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Abstract
Many randomized trials of social interventions involve randomization of clients (e.g.,
students, welfare recipients) at each of a small collection of service facilities (e.g.,
schools, welfare offices). Only rarely are the facilities randomly selected; most often they
volunteer or agree to participate after intensive recruitment efforts. Actors at the local
facilities mediate the effects of the intervention -- both by the fidelity of their
implementation and by the charisma and energy they bring to their organizations. For this
reason, generalization of results to broader implementation phases can be hazardous.
Nonetheless, if the intervention is successful in the trial, advocates for the intervention
will use the results to urge more widespread implementation. If they succeed, the results
may be disappointing if it turns out that the intervention only works in the hands of a few
skilled actors. This hazard of can be reduced by placing confidence intervals on estimated
effects that reflect the variation in effects across sites (the random slopes). The question
then arises of how many sites are required to get valid generalization inferences. This
paper reviews the literature, lays out some philosophy, and shares some new simulations.

Key Words: Random slopes, external validity, multicenter trials, treatment-by-
center interaction

1. Local Actors

In many individually randomized trials of social interventions (e.g., education reform,
childcare reform, welfare reform, parole reform), multiple sites are used as a means to
build sample size. With multiple sites, it often becomes easier to find adequate numbers
of subjects to recruit for the trial. However, this easing comes with the challenge of using
local workers and facilities to administer the treatment. In this paper, I refer to the staff
working to administer the treatment as local actors, or just actors. Although trialists work
hard to train these local actors to deliver the intervention uniformly, these actors bring
their own skills and attitudes to their work. If the treatment works better when delivered
by some actors than others, the question arises of how to combine the results and how to
measure the precision of the combined results. From the field of drug development, Senn
(2007, p223), lists five estimands that we might try to make inferences about from a
multicenter trial. Numbers one and five from his list are:

Q1)The true mean of the effects for all patients in the trial.
Q5)The true effect for any future patient or centre to which we might wish to apply

the results.

If there are treatment-by-center interactions, then different methods must be used to
answer the two questions. The terminology around these two questions varies by
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substantive field. Often, inferences that are valid for Q1 are said to be “internally valid”
while those that are valid for Q5 are said to be “externally valid.” Study of Q1 is
sometimes referred to as concerning as “proof of concept” or “efficacy,” while the study
of Q5 is referred to as concerning “effectiveness.” Answers to Q1 may be referred to as
the effect in the “test ground,” while answers to Q5 may be labeled as “combined
response to treatment” (Dragalin et al., 2001; Fedorov and Jones, 2005).

Among research areas where randomized human trials are conducted, concern about
interactions between local actors and treatments is perhaps highest in the field of
behavioural research. In this field, the question of whether to aim for external validity by
fitting models with random effects for both the actors and the interaction of treatment
with local actor (also known as a random-slopes model in the econometric and meta-
analysis literature) or to be satisfied with aiming for internal validity by fitting models
with fixed effects for local actors and a single additive treatment effect for all actors is a
central issue that has been hotly debated (Walwyn and Roberts, 2010; Feaster, Miklulich-
Gilbertson, and Brincks, 2011). Walwyn and Roberts paraphrase Martindale (1978) and
Crits-Christoph, et al. (2003) as stating that, “there is little, if no, scientific value in
treating therapists as fixed.”

Hesitations about the use of random slopes models usually run along one of three lines.
The first is that an experiment with good power for Q1 may have low power for Q5. The
difference in power might be extreme if the number of centers is small relative to the total
patient sample size. The second hesitation is that unless the actors are drawn from a
probability sample of a well-defined population, it is unclear how much progress along
the path from internal validity to external validity is achieved by fitting a random-slopes
model. The third involves technical concerns about the adequacies of model-fitting
procures for random-slopes models with a very small number of actors. The focus of this
paper is on the third argument against fitting random slopes model in multi-center trials,
but in section 2, I also discuss the first two arguments.

In section 3, I review the history of research into the third anti-random-slopes argument.
In section 4, I describe the framework for a simulation study I conducted to extend the
research in this field to smaller samples sizes (in terms of actors) than had previously
been studied. In section 5, I present the results of the simulation study. I close with some
concluding remarks in section 6.

