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Abstract 
Differential item functioning (DIF) occurs when people from different groups with the 
same level of latent trait (ability/skills) have a different probability of responding to an 
item or a bundle of items in a questionnaire or test.  DIF detection is an important step in 
the evaluation of the measurement bias in an instrument.  Simultaneous Item Bias Test 
(SIBTEST, Shealy & Stout 1993) is a popular DIF detection method which can handle 
both dichotomous and polytomous items, and DIF in a single item and in a bundle of 
items.  In this paper, we focus on the effect size measure as defined SIBTEST, and derive 
the formulas for the effect size under the IRT models. The relationship between the 
SIBTEST effect size and other popular DIF effect size measures are discussed. The 
correctness of the formula is confirmed by simulation studies. 
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1. Introduction 
In psychological and educational measurement, a fair instrument should not contain items 
that favor a specific group of people over other groups.  In item response theory (IRT), 
the response characteristic for an item is described by the item characteristic curve (ICC) 
/ item response function (IRF), which describes the relationship between the probabilities 
of getting the specific response (e.g. correct response for a binary item with possible 
correct/incorrect response).  When the ICC for an item is different for people who come 
from different groups, then the item is biased and we call the function is a differential 
item functioning (DIF) item (Figure 1).  
 
Methods have developed for DIF detection. Popular methods include Mantel-Haenszel 
test (Holland & Thayer, 1988; Mantel & Haenszel, 1959), logistic regression test 
(Swaminathan & Rogers, 1990), and the Simultaneous Item Bias Test (SIBTEST, Shealy 
& Stout 1993).  In this paper, we will focus on the SIBTEST and provide details on the 
effect size in this procedure under the commonly used IRT model. 
 
An important aspect of any statistical procedure is the power, which is the probability of 
making the decision to reject the null hypothesis when the alternative hypothesis is true.  
The power is related to the effect size, the sample size, and the significance level (Cohen, 
1988).  In practice, both the statistical significance (as describe by the p-value) and effect 
size should be considered in the decision process.  While a statistical significance rule of 
p < .05 is nearly universally adopted, when the sample size is large, it is easy to get 
statistical significance results that may not be practically meaningful.  An effect size 
describes the quantitative measure of a difference and is not subject to effect of the 
sample size, so it is used to describe the practical difference.   In DIF detection, a 
decision on whether an item is a DIF item should be made upon both the statistical 
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significance and the effect size.  For example, in ETS classification scheme, DIF effects 
in an item are classified as negligible (Class A, |MH D-DIF| < 1 or the MH D-DIF is not 
significant at the level 0.05), moderate (Class B, 1 	|MH D-DIF|	  1.5), and large (Class 
C, |MH D-DIF|  1.5 and the MH D-DIF is significantly greater than 1 in absolute value 
at the level 0.05 ), where MH D-DIF is the effect size measure used in MH test (Dorans 
& Holland, 1993).  Similarly, one would argue that similar rules be used for other DIF 
procedures, including the SIBTEST. 
 
 

(a) 

ICCs for an DIF item 

 

(b) 

Difference in ICCs 

 
Figure 1:  A demonstration of differential item functioning in an item 
 

2. SIBTEST and its effect size  
Consider a test of length  with the first  items being the items with no DIF, and the 
remaining  items being the studied items being suspected of DIF. Let  be the 
score for item , ∑  be the total score for the anchor items, and  ∑  
be the total score for the studied items.  Let   be the average score on the studied items 
for all group  (  or ;  for the reference group, and  for the focal group) 
examinees for which .  
  
The SIBTEST statistic is defined by the weighted sum of the local group differences by  

	 

where /  is the proportion of examinees (from the reference and focal groups 
pooled together) getting score  ( /  or /  can also be used 
in the place of ). In the formula  

,			 0, … , , 
is the group difference on the studied items among examines with the same observed 
matching score on the anchor items. If the studied items have no DIF, one would expect 

0.   
 
The SIBTEST statistic is defined as the standardized version of   is defined by 
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	, 

where  

| , | ,
	 

is the standard error of the estimator , and | ,  is the sample variance of the 
studied item scores for examinees in group  (R or F) with matching score .   
 
