 𝑐𝑐⁄
 (16) 
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𝜉𝜉3 =
�21 𝑘𝑘⁄ − 1�

1 𝑐𝑐⁄ − �101 𝑘𝑘⁄ − 1�
1 𝑐𝑐⁄

((10 9⁄ )1 𝑘𝑘⁄ − 1)1 𝑐𝑐⁄ − (21 𝑘𝑘⁄ − 1)1 𝑐𝑐⁄  
(17) 
 
 

𝜉𝜉4 =
�(4 3⁄ )1 𝑘𝑘⁄ − 1�

1 𝑐𝑐⁄ − �41 𝑘𝑘⁄ − 1�
1 𝑐𝑐⁄

((10 9⁄ )1 𝑘𝑘⁄ − 1)1 𝑐𝑐⁄ − (101 𝑘𝑘⁄ − 1)1 𝑐𝑐⁄  
(18) 
 
 

 

3.3 MOP-based Burr Type XII Distribution 

Substituting 𝑞𝑞(𝑢𝑢) from (4) into (11)—(14) and simplifying the resulting expressions, the 
MOP-based system of Burr Type XII distribution can be given as follows.  

𝜉𝜉1 = �21 𝑘𝑘⁄ − 1�
1 𝑐𝑐⁄

 
 

(19) 
 

𝜉𝜉2 = �101 𝑘𝑘⁄ − 1�
1 𝑐𝑐⁄ − �(10 9⁄ )1 𝑘𝑘⁄ − 1�

1 𝑐𝑐⁄
 

(20) 
 

𝜉𝜉3 =
�21 𝑘𝑘⁄ − 1�

1 𝑐𝑐⁄ − �(10 9⁄ )1 𝑘𝑘⁄ − 1�
1 𝑐𝑐⁄

(101 𝑘𝑘⁄ − 1)1 𝑐𝑐⁄ − (21 𝑘𝑘⁄ − 1)1 𝑐𝑐⁄  
(21) 
 
 

𝜉𝜉4 =
�41 𝑘𝑘⁄ − 1�

1 𝑐𝑐⁄ − �(4 3⁄ )1 𝑘𝑘⁄ − 1�
1 𝑐𝑐⁄

(101 𝑘𝑘⁄ − 1)1 𝑐𝑐⁄ − ((10 9⁄ )1 𝑘𝑘⁄ − 1)1 𝑐𝑐⁄  
(22) 
 
 

In the context of Burr Type III and Type XII distributions, the parameter values of 
median (𝜉𝜉1) , inter-decile range (𝜉𝜉2) , left-right tail-weight ratio (𝜉𝜉3) , and tail-weight 
factor (𝜉𝜉4) in (15)—(18) or (19)—(22) have the following restrictions 

𝜉𝜉1 ∈ (0,∞),    𝜉𝜉2 ≥ 0,     𝜉𝜉3 ≥ 0,     0 ≤ 𝜉𝜉4 ≤ 1   (23) 
 

where a symmetric distribution will have 𝜉𝜉1 = Median = Mean and 𝜉𝜉3 = 1. 

  For the specified values of left-right tail-weight ratio (𝜉𝜉3) and tail-weight factor 
(𝜉𝜉4) the systems of equations (17)−(18) and (21)−(22) can be simultaneously solved for 
real values of 𝑐𝑐 and 𝑘𝑘. The solved values of 𝑐𝑐 and 𝑘𝑘 can be substituted in (3) and (4), 
respectively, for generating the Burr Type III and Type XII distributions. Further, the 
solved values of 𝑐𝑐 and 𝑘𝑘 can be substituted in (15)−(16) and (19)−(20) to determine the 
values of median (𝜉𝜉1) and inter-decile range (𝜉𝜉2) associated with the Type III and Type 
XII distributions, respectively.  