2. Imperfect External Validity as a Goal

As the Institute of Education Science has increased the numbers of experiments being
conducted in education research (Angrist, 2004, Cook, 2007), the issue of whether to aim
for internal or external validity in the analysis of multi-site trials has also arisen in the
field of education research. Schochet (2008) addressed the issue briefly in his guide to
power projections for education trials, drawing on the two standard anti-random-slopes
arguments mentioned above (low power for Q5 and lack of probability sampling from a
well-defined population):

Although this issue needs to be addressed for each study, we believe that the
fixed effects case is usually more realistic in evaluations of education
interventions. Most evaluations are efficacy trials where a relatively small
number of purposively-selected sites are included in the study. Thus, in many
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instances, it is untenable to assume that the study sites are representative of a
broader, well-defined population. Furthermore, inflating the standard errors to
incorporate between-site effects will slant the study in favor of finding internally
valid impact estimates that are not statistically significant, thereby providing less
information to policymakers on potentially promising interventions. Instead, we
believe, in general, that it is preferable to treat site effects as fixed, and to assess
the “generalizability” of study findings by examining the pattern of the impact
estimates across sites (for example, by calculating the percentage of sites with
beneficial impacts). This approach is likely to yield credible information on the
extent to which specific interventions could be effective, and whether larger-scale
studies are warranted to examine whether they are effective.

Senn’s advice is similar. He is firmly opposed to random sampling of centers, and
generally against fitting random-slopes models in this context. With respect to the
possibility of randomly selecting centers, he notes:

In my view this proposal, however theoretically desirable, is so far removed from
practical reality as to be infeasible. The task of proving that a treatment works at
all is so difficult and faces so many ethical, practical and financial constraints
that most trialists struggle to design a trial that is adequate to proving that the
treatment works in the patients studied. …, trialists seek not typical patients but
suitable patients for their trials. In any case, there is a philosophical problem in
that one cannot sample at random from the future. Thus, I maintain that most
trialists will continue to be satisfied with the limited aim of proving that the
treatment works at all. To the extent that they attempt to answer the more
ambitious question of what the effect of treatment will be more generally, they
are unlikely to want to move beyond the conventional random-effects [slopes]
estimator. Trying to define more complicated combined responses to treatment is
unlikely to be attractive and in particular is unlikely to be reflected in trial design
…

Also, on the fitting random slopes models, he notes:

I would nearly always propose a fixed-effect analysis of a clinical trial. I might
also consider that a random-effect analysis would be useful on occasion;
especially if there were rather many centres which had been fairly widely
selected.

The advice of Schochet and Senn appears to be accepted by most researchers using multi-
site trials in social science. However, there has been one very important exception. The
best example of a social experiment in which external validity was the explicit goal is the
Head Start Impact Study (Puma, et al., 2010). In that evaluation, the set of studied Head
Start Centers was a large probability sample of all eligible centers across the U.S. that
was explicitly powered to yield useful results even analysis methods appropriate for Q5
are used. This study appears to widely admired, but it was very expensive to conduct and
did not find important long-term effects of Head Start, so it by itself is not likely to set
the pattern for future social science experimental research. Most future experiments are
likely to involve haphazard collections of willing sites numbering from a handful to a few
dozen at most. So I think it is important to deconstruct Schochet’s arguments and
consider whether Senn’s advice for drug research applies to social science research.
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I think there are two core issues. The first is the frequency with which an answer to Q1 is
a satisfactory answer to Q5, and the second is what happens after a positive answer to Q1
is published without any attempt to answer Q5.

As discussed by Michael and O’Muircheartaigh (2008), medical research seems mostly
content to study Q1. This seems odd to me given current interest in personalized
medicine and the ranking of doctors and health care facilities. As James (2010) discussed,
there is substantial variation in practice among doctors, and when conscious efforts are
made to reduce the variation, average patient outcomes improve. So it is reasonable to
suppose that effectiveness of a pharmaceutical or medical device might vary across
doctors. Moreover, Kempthorne and Doerfler (1959) discussed the necessity of jumping
from answers to something like Q1 to answers to something like Q5, albeit without
supplying many clues about how to make the jump:

The fact that such inferences [on Q5] are difficult does not mean, of course, that
we should not make them. We have to do so. But we should be clear in our
thinking about the basis on which we form such opinions. The basis is outside
our experiment. No amount of analysis of our own data will totally justify such
an extrapolation.

One study where this possibility was explored (Lingsma, et al., 2011) failed to find
significant variation in the effect of a drug treatment across centers but they advocated
continued study of the issue for complex interventions:

We consider our results to be applicable to drug interventions, which work on
physiological mechanisms. Trials investigating a more complex intervention …
may be more sensitive to differences in quality of care.

