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Abstract
The objective of this work is to show the rich and intuitive inference capabilities of
the Bayesian framework and its applications to the financial services industry.
Parametric and nonparametric methods were used to analyze returns characteristics
of a representative fund of hedge funds2 (FoHF). Regression models were used to
capture market factor sensitivities of the FoHF. Multiple Bayesian models were
proposed; results by Markov Chain Monte Carlo simulations were compared and
discussed. Actual market data and hedge fund returns were used in this study.
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 1. Introduction

Hedge funds (HFs) are privately placed investment vehicles that are free to invest in a
wide range of securities and derivatives, are typically more actively managed, take both
long and short positions, and use leverage to increase returns. Many hedge funds aim to
achieve more risk-controlled or asymmetric return profiles compared to long-only mutual
funds. Hedge funds are only available to accredited investors and qualified purchasers.

Many investors access hedge funds via a multi-strategy fund of hedge funds (FoHF). A
typical FoHF dynamically allocates to underlying hedge funds of various styles and the
weights are not available to outside investors. This form of investment represents a large
portion of hedge fund investments. Even if an institution invests in single-strategy hedge
funds directly, it typically diversifies into various strategies, thus forming a portfolio
similar to a multi-strategy FoHF. It is important for hedge fund investors to understand
and analyze FoHF return characteristics.

The typical FoHF investor would ask the following questions:
1. Is the return good enough? (or, average monthly return ≥ 0.6%?) 
2. Is it not more volatile than desired? (or, monthly standard deviation ≤ 2%?)
These questions are roughly equivalent to asking whether the fund's annualized return is
above 7.2% (close to the typical Libor + 7% target) and its annualized volatility is below
6.9%. In the current zero interest rate environment, this implies a desired Sharpe ratio of
about one.

Figure 1 shows the monthly return histogram of a representative FoHF, which has an

1 The views expressed in this article are those of the author and do not necessarily reflect the 
views of his employer. Email: weiren.chang@jpmorgan.com

2 This FoHF is not affiliated with the author's employer.
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empirical probability density with a heavy left tail (due to the 2008 financial crisis). The
fund's long-term average monthly return is 0.28% with a monthly standard deviation of
1.53%, skewness of -1.4 and extra kurtosis of 3.6.

Most practitioners in the financial services industry use classical statistical methods to
analyze return characteristics of hedge funds and fund of hedge funds. Common
techniques include return distribution analysis (e.g. mean, standard deviation, skew,
drawdown, Sharpe ratio), single and multiple regressions, rolling-window statistics,
clustering analysis, and principal component analysis.

This work analyzes return characteristics of major hedge fund styles and a representative
multi-strategy FoHF focused on Bayesian methods. We also try to better understand the
FoHF's underlying drivers and market factor sensitivities, as well excess returns over
benchmarks. This paper's objective and scope are different from that of [Dewaele 2011],
which used the classical bootstrap method to assess the average excess return of a large
group of FoHF's. Market data from January 2004 to April 2014, are used in the study.
This time period covers an economic expansion period, followed by a financial crisis and
deep recession, then an ongoing uneven recovery period.

Bayesian models in this study are coded in the language of BUGS (Bayesian inference
Using Gibbs Sampling). Open-source software systems, R and JAGS (Just Another Gibbs
Sampler), were used to perform Markov Chain Monte Carlo (MCMC) simulations and
statistical analysis.

Market factors used to explain the FoHF returns include US and international equity
indices, US Treasury yields, US and emerging market corporate bond indices, commodity
prices, and traded weight US dollar index. Market data, including indices and exchange-

Figure 1: Long-term Return Histogram of FoHF
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trade funds (ETF) as proxies, are downloaded (free of charge) from the Federal Reserve
Economic Data (FRED) center and yahoo.com.

There are several hedge fund strategy classifications, either asset weighted and equally
weighted. The asset-weighted indices are provided by Credit Suisse, formerly known as
Dow Jones CS hedge fund indices. The 9 major hedge fund strategies are Long/Short
Equity (LSE), Equity Market Neutral (EMN), Event Driven (ED), Fixed Income
Arbitrage (FIArb), Convertible Arbitrage (CVArb), Global Macro (GM), Managed
Futures (MF), Emerging Markets (EM), and Dedicated Short (DS). Monthly index
returns are available for download (free of charge) from www.hedgeindex.com. Another
major HF index provider is the Hedge Fund Research (HFR) group, which has different
strategy classifications and publishes equally weighted index data. HFR data is available
by subscription only.