 Let 𝑋𝑋1 < 𝑋𝑋2 < 𝑋𝑋3 < ⋯ < 𝑋𝑋𝑖𝑖 < 𝑋𝑋𝑖𝑖+1 < ⋯ < 𝑋𝑋𝑛𝑛 be the order statistics of a sample 
(𝑌𝑌1,𝑌𝑌2,𝑌𝑌3, … ,𝑌𝑌𝑛𝑛) of size 𝑛𝑛. Let 𝜋𝜋�𝑝𝑝 be the (100𝑝𝑝)th percentile from this sample, where 𝑝𝑝 ∈
(0,1) . Let (𝑛𝑛 + 1)𝑝𝑝 = 𝑖𝑖 + (𝑎𝑎 𝑏𝑏⁄ ) , where  𝑖𝑖  is a positive integer and 𝑎𝑎 𝑏𝑏⁄  is a proper 
fraction. Then, 𝜋𝜋�𝑝𝑝 can be computed as (Karian & Dudewicz, 2000, p. 154) 

𝜋𝜋�𝑝𝑝 = 𝑋𝑋𝑖𝑖 + (𝑎𝑎 𝑏𝑏⁄ )(𝑋𝑋𝑖𝑖+1 − 𝑋𝑋𝑖𝑖) . (24) 
 

 For a sample of size 𝑛𝑛 , the MOP-based estimates of 𝜉𝜉1 -𝜉𝜉4  in (15)− (18) or 
(19)−(22), can be computed in two steps as: (a) compute the values of 10th, 25th, 50th, 75th, 
and 90th percentiles using (24) and (b) substitute these percentiles into (11)–(14) to obtain 
the sample estimates of 𝜉𝜉1-𝜉𝜉4.  
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 In the next section, examples are provided to demonstrate the aforementioned 
methodology and the advantages of MOP procedure over the conventional MOM 
procedure in the contexts of distribution fitting and estimation.   

  

4.  Comparison of 𝑳𝑳-Moments with Conventional Moments 

4.1. Distribution Fitting 

Figure 2 shows the conventional MOM- and the MOP-based Burr Type XII pdf s 
superimposed on the histogram of total hospital charges (in U.S. dollars) data of 12,145 
heart attack patients discharged from all of the hospitals in New York State in 1993. 
There were 12,844 cases with 699 missing values for the total hospital charges. See, the 
website: 
http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_AMI_NY_1993_HeartAttacks 

The conventional MOM-based estimates (𝛾𝛾�3 and 𝛾𝛾�4)  of skew and kurtosis 
(𝛾𝛾3 and 𝛾𝛾4) and the MOP-based estimates (𝜉𝜉3 and 𝜉𝜉4) of left-right tail-weight ratio and 
tail-weight factor (𝜉𝜉3 and 𝜉𝜉4) were computed for the sample of size 𝑛𝑛 =  12,145 patients. 
The estimates of 𝛾𝛾3 and 𝛾𝛾4  were computed based on Fisher’s 𝑘𝑘 -statistics formulae 
(Kendall & Stuart, 1977, pp. 47-48), whereas the estimates of 𝜉𝜉3 and 𝜉𝜉4 were computed 
using (11)−(14) and (24), respectively. These sample estimates were then used to solve 
for the values of shape parameters (𝑐𝑐 and 𝑘𝑘) using (A) (9) and (10) and (B) (21) and (22), 
respectively, for the MOM- and MOP-based fits. The solved values of 𝑐𝑐 and 𝑘𝑘  were 
subsequently used in (6) to superimpose the Burr Type XII pdfs shown in Figure 2.  