This issue of intervention complexity is critical. In social science the interventions we
study are typically highly multi-dimensional with wide scope for interpretation by local
actors. There so much concern about the lack of faithful and consistent implementation
during trials that the number of centers is often kept small so as to facilitate the mounting
of parallel qualitative studies of “fidelity” (Judkins, 2011). Moreover, Bell et al. (2011)
clearly established that schools that volunteer for experiments are systemically different
from other schools in important ways and that the effect of a major education initiative
was different in the two sets of schools.

The dispute about whether to reflect the extra uncertainty in relationships due to
interactions with local conditions dates back at least to Kish and Frankel (1974). On this
subject, Hansen, Madow, and Tepping (1983) commented:

Failure to recognize such [design] effects may lead to serious understatement of
confidence intervals and to serious overstatements of precision in inferences to
the causal system. We believe that misinterpretations are especially likely when
design effects due to cluster sampling are not included in the models used for
inferences.

So in social science, we must assume that the answer to Q5 could be very different from
the answer to Q1. This brings us to the question of what happens following publication of
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an answer to Q1. In the field of drug development, Paul Flyer1 writes, “We approve a
new drug under carefully controlled circumstances. Doctors/patients decide if the
published data are supportive for a particular application with respect to the extrapolation
of risk/benefit seen in the artificial clinical trial to the actual clinical application. Post
marketing studies are often relied upon to provide reassurance that the treatment isn't
causing adverse reactions that wouldn't be seen without the intervention but this
information is often difficult to interpret where the natural history is not well
understood.” So the responsibility for implementation of drug research findings devolves
to doctors and patients. The situation is rather different in social science research.

Teachers and social workers will generally be compelled to follow protocols to the best
of their ability for most of their students, parolees, welfare beneficiaries, or
unemployment insurance beneficiaries. If an intervention is widely implemented based
on a favorable answer to Q1, and the general pool of workers is not able to implement as
well as the specially trained workers in the Q1 study, there may be substantial societal
costs. To prevent such losses, as indicated by Schochet, there is a concept in public policy
research, that research should be staged – a study is first mounted to answer Q1, a
favorable answer is followed by a larger study such as the Head Start Impact Study to
answer Q5. This is a reasonable idea, but it is unclear how much such staged research has
been conducted. Moreover, I think there is also some danger that Institutional Review
Boards (IRBs) may decide that effectiveness trials are unethical once efficacy has been
established.

The authors of a report on a randomized trial of a social intervention must be cognizant of
the fact that their study, even if carefully poised as an answer to Q1, will be acted upon in
the same manner as if the study answered Q5. Schochet is clearly aware of this danger
and mentions some ad hoc defenses against it. However, I find his advocacy of the
examination of the pattern of site-specific effects is too vague to be useful. Furthermore,
his suggestion for pooled inference based on the proportion of sites with beneficial site-
specific effects is not well defined. What criterion would be used for “beneficial” and
what proportion would need to be significant? The best way to make sense of a pattern of
site-specific effects is to fit a random-slopes model. Moreover, if one informally
examines the pattern and decides that that one site or another is so different from the
others that the effect estimates cannot be pooled, then the power loss might be greater
than one would incur by just fitting a random-slopes model.

My position is that even one has a volunteer sample of sites, it is better to aim for
imperfect external validity by formally using whatever information is available about
cross-site effect heterogeneity. As Senn noted, “If we attempt to answer this difficult
question [Q5], the random effects [slopes] model will almost certainly produce a better
approximation [than the fixed effects model].” Power to answer Q5 will be lower than it
would have been to answer Q1, but if one is lucky in the selection of sites (in the sense
that heterogeneity of effects in the general population is mirrored in the volunteer
sample), then one will have achieved external validity. At the worst, if the selected sites
have unnaturally similar effects, then the instability in the variance estimation process
one can cause one to end up with smaller standard errors than if one used a fixed effects
model, but this problem can be solved by taking the maximum of standard errors from the
two approaches. The instability of variance estimates when the number of sites is small

1
Personal communication. Former Team Leader Biometrics, CDER, FDA, currently heading a biostatistical

consulting group, Pacific Northwest Statistical Consulting.
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can lead one to wonder how low one can go (Bell, et al, 2014). This is topic of the
balance of this paper.