The paper first highlights the benefits of Bayesian methods in contrast to classical
statistics. Various Bayesian models and simulation results are presented next. Results
from classical statistical analysis provides additional insights to hedge fund
characteristics. The author will also discuss potential applications of Bayesian methods to
hedge fund analysis.

 2. Brief Introduction to Bayesian Statistics

Probability theory studies random phenomena and processes modeled with supposedly
known parameters. A probabilistic model is a data-generating process. Statisticians
collect data (observational or experimental), try to discover the process behind the data to
gain insight, and make inferences based on the findings. To a statistician, the parameters
used to fit a model are always estimated and not actually known. Uncertainties in
probability are aleatory; while uncertainties faced in statistics are mostly epistemic or the
combination of both. The nature of this study is statistical and is focused on the Bayesian
approach.

Bayesian statistics originated from Bayes' theorem, published posthumously in 1763, and
later independently discovered by Laplace in 1812. The theorem links the posterior
probability to prior and conditional probabilities of events A and B in a simple form:

Pr(A|B) = Pr(B|A) Pr(A) / Pr(B)

Pr(A) and Pr(B) are prior probabilities; Pr(B|A) is the conditional probability of B given
A; Pr(A|B) is the posterior (conditional) probability of A given B.

This seemingly simple theorem in probability is deeper than it looks and has wide-
ranging applications. An unknown model parameter is viewed as a random variable by
Bayesian statisticians. In other words, the epistemic uncertainty about a parameter is
quantified as probability. By contrast, classical/frequentist statisticians view a model
parameter unknown but fixed. Bayesian statistics extend the theorem's probabilistic
thinking into a coherent and flexible inferential framework. Box had a nice comment on
Bayesian inference: “Bayesian methods allow greater emphasis to be given to scientific
interest and less to mathematical convenience” [Box 1973].

We can extend Bayes' theorem as follows. Let A = Θ (a model parameter or hypothesis),
and B = D (data), thus
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Pr(Θ|D) = Pr(D|Θ) Pr(Θ) / Pr(D)

The Bayesian view considers Pr(Θ) as the prior degree of belief about Θ; Pr(D|Θ) as the
likelihood function of D given Θ; Pr(Θ|D) as the posterior degree of belief about Θ given
that D has occurred. Probabilities can be further extended to probability density functions
if Θ and D have continuous values.

f(Θ|D) = f(D|Θ) f(Θ) / f(D)

That is, posterior density of Θ is proportional to its likelihood function multiplied by its 
prior density. It is important to note that f(Θ|D), i.e. probability density function of a 
model parameter given observed data, is what statistics are concerned with. However, 
classical statistics and inferences are based on f(D|Θ), assuming a known functional form 
in f and a fixed model parameter Θ, then use data to fit the unknown value of Θ. The mis-
interpretations of p-value are discussed in [Berger 1988].

Classical/frequentist statistics dominated most of the second half of the twentieth century,
though the Bayesian approach has been advocated as a sound alternative by prominent 
statisticians [Box 1973] such as Jeffreys, De Finetti, Lindley, Box, etc. Prior to 1990, 
conjugate probability density functions were commonly used to facilitate analytical 
solutions of posterior densities in order to perform statistical inference. Simulation-based 
Bayesian methods started to gain tractions in the mid-1990's due to efficient MCMC 
algorithms for posterior sampling combined with availability of high-speed computing. 
The Nobel Prize in Economics in 2011 was awarded to Christopher Sims due to his 
analysis of monetary policy effects using the Bayesian approach [Sims 2011]. The 
Bayesian paradigm has been gaining acceptance by theorists and practitioners of various 
fields in recent years. In recent years, many researchers applied hierarchical Bayesian 
modeling to complex problems successfully.

One major concern about the Bayesian approach is its subjectivity due to use of prior
probability. However, it is advantageous to incorporate expert knowledge to guide
parameters' prior probabilities, which can improve the accuracy of posterior probability
estimates. The “illusion of objectivity” is also discussed in [Berger 1988]. Lack of long-
term return history when analyzing hedge funds is common, the Bayesian method can
come to the rescue since it does not always require long-run data to make inference. It is
also important to note that the posterior probability is the weighted average of prior and
data. When there are enough data, the potential “bias” in prior is generally not an issue.
Also, when non-informative priors are used, the data usually dominate the posterior
estimates, so the bias in prior is not an issue.