To superimpose the Burr Type XII pdf (dashed curves), the quantile function 
𝑞𝑞(𝑢𝑢)  from (4) was transformed as (A) 𝑋𝑋� + 𝑆𝑆(𝑞𝑞(𝑢𝑢) − 𝜇𝜇) ⁄ 𝜎𝜎,  and (B) 
𝓂𝓂1 + 𝓂𝓂2(𝑞𝑞(𝑢𝑢) − 𝜉𝜉1) 𝜉𝜉2⁄ , respectively, where (𝑋𝑋�, 𝑆𝑆) and (𝜇𝜇, 𝜎𝜎) are the values of (mean, 
standard deviation), whereas (𝓂𝓂1 , 𝓂𝓂2) and (𝜉𝜉1, 𝜉𝜉2) are the values of (median, inter-
decile range) obtained from the actual data and the Burr Type XII pdf, respectively. 

Inspection of the two panels in Figure 2 illustrates that the MOP-based Burr Type 
XII pdf provides a better fit to the total hospital charges data. The Chi-Square goodness 
of fit statistics along with their corresponding 𝑝𝑝-values in Table 2 provide evidence that 
the MOM-based Burr Type XII pdf does not provide a good fit to these real-world data, 
whereas, the MOP-based Burr Type XII pdf fits very well. The degrees of freedom for 
the Chi-Square goodness of fit tests were computed as 𝑖𝑖𝑓𝑓 = 5 = 10 (class intervals) – 4 
(estimates of the parameters) – 1 (sample size).   
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Estimates Shape parameters 

𝑋𝑋� = 9879.1 𝑐𝑐 = 1.1665 

𝑆𝑆 = 6558.4 𝑘𝑘 = 40.9856 

𝛾𝛾�3 = 1.7035  

𝛾𝛾�4 = 4.34  
 

Estimates Shape parameters 

𝓂𝓂1 = 8445 𝑐𝑐 = 2.7793 

𝓂𝓂2 = 14684.8 𝑘𝑘 = 1.3833 

𝜉𝜉3 = 0.5477  

𝜉𝜉4 = 0.4868  
 

(A) (B) 

Figure 2: Histograms of the total hospital charges (in U.S. dollars) data of 12,145 heart 
attack patients superimposed by the (A) MOM- and (B) MOP-based Burr Type XII pdfs. 

 
Table 2: Chi-square goodness of fit statistics for the conventional MOM- and the MOP-
based Burr Type XII approximations for the total hospital charges (𝑛𝑛 = 12,145) data in 

Figure 2. 
 

Percent Exp. Obs. 
(MOM) 

Obs. 
(MOP) 

total hospital charges 
(MOM) 

total hospital charges 
(MOP) 

10 1214.5 1444 1214 < 3537.98 

 
 

 
 