3. The Limits of Design-Based and Cluster-Robust Inference

The third standard anti-random slopes argument, as discussed above, concerns the
performance of analytic software when the number of clusters is small. This concern is
related to a small literature on the limits of design-based survey inference and more
general cluster-robust inference as the number of clusters (known in the survey literature
as primary sampling units, or PSUs for short) becomes very small. In fact, the primary
founder of design-based survey inference, Morris Hansen, in an otherwise fierce defence
of the methodology (Hansen, Madow, and Tepping, 1983) expressed uncertainty about
the validity of these methods when the survey has a small number of PSUs:

… in most practical problems the application of probability-sampling theory is
essentially assumption-free only if the sample is acceptably large. When surveys
use relatively small samples, the samples may be too small for the application of
the theory to be essentially assumption-free. Under such conditions, model-
dependent inferences may be preferable. Much research needs to be undertaken
on the applicability of asymptotic theory to relatively small samples… No
general rules can be given for what is a large enough sample. … Ordinarily, one
can reasonably regard samples of less than 25 as small, …

Following up on this challenge years later, Bell and McCaffrey (2002) found bias in
various cluster-adjusted variance estimator for regression coefficients on multi-stage
samples when the number of clusters. They also proposed an estimator to reduce this
bias. Unfortunately, the estimator is very complex, and, to date, none of the major
analysis software systems have added it as an option. However, their Theorem 1 shows
that this bias in the variance estimator depends on the intraclass correlation (ICC) of the

covariate. If the ICC is low, then the bias should also be low. In fact, if ( )
1

i i

−
′ ′X X X X l

is constant across the clusters, then the bias in the estimate of ( )ˆVar β′l is zero, where

β̂′l is an arbitrary linear combination of estimated regression coefficients. If the

regressor in question is randomization-to-treatment status, and both the total sample size
and the treatment sample vary little across clusters, then this condition should be
approximately met. (If no covariates are used, and both the total sample size and the
treatment sample size are constant across clusters, then the condition is exactly met.)
Supporting this observation, Bell and McCaffrey have simulations with as few as 20
clusters where the bias in the variance estimate is nearly zero for a regressor with ICC
near zero.

In a completely independent strand of related research, Bell et al. (2014) found
encouraging results for inferences about regressors in random slopes models with a
mixture of runs with 10, 20, and 30 clusters. However, they did not report results
separately by the number of clusters, so the paper does not really plumb the depths of
how low one can go. Based on the encouraging results from these two unrelated papers, I
simulated performance of variance estimators for as few as 3 or 5 clusters as is discussed
in the next section.
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4. Simulation Framework

I simulated person level responses as
4

0 1 21 2 22
1

, 1,...,10; 1,...,ij j j ij j ij mj ijm ij j
m

y T T X j i nπ π π γ ε
=

= + + + + = =∑ ,

ijm mj ijmX uµ= +

ijε ~ ( )20, ( )jN iidσ

4
2 2

1

max 0.05,1j mj
m

σ γ
=

 
= − 

 
∑

( )~ 0,1 ( )ijm mu N iidρ−

where:

j0π = the site-specific component of the mean outcome of beneficiaries

in site j absent the T21 and the T22 treatments,

j1π = mean impact of the T21 treatment on beneficiary outcomes in site

j,

j2π = mean impact of the T22 treatment on beneficiary outcomes in site

j,

ijT21 = an indicator of whether beneficiary i in site j has been randomized

into the T21 group (= 1 if so, = 0 if not),

ijT22 = an indicator of whether beneficiary i in site j has been randomized

into the T22 group (= 1 if so, = 0 if not),

ijmX = a measure of baseline characteristic m for individual i in site j,

mjγ = regression coefficient of ijmX in site j,

ijε = person level error independent of all other terms in the model and

across sites,

2
jσ is the residual variance of y in site j,

mjµ = mean of ijmX in site j,

ijmu = person level error in covariate ijmX ,

mρ = intraclass correlation in in covariate ijmX ,

jn = sample size at site j (across arms).