The Bayesian statistical inference framework is based on probabilistic reasoning. It
provides a natural way to calculate a parameter's credible interval (or Bayesian inference
interval) and its associated probability, hence providing richer inferential properties. This
concept of probability associated with a parameter's credible interval does not exist in the
classical/frequentist statistical paradigm.

This flexible and coherent framework facilitates intuitive and deeper understanding to
statistical inference problems. The approach does not resort to ad hoc tricks often
proposed in classical statistics. It also allows iterative and sequential updating of one's
knowledge about model parameters, as D.V. Lindley said: “Today's posterior is
tomorrow's prior” [Lindley 2000].
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The four-step process in Bayesian analysis consists of:
1. Modeling: Model parameters of interest as random variables, specify prior

(density) functions and likelihood.
2. Updating: Update posterior (density) functions of parameters using data, priors,

and likelihood.
3. Sampling: Generate samples from posterior (density) functions.
4. Inference: Summarize on parameters from posteriors samples using point or

interval estimates.

 3. Bayesian Modeling and Analysis of FoHF Returns

In the financial service industry, most statistical analyses rely on the ubiquitous Normal
distribution model using the classical/frequentist approach. The author believes the
Bayesian paradigm offers an attractive alternative.

The following sections discuss the Bayesian models used to model the FoHF returns in
this study. Markov Chain Monte Carlo (MCMC) simulations were done using open-
source R and JAGS, which is a convenient tool for generating posterior probability
samples based on Gibbs Sampling algorithm.

The following are simulation parameters throughout this study.
1. Number of steps in adaptation: 1000
2. Number of steps in burn-in: 2000
3. Number of MCMC chains: 3
4. Number of thinning steps: 5
5. Number of posterior simulation steps per chain: 5000

It is advisable to make sure posterior samples do not show significant autocorrelations.

 3.1. Normal Likelihood of Two Parameters, Non-informative Priors
We first use a simple Bayesian model as a baseline to demonstrate the modeling process.
Monthly FoHF return data from the boom period of 2004 to 2007 are used. Table 1 shows
the BUGS code of the model. The likelihood function is a Normal density function with
two parameters: average monthly return (mu) and the monthly standard deviation
(sigma). Non-informative (or “diffuse”) Normal and Gamma prior density functions are
specified for mu and prec (“precision”) respectively. The inverse of variance is called
“precision”. The standard deviation, sigma, is the inverse of square root of precision. Two
types of posterior inferences are done: point and interval estimates. The latter, called
credible interval, has a (useful) probability associated with it.

Table 2 summarizes the posterior inference of the baseline model. It is important to note
that both mu and sigma are considered as random variables. Both have posterior
probability distributions, so it is possible to make statistical inference (using probabilistic
reasoning) on both parameters. Point estimates from Bayesian and classical approaches
gave similar results. Interpretations and the inference of interval estimates are
meaningfully different.

The Bayesian inference results on the baseline model showed low probabilities of the
FoHF having a negative average monthly return and being more volatile than the desired
monthly standard deviation of 2%. However, the probability of having good (≥0.6%)
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average monthly return is only 67%. The benefit of using the credible interval is that an
intuitive probability measure is given. By contrast, classical statistics would state “the
null hypothesis can not be rejected”, which does not provide any further insight. The
Bayesian posterior probability is also different from p-value. The former is the desired
Pr(Θ|D); the latter is Pr(D|Θ), which assumed Θ is known and fixed but this is simply a
mathematical convenience and not our view.

Table 1: BUGS Code: Baseline Bayesian Model (#1). Monthly returns data from 2004
to 2007

model
{
  for( i in 1:nData )
  { # likelihood f(D|Θ)
    y[i] ~ dnorm(mu, prec)
  }
  # priors f(Θ)
  mu ~ dnorm(0, 0.01)
  prec ~ dgamma(0.001, 0.001)
  sigma <- 1/sqrt(prec)
}

Table 2: Posterior Inference: Baseline Bayesian Model. Monthly returns data from 2004
to 2007

Average Monthly Return (mu) Monthly Standard Deviation (sigma)

Posterior mean of mu = 0.70%
95% credible interval [0.28%, 1.10%]