Under the observed-score DIF null hypothesis that | |  for all ,  
follows an asymptotic distribution of 0,1 .  a modified SIBTEST test statistic by a 
regression correction method was proposed in Shealy and Stout (1993); and later a more 
sophisticated regression correction method was proposed by Jiang and Stout (1998). By 
using the regression correction, a corrected version for  is given by ∗ 	 ∗ ∗ , 

0,… , , where ∗  is the corrected average score for examinees matched on true 
score instead of observed score.  The modified SIBTEST is given by 

∗
∗

	, 

where ∗ is the corrected version of .  Under the latent-variable DIF null hypothesis that 
| | , ∗ has an asymptotic distribution of N(0,1).   

 
If the test length is large and the number of examinees is large,  ∗  tends to the 
population parameter 

 | | ,  

where  is the density function for the population latent trait distribution.   is the 
effect size measure in the SIBTEST.  And it can be interpreted as the weighted average 
score difference for the studied item (or a bundle of studied items) between the reference 
and focal groups.  For a single dichotomous studied item,  is the weighted average 
difference in probability of getting the correct response to the item.  So  is a “difference 
in probability or difference in score” measure. 
 

3. Formula for effect size  under IRT models 
Consider the item response function for the IRT 3PL model  

 ; , , 1
exp

1 exp
,  

where  is the latent trait  is the discrimination parameter,  is the difficutly parameter, 
 is the guessing parameter, and  is a scale factor.  In the IRT literature, 1.7 is 

often used for the 3PL and 2PL models, because the item response curve is very close to 
that of the normal ogive model with mean  and standard deviation 1/  (Birnbaum, 
1968; Camilli, 1994).  In this paper, we will use D = 1.7 for the 3PL and 2PL models. So, 
2PL model is obtained by setting 0, and the 1PL/Rasch model is given by setting 

0 and 1. 
 
In this section, we will derive the approximate formula for effect size . We assume that 
the 3PL model is satisfied with restrictions  and , and the 
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assumption ∼ , .  In other words, only difference between 
the two IRF’s between the reference and focal groups are in difficulty parameter. 
 
The item response functions for the reference and focal groups are 

; , , 1 ; , , and ; , ,
1 ; , , where  is given by 

 

 ; ,
exp 1.7

1 exp 1.7
.  

 
Therefore, by the linear approximation and the logistic-normal approximation, 

1 ; , ; ,  
1 	. 

And then according to the formulas proved in Appendix, 

	

1
1

	

1
1

√

	

√
	 

1 Δ
1

√

	

√
, 

which is the closed-form approximate formula for the effect size for IRT 3PL model.  
From this formula one can see that the effect size  is approximately proportional to 
Δ , which is the difference in difficulty, note that Δ  itself is often used as an 
effect size for DIF.  The guessing parameter  will reduce the effect size  by a factor of 
1 .   Note that the second half of the approximate formula is the density function of 

the Normal distribution evaluated at /√  , which obtain  maximum when 
, i.e. if the item difficulty is the same as the population latent trait mean, then  is 

the largest.    
 
  

4. Effect size  and other DIF effect size measures 
As we have seen, the SIBTEST effect size  can be interpreted as the weighted average 
score difference for the studied item (or a bundle of studied items) between the reference 
and focal groups.  For a single dichotomous studied item,  is the weighted average 
difference in probability of getting the correct response to the item.  So  is a “difference 
in probability or difference in score” measure.  We now discuss its relationship to other 
popular effect size measures used in other DIF testing procedures. 
 
4.1 Raju’s area between IRF curves 
A natural global measure for DIF is the area between the two IRF curves 

	. 

Raju (1988) gives a general formula for the area between two IRF’s under the 3PL 
models.  Under the restriction that , and allowing either  or , 
the area is 1 . Therefore, under the 2PL model, assuming that 

,  the local DIF effect  has an area under the curve equal to 

JSM 2014 - Social Statistics Section

4128



 

 

	 , regardless the discrimination parameter .  
Furthermore, under the 3PL model, assuming that the only difference in IRF between the 
reference group and the focal group is the difficulty parameter, i.e.,  and 

, and , the integral now becomes  1
	.  Therefore, guessing will reduce the DIF effect size.   