I simulated site parameters as

( )~ 100,100 ( )jn N iid
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where:

00β = the grand mean of outcome y across the 10 sites absent either the

T21 or the T22 treatment,

10β = the overall impact of the T21 treatment (versus the no treatment of

the C2 group),

20β = the overall impact of the T22 treatment (versus the no treatment of

the C2 group),

0mθ = average regression coefficient across sites for ijmX

mc = variance of regression coefficient for ijmX across sites,

j0ν = intercept offset for site j under control conditions (this term is

often also called the random intercept),

j1ν = difference between the effect of T21 in site j and the average effect

of T21 (this term could also be called the random effect or slope
of T21),

2 jν = difference between the effect of T22 in site j and the average effect

of T22 (this term could also be called the random effect or slope
of T22),

l = degrees of freedom for t-distribution used to generate nonnormal
variation in treatment effects across sites, and

0 01 02 12 1 2 1 2 3 4, , , , , , , , ,j j j j j j j j j jξ ξ ξ ξ ξ ξ ψ ψ ψ ψ = latent independent

random variables used in the background to create the desired
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variance-covariance structure for random intercepts, random
treatment effects, and random slopes.

With this setup, the covariance matrix for 0 1 2j j jν ν ν ′   is

00 01 02

01 11 12

02 12 22

τ τ τ

τ τ τ

τ τ τ

 
 
 
  

,

but the distributions of the random effects of T21 and T22 have heavier tales than the
distribution of random intercepts in the control arm.

I developed the formula for
2
jσ above so that the unconditional outcome variance in

every site would be one. This makes it easier to interpret all other parameters as effect
sizes. Another advantage is that this made the conditional level-one errors
heteroscedastic. This was useful because some concerns have been raised about results
from survey-sensitive regression software when level-one residual errors are
heteroscedastic. I achieved this be letting the explanatory power of the covariates vary
across sites. Using this general structure, I created several scenarios for simulation.
Before discussing them and the differences among them, I first mention all the parameter
values that were constant across the scenarios.

4.1 Scenarios
I created 6 scenarios corresponding to two different structures of effects across sites and
three cluster counts. They are sketched in bullet form below and then closely defined in
Tables 1 and 2. I generated 5000 replicates of each scenario.

• Structure 1. Strong local variation in treatment effects with no overall effect of

either T21 or T22. Balanced variation in local treatment effects for T21 and T22.

• Structure 2. Strong local variation in treatment effect of T21 but minimal local

variation in treatment effect of T22. No overall effect of either T21 or T22.
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Table 1. Common Parameter Settings
Concept Symbol Value
Average sample size per site 100
Standard deviation of site-level sample sizes 10
Grand mean under control conditions

00β

Proportion randomized to T21 at each site 0.33
Proportion randomized to T22 at each site 0.33
Intraclass correlation in covariate #1

1ρ 0.001

Intraclass correlation in covariate #2
2ρ 0.05

Intraclass correlation in covariate #3
3ρ 0.10

Intraclass correlation in covariate #4
4ρ 0.26

Variance in the site-specific regression coefficients of covariate #1
1c 0.05

Variance in the site-specific regression coefficients of covariate #2
2c 0.05

Variance in the site-specific regression coefficients of covariate #3
3c 0.05

Variance in the site-specific regression coefficients of covariate #4
4c 0.05

Degrees of freedom for t-distribution used to generate
nonnormal variation in treatment effects across sites

l 5

Average regression coefficient across sites for y on covariate #1
10θ 0.20

Average regression coefficient across sites for y on covariate #1
20θ 0.20

Average regression coefficient across sites for y on covariate #1
30θ 0.20

Average regression coefficient across sites for y on covariate #1
40θ 0.20

Table 2. Parameter Settings for Specific Scenarios
Value Under
Structure #

Concept Symbol 1 2

Average effect of T21 10β 0 0

Average effect of T22 20β 0 0

Variance of site intercepts 00τ 0.10 0.10

Variance of site-level effect of T21 11τ 0.20 0.20

Variance of site-level effect of T22 22τ 0.20 0.01

Covariance of site intercept with site-level effect of T21 01τ 0.02 0.02

Covariance of site intercept with site-level effect of T22 02τ 0.02 0

Covariance of site-level effects of T21 and T22 12τ 0.02 0
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4.2 Analysis Methods
For each generated population under each scenario, I used two different analytic
approaches. Method 1 uses survey-sensitive regression software that corrects for
clustering. Pseudocode is as follows:

proc surveyreg data=pop;
cluster Site;
class Treat;

model y= Treat x1 x2 x3 x4/ solution;
run;

Method 2 involves a random slopes model fit with restricted maximum likelihood and the
Kenward-Roger degrees of freedom estimation. Pseudocode is as follows:

proc mixed data=pop method=reml;
class treat site;
model y=treat x1 x2 x3 x4/solution ddfm=kr;
random intercept t1 t2/subject=site;
run;

4.3 Performance Standards
For each generated population under each scenario and each different analytic approach, I
calculated several performance statistics:

• Whether estimated 95% confidence interval for the average effect of T21

includes the truth.