< 3248.40 

20 1214.5 809 1214 3537.98 – 4554.41 3248.40 – 4763.57 

30 1214.5 968 1147 4554.41 – 5617.68 4763.57 – 6015.52 

40 1214.5 1127 1236 5617.68 – 6779.64 6015.52 – 7207.91 

50 1214.5 1372 1262 6779.64 – 8095.82 7207.91 – 8445.00 

60 1214.5 1452 1243 8095.82 – 9648.28 8445.00 – 9827.63 

70 1214.5 1344 1164 9648.28 – 11583.63 9827.63 – 11510.03 

80 1214.5 1353 1225 11583.63 – 14224.23 11510.03 – 13828.69 

90 1214.5 1175 1226 14224.23 – 18585.93 13828.69 – 17933.20 

100 1214.5 1101 1214 18585.93 or more 17933.20 or more 

    𝜒𝜒2 = 343.46 𝜒𝜒2 = 8.96 

    𝑝𝑝 <  0.0001 𝑝𝑝 =  0.1107 

 
4.2.  Estimation 

An example to demonstrate the advantages of MOP-based estimation over the 
conventional MOM-based estimation is provided in Figure 3 and Tables 3−6. Given in 
Figure 3 are the pdfs of the F (3, 10), Chi-square (𝑖𝑖𝑓𝑓 = 1), Extreme Value (0, 1), and 
Logistic (0, 1) distributions superimposed, respectively, by the Burr Type XII, Type III, 
Type XII, and Type III pdfs (dashed curves) in both (A) conventional MOM- and (B) 
MOP-based systems. The conventional MOM-based parameters of skew (𝛾𝛾3)  and 
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kurtosis (𝛾𝛾4) associated with these four distributions, given in Table 3, were computed by 
using equations (11)−(13) from (Headrick et al., 2010, page 2211). The values of shape 
parameters (𝑐𝑐 and 𝑘𝑘) given in Table 3 were determined by simultaneously solving (9) and 
(10). The values of 𝑐𝑐 and 𝑘𝑘 were used in (5) and (6) to superimpose the conventional 
MOM-based Burr Type XII, Type III, Type XII, and Type III distributions, respectively, 
as shown in Figure 3 (Panel A).  

The MOP-based parameters of left-right tail-weight ratio (𝜉𝜉3) and tail-weight 
factor (𝜉𝜉4) associated with the four distributions in Figure 3, given in Table 4, were 
obtained in two steps as: (a) compute the values of 10th, 25th, 50th, 75th, and 90th 
percentiles from the cdfs of the four distributions and (b) substitute these five percentiles 
into (11)−(14) to compute the values of 𝜉𝜉3 and 𝜉𝜉4. The values of shape parameters (𝑐𝑐 and 
𝑘𝑘) given in Table 4 were determined by solving the systems of equations (17)−(18) and 
(21)−(22), respectively. These values of 𝑐𝑐 and 𝑘𝑘 were used in (5) and (6) to superimpose 
the MOP-based Burr Type XII, Type III, Type XII, and Type III distributions, 
respectively, as shown in Figure 3 (Panel B). 

To superimpose the Type III or Type XII distribution, the quantile function 𝑞𝑞(𝑢𝑢) 
in (3) or (4) was transformed into: (A) 𝑋𝑋� + 𝑆𝑆(𝑞𝑞(𝑢𝑢) − 𝜇𝜇) ⁄ 𝜎𝜎,  and (B) 
𝓂𝓂1 + 𝓂𝓂2(𝑞𝑞(𝑢𝑢) − 𝜉𝜉1) 𝜉𝜉2⁄ , respectively, where (𝑋𝑋�, 𝑆𝑆) and (𝜇𝜇, 𝜎𝜎) are the values of (mean, 
standard deviation), whereas (𝓂𝓂1 , 𝓂𝓂2) and (𝜉𝜉1, 𝜉𝜉2) are the values of (median, inter-
decile range) obtained from the original distribution and the respective Burr Type III or 
Type XII approximation, respectively. 

The advantages of MOP-based estimators over the MOM-based estimators can 
also be demonstrated in the context of Burr Type III and Type XII distributions by 
considering the Monte Carlo simulation results associated with the indices for the 
percentage of relative bias (RB%) and standard error (St. Error) reported in Tables 5 and 
6.  

Specifically, a Fortran (Microsoft, 1994) algorithm was written to simulate 
25,000 independent samples of sizes 𝑛𝑛 = 25 and 𝑛𝑛 = 1000, and the conventional MOM-
based estimates (𝛾𝛾�3  and 𝛾𝛾�4 ) of skew and kurtosis (𝛾𝛾3  and 𝛾𝛾4 ) and the MOP-based 
estimates (𝜉𝜉3 and 𝜉𝜉4) of left-right tail-weight ratio and tail-weight factor (𝜉𝜉3 and 𝜉𝜉4) were 
computed for each of the (2 × 25,000) samples based on the parameters and the values 
of 𝑐𝑐 and 𝑘𝑘 listed in Tables 3 and 4. The estimates (𝛾𝛾�3 and 𝛾𝛾�4) of 𝛾𝛾3 and 𝛾𝛾4 were computed 
based on Fisher’s 𝑘𝑘-statistics formulae (Kendall & Stuart, 1977, pp. 47-48), whereas the 
estimates (𝜉𝜉3  and 𝜉𝜉4 ) of 𝜉𝜉3 and 𝜉𝜉4  were computed using (11)− (14) and (24). Bias-
corrected accelerated bootstrapped average estimates (Estimate), associated 95% 
confidence intervals (95% Bootstrap C.I.), and standard errors (St. Error) were obtained 
for each type of estimates using 10,000 resamples via the commercial software package 
Spotfire S+ (TIBCO, 2008). Further, if a parameter was outside its associated 95% 
bootstrap C.I., then the percentage of relative bias (RB%) was computed for the estimate 
as 