Posterior mean of sigma = 1.44%
95% credible interval [1.18%, 1.79%]

Probability of having good avg. return: 
Pr(mu ≥ 0.6% | D)  ≈ 67%

Probability of having negative avg. return: 
Pr(mu < 0%|D) < 0.1%

Probability of being more volatile than 
monthly 2%, Pr(σ ≥ 2% | D) ≈ 0.2%

Sample mean of mu = 0.7% Classical point estimate of sigma = 1.25%

 3.2. Normal Likelihood of Two Parameters, Subjective Priors
The second model has the same structure as the baseline except prior probabilities. What
if at the end of 2007, the FoHF manager expected an uncertain year ahead even though
the fund had been experiencing positive returns? The Bayesian framework allows one to
inject expert opinions into prior probabilities. Many criticize the subjectivity of prior
expectations. However, this can be beneficial when used prudently.

Table 3 shows the BUGS code of the second model. It reflects the manager's new belief
of having negative average return and higher volatility. Instead of using 5 years of data,
only 2 years of monthly data are used in the model—this reduced the influence of past
data and gave more weight to the prior probability/belief.
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Table 3: BUGS Code: Bayesian Model (#2) with Subjective Priors. Monthly returns
data from 2006 to 2007

model
{
  for( i in 1:nData )
  { # likelihood f(D|Θ)
    y[i] ~ dnorm(mu, prec)
  }
  # priors f(Θ)
  mu ~ dnorm(-0.025, 10000)
  prec ~ dgamma(15, 0.01)
  sigma <- 1/sqrt(prec)
}

Table 4 summarizes the posterior inference of the model with subjective priors. The
probability of having good average monthly return dropped to 21% from 67% of the
baseline model. The probability of being more volatile than 2% increased to 81% from
0.2% of the baseline model. The author obviously had the benefit of hindsight about 2008
in building this model. This is done to show how subjective/informative priors can help
Bayesian modeling. The Bayesian posterior inference gives much more insight to the
researcher. It also allows direct comparison between models. This Bayesian model also
showed how to incorporate forward-looking view as priors. The posterior 95% credible
intervals of mu and sigma contain the realized/empirical values of average monthly return
and monthly standard deviation from 2007 to 2008. This implies the subjective priors are
in line with the data.

Table 4: Posterior Inference: Bayesian Model #2 with Subjective Priors. Monthly
returns data from 2006 to 2007

Average Monthly Return (mu) Monthly Standard Deviation (sigma)

Posterior mean of mu = 0.25%
95% credible interval [-0.58%, 1.04%]

Posterior mean of sigma = 2.20%
95% credible interval [1.82%, 2.70%]

Probability of good avg. return ≥ 0.6%:
Pr(mu ≥ 0.6% | D)  ≈ 21% (cf. 67%)

Probability of having negative avg. return:
Pr(mu < 0 | D) ≈ 26% (cf. <0.1%)

Probability of being more volatile than 2%:
Pr(σ ≥ 2% | D) ≈ 81% (cf. 0.2%)

Realized average monthly return (2006 to 
2008) ≈ -0.098%

Realized monthly standard deviation (2006
to 2008) ≈ 2.23%

There are two immediate possible follow-up models:
1. Inject new expectation at the end of 2008 (or 2009) and specify subjective priors

of positive average return and lower volatility. The use of subjective priors must
be justified based on careful research or expert knowledge.

2. Introduce auto-correlations in monthly returns. For example, model mu as a
random walk with noise. This type of model is useful during periods of extreme
market sentiments (2008 to 2009).
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 3.3. Bayesian Single-Factor Regression Model, t-distribution Likelihood, Non-
informative Priors

It's important to understand which market factors drive hedge fund and FoHF returns.
Common factors include equity indices, benchmark interest rates, investment grade credit
and high yield indices, commodities, and currencies. US large-cap equity index S&P 500
is the most followed in the world. Many asset classes have high correlations with it. Our
third Bayesian model uses the exchange traded fund (ETF) of the index as the covariate.
The objective is to find the sensitivity and excess return of the FoHF vs. the benchmark
equity market.

Table 5 shows the BUGS code of the single-factor regression model. To allow fatter tails
of monthly returns, Student's t-distribution likelihood is used. Non-informative priors are
used for model parameters (mu, sigma, df, alpha, beta). The parameter df is the degree of
freedom in the t-distribution density function.