• Ditto for the average effect of T22, as well as the average regression coefficients

of the four covariates

• Whether the estimated standard error for T21 was only half or less of the true

standard error for the estimation process

• Ditto for T22

• Whether the estimated standard error for T21 was half or less of the estimated

standard error for T22

• Whether the estimated standard error for T22 was half or less of the estimated

standard error for T21

The rationale for the first two standards is clear, but some additional motivation for the
others may be helpful. Standard errors being way off occasionally does not invalidate the
frequentist properties of the confidence intervals and related hypothesis testing but do
create problems for analysts who prefer likelihood-based methods and therefore condition
on the observed data. Mismatched estimates of standard errors for T21 and T22 are
particularly eye-catching to such analysts.

Joseph Sedransk in his 2007 Hansen Memorial Lecture reminded the audience of a clever
toy problem by Buehler (1959). In his toy problem, Buehler posited two players and a
referee. Based on a sample, Peter forms a confidence interval for the mean of a normal
population with unknown mean and variance, and Paul wagers whether it is true or not in
this specific instance. The referee then informs Paul whether he has won. If Paul’s
strategy is to bet against the confidence interval whenever the sample estimate of the
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standard error is smaller than some arbitrary constant a, then over a long run of
repetitions of the process (draw a sample, Peter forms confidence interval, Paul decides
whether to accept it, referee decides the issue), Paul’s expected gain is nonnegative.
Moreover, if he has any information about the true standard error, then Paul ought to be
able to pick a value for a such that his expected gain is strictly positive. For the problem
at hand of making inferences about an average treatment effect, it seems plausible that
knowing that the estimated standard error is either smaller than what one would obtain
from a fixed effects model or smaller than the standard error on the average effect of a
similar treatment is the sort of information that Paul could use to craft a winning betting
strategy.

With 5000 simulations, the standard errors on coverage rates are on the order of 0.31
percentage points, so estimated coverage rates above 94.3 percent indicate good
performance.

5. Results

Table 3 shows that design-based regression software is valid for testing for experimental
effects with as few as 3 clusters if the between-cluster variance in treatment effects is
non-negligible, as in structure #1 for treatment variations and in structure #2 for treatment
T21. If the between-cluster variance is negligible, as in structure #2 for treatment T22,
then design-based regression software is a little liberal with three clusters but delivers
valid inferences with as few as five clusters. Inferences are not valid for the covariates
with higher intraclass correlation, but since they are nuisance parameters in the analysis
of experiments, this is not important.

However, Table 3 also shows that with fewer than 10 clusters, the estimated standard
errors are wildly unstable. With 3 clusters, estimated standard errors are too small by
more than a factor of about a quarter of the time. This is not surprising with so few
degrees of freedom. What I found more surprising is that the hypothesis testing procedure
is still valid even though p-values based on estimated standard errors might often give
misleading evidence about the strength of the evidence against the null.

The fact that the standard error in particular sample was poorly estimated would be
largely invisible if there was a single treatment, but with three-arm experiments, it can be
more obvious. With three PSUs one estimated standard error will be more than twice as
large as the other estimated standard error about 40 percent of the time if the random
effect variances are balanced (as in structure #1) and about 57 percent of the time if the
random-effect variances are unbalanced (as in structure #2).

Table 4 shows broadly similar results for a random slopes model fit with REML and
Kenward-Roger options in SAS PROC MIXED. The random slopes model appears to
need at least 5 clusters to provide valid inference for treatment effects, a little more than
design-based regression but not much worse. In exchange, dramatic underestimation of
variances is less common with the random slopes model – particularly when the true
between-cluster in treatment effect is small, as for treatment T22 under structure #2.
Also, dramatic mismatches between estimated standard errors for the two treatment arms
in a three-arm trial are much less common with random slopes regression modeling than
with design-based regression. I think this might be due to the feature in SAS PROC
MIXED that forces variance components with negative likelihood-based estimates to be
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slightly positive. Also, the inferences for the other covariates are far too liberal, but this
could be largely repaired by adding random slopes for them to the model.