RB% = 100 × (Estimate − Parameter)/Parameter 
 

(25) 
 

  In order to demonstrate the advantages of MOP-based procedure over the MOM-
based procedure, the results of simulation are discussed in the next section. Also 
discussed in the next section are the advantages that MOP-based procedure has over the 
MOM-based procedure in terms of distribution fitting.  
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Distribution 1 

  
Distribution 2 

  
Distribution 3 

  
Distribution 4 

(A) (B) 
Figure 3: The pdfs (dashed curves) of the four distributions: Distribution 1 ∶= Burr Type 
XII ≈ 𝐹𝐹 (3, 10), Distribution 2 ∶=Burr Type III ≈ Chi square (𝑖𝑖𝑓𝑓= 1), Distribution 3 ∶= 
Burr Type XII ≈ Extreme Value (0, 1), and Distribution 4 ∶= Burr Type III ≈ Logistic (0, 
1) superimposed by (A) MOM- and (B) MOP-based Burr Type III and Type XII pdfs, 
respectively.  
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Table 3: MOM-based parameters of the mean (𝜇𝜇), standard deviation (𝜎𝜎), skew (𝛾𝛾3), 
and kurtosis (𝛾𝛾4) along with values of shape parameters (𝑐𝑐 and 𝑘𝑘) for the four 

distributions (dashed curves) in Figure 3 (Panel A). 
Dist 𝜇𝜇 𝜎𝜎 𝛾𝛾3 𝛾𝛾4 𝑐𝑐 𝑘𝑘 

1 0.3062 0.3628 4.2212 59.4545 1.0977 4.4817 

2 0.1394 0.2636 2.8284 12.0 −5.5421 0.0272 

3 0.4155 0.2421 1.1395 2.4 2.0251 5.3744 

4 0.9375 0.1392 0.0 1.2 −15.7764 0.5402 

 
Table 4: MOP-based parameters of median (𝜉𝜉1), inter-decile range (𝜉𝜉2), left-right tail-
weight ratio (𝜉𝜉3), and tail-weight factor (𝜉𝜉4) along with values of shape parameters (𝑐𝑐 

and 𝑘𝑘) for the four distributions (dashed curves) in Figure 3 (Panel B). 
Dist 𝜉𝜉1 𝜉𝜉2 𝜉𝜉3 𝜉𝜉4 𝑐𝑐 𝑘𝑘 