Table 5: BUGS Code: Bayesian Single Regression Model. Monthly returns data from
2004 to 2014

model {
  for( i in 1:nData ) {
    y[i] ~ dt(mu[i], prec, df)
    mu[i] <- alpha + beta*x[i]
  }
  df ~ dunif(1,5)
...
sigma <- 1/sqrt(prec)
}

Table 6 shows inference results of the Bayesian regression model. Assuming a monthly
fee of 0.1%, the after-fee alpha of the FoHF has only 63% probability of being positive,
which does not give a high-degree of comfort to the investor. By contrast, classical
inference cannot reject the null hypothesis—this is not intuitive and provides limited
further insight. It's notable that the probability of having positive beta is close to 100%.
The probability of having beta > 0.2 is 86%. This means the investor of the FoHF should
expect meaningful but moderate sensitivity to equities. The posterior mean of the degree
of freedom is 4.55, which indicates fatter tails than Normal distribution.

 3.4. Considerations in Multi-Factor Analysis
Though we advocate Bayesian methods, many classical statistical techniques are useful
for exploratory analysis. Prior to using 9 market factors as regression covariates, principal
component analysis (PCA) and hierarchical clustering analysis (HCA) were done on the 9
HF strategy indices and 15 directional market factors.

Some of the hedge fund styles are highly correlated, for example, LSE and ED indices
have correlation of 0.9. These indices are not suitable as explanatory variables for FoHF
or HF returns. Market factors are more suitable, especially as explanatory variables for
hedge fund returns. The author started from a set of 15 market factors and gradually
reduced to 9 adjusted factors, using PCA, HCA, and matrix condition numbers for
guidance.

PCA (on correlations) showed that first 4 principal components (PCs) explained over
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90% of return variations in the group of 15 factors plus FoHF; 4 PCs explained over 90%
of variations in the 9 HF strategy group. HCA (on correlations) showed roughly 5 distinct
styles: 4 less correlated strategies and a group of 5 directional strategies. This type of
nonparametric analysis is applicable for analyzing a group of hedge funds being
considered for investment.

Table 6: Posterior Inference: Bayesian Single Regression Model. Monthly returns data
from 2004 to 2014

Average Monthly Excess Return (alpha) Equity Market Sensitivity (beta)

Posterior mean of alpha = 0.15%
95% credible interval [-0.16%, 0.44%]

Posterior mean of beta = 0.24
95% credible interval [0.16,0.32]

Probability of positive alpha:
Pr(a > 0 | D) ≈ 84%

Probability of positive after-fee alpha:
Pr(a > 0.1% | D) ≈ 63%

Probability of positive beta:
Pr(b > 0 | D) ≈ 100%

Probability of beta higher than 0.2:
Pr(b > 0.2 | D) ≈ 86%

Classical regression: Cannot reject null 
hypothesis that alpha is 0 (p-value > 0.2)

Classical regression: beta = 0.248 with p-
value << 0.05 ⇒ Reject null hypothesis

Other Inferences

Posterior mean of sigma = 1.68% ⇒ 
Monthly standard deviation is higher than 
sample estimate of 1.53%

Mean of df = 4.55 ⇒ Slightly fatter tails 
than Normal distribution

 3.5. Bayesian Multi-Factor Regression Model for FoHF, t-distribution
Likelihood, Non-informative Priors

We used 9 adjusted market factors (monthly data from 2004 to 2014) as covariates in our
multi-factor regression study.

• Equities: X1=US Large Cap, X2=(Small Cap – Large Cap), X3=(Growth –
Value), X4=(Emerging Market – Developed Market)

• Rates: X5=US 10-year Treasury Yield
• Credit: X6=(High Yield – Investment Grade)
• Commodities: X7=Oil, X8=Gold
• Currency: X9=US Dollar Index

After factor reductions, there is still slight collinearity between X1 (Large Cap) and X6
(HY—IG) with correlation of 0.69, though much more benign than the group of 15
directional factors. A classical step-wise regression was first run using p-value of 0.05 as
the threshold. The intercept (alpha) is not “significant”. Significant betas are Large Cap
(b1=0.17), Growth–Value (b3=0.12), EM–DM (b4=0.1), US 10-year Yield (b5=0.018),
US Dollar Index (b9=-0.28).