Table 3. Performance of Survey Software with Cluster-Adjusted Standard Errors
Population Structure 1 1 1 2 2 2
Number of clusters 3 5 10 3 5 10
Performance Measure

CI covers 10β (%) 95.3 95.1 95.7 95.3 95.1 95.5

CI covers 20β (%) 95.4 95.6 95.0 93.7 94.5 94.9

CI covers 10θ (%) 94.6 94.9 94.6 94.7 94.4 94.7

CI covers 20θ (%) 93.9 94.0 94.6 93.7 93.6 95.0

CI covers 30θ (%) 93.9 94.1 93.8 94.1 94.0 94.4

CI covers 40θ (%) 92.9 92.6 92.6 92.8 92.7 93.2

Est. StdErr on 10β <half true StdErr on 10β (%) 26.3 12.6 2.2 26.9 13.4 2.0

Est. StdErr on 20β <half true StdErr on 20β (%) 26.0 12.4 2.4 24.6 11.4 1.8

Est. StdErr on 10β <half est. StdErr on 20β (%) 18.9 12.0 4.8 6.5 1.2 0

Est. StdErr on 20β <half est. StdErr on 10β (%) 20.8 11.9 4.3 50.3 49.0 47.4

Table 4. Performance of Multi-level model with Random Slopes for Treatment Effects
Population Structure 1 1 1 2 2 2
Number of clusters 3 5 10 3 5 10
Performance Measure

CI covers 10β (%) 92.4 95.1 95.8 92.7 95.0 95.5

CI covers 20β (%) 92.6 95.3 95.3 96.3 95.6 96.1

CI covers 10θ (%) 53.8 53.6 54.0 52.5 52.9 53.6

CI covers 20θ (%) 54.1 53.6 54.4 52.7 54.9 54.4

CI covers 30θ (%) 55.2 56.6 54.6 54.3 55.2 55.2

CI covers 40θ (%) 58.7 58.9 58.0 59.2 57.8 59.1

Est. StdErr on 10β <half true StdErr on 10β (%) 23.0 10.7 1.6 23.0 11.1 1.1

Est. StdErr on 20β <half true StdErr on 20β (%) 22.9 11.4 1.7 0 0 0

Est. StdErr on 10β <half est. StdErr on 20β (%) 14.5 9.9 4.2 1.0 0.1 0

Est. StdErr on 20β <half est. StdErr on 10β (%) 16.1 10.1 3.5 36.4 38.8 43.6

6. Discussion

I have demonstrated that valid external inference can be obtained from ensembles of
experiments containing as few as three sites. Survey-sensitive software protects against
liberal tests of treatment effects better than multi-level modeling software, but the
difference is slight, and multi-level modeling is less likely to yield wild standard error
estimates. It should be noted that although my simulation did not involve weights, if the
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sites have been selected with a probability-sampling procedure, then it is easier to find
appropriate survey-sensitive software that will accommodate both clustering and weights
than it is to find appropriate multi-level modeling software. The MIXED procedure in
SAS specifically does not use weights in an appropriate manner (Carle, 2009).

The other commonly advanced reasons for ignoring clustering when analyzing small
ensembles still hold. Namely, power for Q5 is often much lower than power for Q1, and,
unless the sites are randomly selected or one is lucky to have a balanced set of sites,
external validity will not be fully attained. One will only be a step closer. If there is a
good prospect for following up encouraging results (a finding of “efficacy” for a
particular set of actors) with a large study with probability sampling of sites, then a good
argument can be made for being satisfied with internal validity. However, if a study is
likely to be the last formal evaluation of an intervention prior to widespread
implementation, then I think the analyst should not be satisfied with internal validity.
Instead, the analyst should reflect observed variation in effects in the formal finding
about the value of the intervention. In this context, I assert that an imperfect evaluation of
effectiveness is better than a perfect evaluation of efficacy. At a minimum, one can
present both sets of standard errors and counsel users on which they should use for their
personal inferences.

Finally, to forestall criticisms from Bayesians about prima facie plausibility, it might
make sense to bound the standard errors from below by the fixed-effect solution. This
will make the tests even more conservative unconditionally, but will reduce the number
of times that results do not make sense conditioned on other information. Bayesians
might want to go farther in the case of a three-arm study to average the standard errors
for the two treatments, and then use the average to form confidence intervals for both
treatment variations, but I did not explore this option.
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