1 0.3261 1.0086 0.3473 0.4706 1.2404 3.1166 

2 0.1983 1.1878 0.1951 0.4542 −2.1131 0.2009 

3 0.6160 0.8837 0.6373 0.5098 2.4468 2.5995 

4 0.9071 0.5081 1.0 0.5 −10.1486 0.5308 

 
5. Discussion and Conclusion 

One of the advantages of MOP-based procedure over the conventional MOM-based 
procedure can be expressed in the context of estimation. Inspection of Tables 5 and 6 
indicates that the MOP-based estimators of left-right tail-weight ratio (𝜉𝜉3) and tail-weight 
factor (𝜉𝜉4)  are much less biased than the MOM-based estimators of skew (𝛾𝛾3)  and 
kurtosis (𝛾𝛾4) when samples are drawn from the distributions with more severe departures 
from normality. For example, for samples of size 𝑛𝑛 =  25, the estimates of 𝛾𝛾3 and 𝛾𝛾4 for 
Distribution 1 (skewed and heavy-tailed) were, on average, 58.54% and 94.38% below 
their associated parameters, whereas the estimates of 𝜉𝜉3 and 𝜉𝜉4 were 4.98% above and 
9.46% below their associated parameters. This advantage of MOP-based estimators can 
also be expressed by comparing their relative standard errors (RSEs), where RSE =
{(St. Error/Estimate) × 100} . Comparing Tables 5 and 6, it is evident that the 
estimators of 𝜉𝜉3 and 𝜉𝜉4 are more efficient as their RSEs are considerably smaller than the 
RSEs associated with the conventional MOM-based estimators of 𝛾𝛾3  and 𝛾𝛾4 . For 
example, in terms of Distribution 1 in Figure 3, inspection of Tables 5 and 6 (for 𝑛𝑛 =
 1000), indicates that RSE measures of: RSE �𝜉𝜉3� = 0.05% and RSE �𝜉𝜉4� = 0.03% are 
considerably smaller than the RSE measures of: RSE (𝛾𝛾�3) = 0.27%  and RSE (𝛾𝛾�4) =
0.85%. This demonstrates that the estimators of 𝜉𝜉3 and 𝜉𝜉4 have more precision because 
they have less variance around their bootstrapped estimates.  

Another advantage of MOP-based procedure can be highlighted in the context of 
distribution fitting. In the context of fitting real-world data, the MOP-based Burr Type 
XII in Figure 2 (Panel B) provides a better fit to the total hospital charges data than the 
conventional MOM-based Burr Type XII in Figure 2 (Panel A). Comparison of the four 
distributions in Figure 3 (Panels A and B) clearly indicates that MOP-based Burr Type III 
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and Type XII distributions provide a better fit to the theoretical distributions compared 
with their conventional MOM-based counterparts. This advantage is most pronounced in 
the context of the first two distributions: Distribution 1 and Distribution 2, where MOP-
based Burr Type XII and Type III (Panel B) provide a better fit to the 𝐹𝐹 (3, 10) and Chi-
square (𝑖𝑖𝑓𝑓 = 1) distributions than their conventional MOM-based counterparts (Panel A).  

In summary, the proposed MOP-based procedure is an attractive alternative to 
the more traditional MOM-based procedure in the context of Burr Type III and Type XII 
distributions. In particular, MOP-based procedure has distinct advantages when 
distributions with large departures from normality are used. Finally, we note that 
Mathematica (Wolfram, 2012) source codes are available from the authors for 
implementing both the conventional MOM- and MOP-based procedures.  
 
Table 5. Skew (𝛾𝛾3) and Kurtosis (𝛾𝛾4) results for the conventional MOM-based procedure. 
 