Table 8 shows part of the BUGS code of the Bayesian multi-regression model. Table 9
shows the summary of the model's inference. Note that the Bayesian model's betas of
(HY–IG) and (USD) have wide credible intervals that contain zero, hence unreliable. The
former is partly due to collinearity with Large Cap equity. It's another example of the
Bayesian method providing more insight in the inference process.
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Table 7: BUGS Code: Bayesian Multi-Factor Regression Model. Monthly returns data
from 2004 to 2014

model
{
for( i in 1:nData )
{
  y[i] ~ dt(mu[i], prec, df)
  mu[i] <- a + inprod(b[], x[i,])
}
prec ~ dgamma(0.01, 0.01)
sigma <- 1/sqrt(prec)
df ~ dunif(1, 5)

a ~ dunif(-0.02, 0.02)
for(j in 1:nPredictor)
{
  b[j] ~ dt(muB, precB, dfB)
}
muB ~ dnorm(0, 0.1)
precB ~ dgamma(0.01, 0.01)
...
}

Table 8: Posterior Inference: Bayesian Multi-Factor Regression Model. Monthly returns
data from 2004 to 2014

Average Monthly Excess Return (alpha) Equity Market Sensitivity (beta)

Posterior mean of alpha = 0.13%
95% credible interval [-0.17%, 0.43%]

Posterior means of betas:  b1=0.148, 
b2=0.026, b3=0.071, b4=0.075, b5=0.014, 
b6=0.064, b7=0.018, b8=0.043, b9=-0.075

Posterior probability Pr(a > 0 | D) ≈ 80%
vs. classical: Cannot reject H0

Probability of positive after-fee alpha:
Pr(a > 0.1% | D) ≈ 63%

Which betas have 90% credible intervals 
that do not contain 0?
Large cap (b1=0.148)
EM–DM (b4=0.075)
US 10-Yr Rate (b5=0.014)

Classical regression: Cannot reject null 
hypothesis that alpha is 0 (p-value > 0.2)

Using p-value of 0.05 as cut-off:
Large cap (b1=0.17)
Growth–Value (b3=0.12)
EM–DM (b4=0.1)
US Rate (b5=0.018)
US Dollar Index (b9 = -0.28). 

Other Inferences

Posterior mean of sigma = 1.60% ⇒  
Monthly standard deviation higher than 
sample estimate of 1.53%

Posterior mean of df = 4.54 ⇒ Slightly 
fatter tails than Normal distribution

 3.6. Bayesian Multi-Factor Regression Model and Model Comparison
The method used in Section 3.4 can also be applied to modeling hedge fund returns. Let's
use Credit Suisse Fixed Income Arbitrage (FIArb) strategy index as the dependent
variable. It's useful to use a (classical) hierarchical clustering dendrogram, such as Figure
2, to visualize the correlations (or covariances) between the dependent variable and
covariates. In this case, the dependent variable FIArb is closest to LC and (HY—IG),
next to (SC—LC) and (EM—DM).

We expect FIArb to have higher credit market exposure so subjective priors were used to
reflect this knowledge. The BUGS code is similar to that in Table 8 except the priors of
the beta vs. (HY—IG), b6. Other betas have non-informative priors. Two models used
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two slightly different priors for b6. The first is t-distribution centered at 1 with precision
of 1000; the second is centered at 0.5 with precision of 10. The posterior means of b6 are
0.33 and 0.31 respectively. The 90% credible intervals of b6 are [0.147, 0.518] and
[0.142, 0.482]. All others betas' 90% credible intervals contain zero in both models, so
not reliable. This implies that the model is not very sensitive to the priors.

The probabilities of FIArb having positive alpha are over 95% in both models; two
posterior means of monthly alpha are 0.373% and 0.367% respectively. When comparing
multiple Bayesian models, the model with the lowest deviance information criterion
(DIC) is preferred. The DIC values of the two models are -706 and -707. The two models
are very close by DIC, point estimates, and credible intervals. Classical statistics do not
have such a coherent set of methods to compare models.

 4. Concluding Remarks

We showed that the Bayesian approach is powerful in modeling hedge fund and FoHF
return characteristics. The Bayesian paradigm treats model parameters as random
variables, demands more thinking in the modeling process including setting up likelihood
and priors, requires more computations, and has intuitive and more meaningful inference
potentials. The author expects to continue research on using Bayesian methods to
dynamic modeling of hedge funds and market factors.
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