 
One problem of using the area-between-curves measure is that it is not always finite.  For 
example, in the case of 3PL model when , the area between the curves is infinity 
and, thus, undefined. The area-between-curves measure gives equal weight for  along 
the entire real line, ignoring the fact that population ability is more likely to occur in 
some regions than in others.  Therefore, one sensible alternative measure is the area 
between the IRFs weighted by some latent trait distribution density 

∗ 	, 

which is always finite.  There are different choices for ∗ : (1) the focal group latent 
trait distribution density, , (2) the reference group latent trait distribution density, 

, or (3) pooled density function 1 .  Standardized p-
difference (Dorans & Kulick, 1986) and the original SIBTEST paper (Shealy & Stout, 
1993)  use choice (1), and the current SIBTEST software provides options for all three.  
In this paper, we discuss the  measure under choice (3). 
 
4.2 Mantel-Haenszel Odds Ratio 
Another popular effect size measure of DIF is the odds ratio statistic associated with 
Mantel-Haenszel DIF procedure (Holland & Thayer, 1988).   The MH odds ratio statistic 
can be seen as an estimate of some average of the local odds ratio 

	 [ / 	 .    Under the 2PL model with common 
discrimination parameter, the logarithm of the local odds ratio is log
	1.7 1.7 Δ , so it is called uniform DIF because the DIF effect size is 
constant for all .  In this case, the global log MH odds ratio effect size measure is the 
same constant: log 1.7 Δ .   For the 2PL model with different discrimination 
parameter, and 3PL model,  is no longer uniform with respect to , and the global 
effect size measure log  is rather complicated (See Roussos, Schnipke, & Pashley, 
1999 for discussions on this effect size measure for the 3PL model). 
 
4.3 Delta-b measure 
One can also directly adopt a “delta-b” measure: Δ  as an effect size measure 
for DIF.  The log MH odds ratio and delta-b can be classified as “difference in difficulty” 
measures.  A “difference in probability” measure and a “difference in difficulty” measure 
are connected but not totally aligned and there is no obvious reason to believe one is 
better than the other.  For example, in the early era of the development of DIF methods, 
both MH and standardized p-DIF were adopted as standard DIF tools in ETS practice 
(Dorans & Holland, 1993).  In this paper, we give examples for both Δ  and .   The 
two effect sizes are on different scales and there is no strict one-to-one relationship 
between the two measures because the relationship also involves the other factors. 
 
4.4 Small, Medium, and Large Effect Size 
In practice, one often would like to use qualitative adjectives such as “small”, “medium”, 
or “large” to describe an effect size and to help guide decision making.  ETS uses a 
classification system to classify DIF effect sizes into three categories.  It is based on the 
MH D-DIF index, which is equal to -2.35 times the log MH odds ratio.  DIF effects are 
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classified as negligible (Class A, |MH D-DIF| < 1 or the MH D-DIF is not significant at 
the level 0.05), moderate (Class B, 1 	|MH D-DIF|	  1.5), and large (Class C, |MH D-
DIF|  1.5 and the MH D-DIF is significantly greater than 1 in absolute value at the level 
0.05 ) (Dorans & Holland, 1993).  Based on the ETS classification scheme, a value of 
Δ 0.426 (equivalent MH D-DIF = 1) is considered a medium effect, and Δ 0.638 
(equivalent MH D-DIF = 1.5) is considered a large effect under the Rasch model (Paek & 
Wilson, 2011).  For SIBTEST effect size , there are no single direct one-to-one 
translation of these two  values into  values that applies to all possible situations 
because of other factors also involved the relationship.  However, if we use a relationship 
we derived earlier,  0.18Δ  under a typical situation (Rasch model,  within 1 SD 
from the population mean ability, and 1), also see  values in Table 2 later in this 
paper,  then we would consider  = 0.08 as a medium effect, and  = 0.12 as a large 
effect.  In the literature, another set of commonly used values are 0.05 as a medium 
effect and 0.10 as a large effect, which were first suggested by Dorans (1989). 
 