Dist. Parameter Estimate 95% Bootstrap C.I. St. Error RB% 

𝑛𝑛 =  25 
1 𝛾𝛾3 = 4.2212 𝛾𝛾�3 = 1.75 1.7397, 1.7597 0.00510 −58.54 

 𝛾𝛾4 = 59.4545 𝛾𝛾�4 = 3.34 3.2911, 3.3871 0.02430 −94.38 

      2 𝛾𝛾3 = 2.8284 𝛾𝛾�3 = 2.151 2.1428, 2.1596 0.00429 −23.95 

 𝛾𝛾4 = 12.0 𝛾𝛾�4 = 4.215 4.1715, 4.2614 0.02306 −64.88 

      3 𝛾𝛾3 = 1.1395 𝛾𝛾�3 = 0.7929 0.7859, 0.7994 0.00346 −30.42 

 𝛾𝛾4 = 2.4 𝛾𝛾�4 = 0.5014 0.4786, 0.5220 0.01111 −79.11 

      4 𝛾𝛾3 = 0.0 𝛾𝛾�3 = −0.051 −0.0585,−0.0430 0.00391 ----- 

 𝛾𝛾4 = 1.2 𝛾𝛾�4 = 0.3396 0.3243, 0.3552 0.00791 −71.70 

𝑛𝑛 = 1000 
1 𝛾𝛾3 = 4.2212 𝛾𝛾�3 = 3.606 3.5888, 3.6275 0.00972 −14.57 

 𝛾𝛾4 = 59.4545 𝛾𝛾�4 = 26.29 25.8657, 26.7366 0.22370 −55.78 

      2 𝛾𝛾3 = 2.8284 𝛾𝛾�3 = 2.761 2.7548, 2.7681 0.00335 −2.38 

 𝛾𝛾4 = 12.0 𝛾𝛾�4 = 10.17 10.0615, 10.3107 0.06265 −15.25 

      3 𝛾𝛾3 = 1.1395 𝛾𝛾�3 = 1.124 1.1219, 1.1266 0.00122 −1.36 

 𝛾𝛾4 = 2.4 𝛾𝛾�4 = 2.266 2.2451, 2.2861 0.01048 −5.58 

      4 𝛾𝛾3 = 0.0 𝛾𝛾�3 = −0.0045 −0.0064,−0.0025 0.00101 ----- 

 𝛾𝛾4 = 1.2 𝛾𝛾�4 = 1.158 1.1487, 1.1683 0.00498 −3.5 
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Table 6. Left-right tail-weight ratio (𝜉𝜉3) and tail-weight factor (𝜉𝜉4) results for the MOP-
based procedure. 

 
Dist. Parameter Estimate 95% Bootstrap C.I. St. Error RB% 

𝑛𝑛 = 25 

1 𝜉𝜉3 = 0.3473 𝜉𝜉3 = 0.3646 0.3625, 0.3671 0.00120 4.98 

 𝜉𝜉4 = 0.4706 𝜉𝜉4 = 0.4261 0.4245, 0.4277 0.00080 −9.46 

      2 𝜉𝜉3 = 0.1951 𝜉𝜉3 = 0.2161 0.2143, 0.2178 0.00089 10.76 

 𝜉𝜉4 = 0.4542 𝜉𝜉4 = 0.4026 0.4008, 0.4044 0.00090 −11.36 

      3 𝜉𝜉3 = 0.6373 𝜉𝜉3 = 0.6887 0.6850, 0.6928 0.00197 8.07 

 𝜉𝜉4 = 0.5098 𝜉𝜉4 = 0.4702 0.4688, 0.4715 0.00066 −7.77 

      4 𝜉𝜉3 = 1.0 𝜉𝜉3 = 1.0960 1.0901, 1.1024 0.00313 9.6 

 𝜉𝜉4 = 0.5 𝜉𝜉4 = 0.4623 0.4610, 0.4635 0.00063 −7.54 

𝑛𝑛 = 1000 

1 𝜉𝜉3 = 0.3473 𝜉𝜉3 = 0.3481 0.3478, 0.3485 0.00017 0.23 

 𝜉𝜉4 = 0.4706 𝜉𝜉4 = 0.4703 0.4700, 0.4705 0.00014 −0.06 

      2 𝜉𝜉3 = 0.1951 𝜉𝜉3 = 0.1961 0.1959, 0.1963 0.00012 0.51 

 𝜉𝜉4 = 0.4542 𝜉𝜉4 = 0.4541 0.4538, 0.4544 0.00016 ----- 

      3 𝜉𝜉3 = 0.6373 𝜉𝜉3 = 0.6379 0.6373, 0.6384 0.00030 ----- 

 𝜉𝜉4 = 0.5098 𝜉𝜉4 = 0.5094 0.5092, 0.5096 0.00012 −0.08 

      4 𝜉𝜉3 = 1.0 𝜉𝜉3 = 1.001 0.9997, 1.0015 0.00044 ----- 

 𝜉𝜉4 = 0.5 𝜉𝜉4 = 0.4996 0.4993, 0.4998 0.00011 −0.84 
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