5. Simulation study 
In the simulation study, we consider a test of 100 items. Items 1 to 50 are anchor items: 
the validated items that are known to have no DIF. Items 51 to 100 are DIF items.  All 
the items follow the IRT 2PL model.  For each item, the discrimination parameter value  
(here we assume  is chosen by a positive random draw from a normal 
distribution with mean 1.2 and variance 0.1 (i.e., SD = 0.32); the reference group 
difficulty parameter  is drawn from a normal distribution with mean 0 and standard 
deviation 1. For anchor items 1 to 50, the focal group difficulty parameter  is set equal 
to .  For DIF items 51 to 100,  is set equal to Δ , where Δ 0.1 for items 51-
60, 0.2 for items 61-70, 0.3 for items 71-80, 0.4 for items 81-90, and 0.5 for items 91-
100.  The item parameter values were recorded and saved for later calculation of 
theoretical power.  The same items were used in 10,000 replicated simulation runs.  In 
each run, a sample of 1000 examinees from the reference group and 1000 
examinees from the focal group were simulated by drawing their ability parameter  from 
a 0, 1  distribution.  Then for each examinee in the reference group, the dichotomous 
response to each of the 100 items was simulated based on the 2PL model with 
discrimination  and difficulty ; and for each examinee in the focal group, based on the 
2PL model with discrimination  and difficulty . The simulated dataset was then 
analyzed by the SIBTEST program for detecting DIF in each item.  In the SIBTEST 
analysis, the total score of the first 50 anchor items was used as the matching variable to 
stratify the examinees, and the SIBTEST procedure with a two-sided alternative 
hypothesis was conducted on each of the 100 items. For each item, the following 
estimates were produced by the SIBTEST program and recorded: , SE, ,	 pvalue, and 
the decision of the test (reject  if .05, and do not reject  otherwise).  

 
Based on 10,000 replicated simulation runs, the following quantities were summarized 
for each item:  

 the mean of , which should be close to the true value of the effect size ; 
 the standard deviation of , which is the Monte Carlo SE; 
 the rejection rate ( =  the number of times rejecting  / 10,000). 

For the anchor items with no DIF, the rejection rate is an estimate of the Type I error rate, 
which is expected to be close to 0.05.  For the DIF items, the rejection rate is an estimate 
of the true power of the SIBTEST procedure, which we will use to check the validity of 
the power formula. The rejection rates for the first 50 non-DIF items are close to 0.05, 
and most of the values (47 out of 50; 94%) are located within the 95% confidence band 
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given by 0.05 1.96 , where  is the Monte Carlo error and its value is calculated by 
0.05 ∗ 0.95 /10,000 0.0022.  This indicates that the Type I error rate of SIBTEST 

is well controlled at 0.05.  The rejection rates of the last 50 DIF items has a general trend 
of increasing as Δ  increases, with the variability from this trend observed be due to the 
fact that the effect size is affect by other factors such as item discrimination , and thus 
the power is not solely determined by Δ .  

 
Figure 2. Comparison of theoretical and observed values from simulation study. 

 
Now let us compare the results obtained from the simulation data with the values based 
on the formula derived in this paper.  Figure 2 shows scatter plots comparing four key 
quantities in the SIBTEST power formula: , SE, , and power.  In each plot, the y-axis 
represents the values observed in the simulation data, which are considered as very close 
to “truth” based on the law of large numbers; and the x-axis represents the “theoretical” 
values calculated from the formula derived in this paper, using the parameters used for 
simulating the data.  We can see that in all the scatter plots, the points are close to the 45-
degree line, which means that the theoretical results agree very well with those observed 
in the simulation results. The root mean square difference (RMSD) for the four quantities 
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are: RMSD( ) = 0.00025, RMSD(SE) = 0.0006, RSMD(B) = 0.258, RSMD(power) = 
0.011.  
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Appendix 
 
As prerequisite for proving the formulas in the main text, let us prove the following two 
equations:  assuming 0 and 0, 

 
1 	

	
1 1

√ √
	,  

and  

 Φ
1

1 Φ
√

.  

where 
√

exp  is the density function of the standard normal distribution, 

and Φ  is the distribution function of the standard normal distribution.  
 
The proof of the first equation is 

1 	
	
1 	

	

1

√2
exp

	
2

	
1

√2
exp

	
2

	

1
2

exp
2

2
	 	

1
2

exp
2 2

	

1
2
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2

exp
2

	

1
2

exp
2

2 	

1

2
exp

2
	

1

√

	

√
	. 

 

Take the partial derivative of Φ  with respect to , and then 

apply first equation, we have 
1 1

 

1

√

	

√
 

Therefore  
1

√

	

√
Φ

	

√
 

Since ∞, the integral Φ 1,  solving above equation we 

get the constant 1. 
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