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Abstract
The demonstration that even highly influential research may not be reproducible and the reasons for irreproducibility have

recently become topics of hot debate. Ioannidis (2005a) used a search of highly cited papers in highly respected medical
journals to bring attention to the fact that often the results were contradicted or weakened in subsequent studies. In a provocative
follow-up commentary, Ioannidis (2005b) used probabilistic arguments to demonstrate that most published research findings
are likely to be false. Since then, the issue has been taken up in both the research literature and the popular press shedding much
heat and some light. This article continues the discussion, defining positive and negative reproducibility and negative predictive
power.

Key Words: p-value; false discovery rate; false non-discovery rate; PPV; positive predictive value; negative pre-
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1. Introduction

Periodically since at least 1962, studies of the medical and psychometric literature (e.g. Cohen, 1962; Moher
et al, 1994; Chung et al, 2002; Breau et al 2006) have suggested that many studies have little power to detect
effects of interest due to poor study design and/or low sample size. In modern parlance, these studies suggested
an unacceptably high false negative rate (FNR), representing lost opportunities for discoveries and wasted research
resources. In 2005, Ioannidis (2005a) challenged the medical research community on another front: studying highly
cited articles from high impact journals, he found that many of the results were not upheld in follow-up studies of
comparable or higher quality, indicating an unacceptably large false discovery (positive) rate (FDR). His results are
summarized in Figure 1. By 2010, Ioannidis’ findings had made it into the popular press raising alarm bells about
how science is conducted (e.g. Freedman, (2010); The Economist, 2013).

A number of reasons for Ioannidis’ findings have been proposed. On the purely statistical side, assuming that
the prior probability of a non-null result is small, most statistically significant results should be false positives. Even
among the true positive results, standard probability arguments imply that when the effect size is small, detected
(statistically significant) results are likely to have estimated effects that are larger than the truth, particularly when
power of the study is low. Study design also has a large effect on replicability. Ioannidis found that observational
studies are less replicable than randomized trials, which may be due to selection bias or uncontrolled confounding
variables. Finally, the “winner take all” aspects of scientific endeavor play a role: negative results are seldom
published unless they contradict a previously reported high profile positive result; research funds go to the innovators,
with few rewards for attempts to replicate previous findings; publication, funding and fame go to first claimant, thus
rewarding premature publication of results without adequate follow-up testing. Ioannidis (2005b) makes some of
this rigorous by defining the positive predictive value - the probability that a significant result comes from a study
with a non-zero effect size - as a function of the prior probability that the effect is non-zero, the level of the test, the
power of the study and researcher or block effects.

Several writers have pointed to lack of stringency in statistical testing as a cause for lack of replicability, im-
plicating the “p < 0.05” rule-of-thumb as too lax (e.g. Hayden, 2013) or noting that p-values are statistics with
inherent variability. Button et al (2013) argue that lack of power is a major cause of false discovery, and that low
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Figure 1: Summary of results of follow-up studies of highly cited papers from Ioannidis ()

powered studies with true effects tend to over-estimate those effects. Note however that the emphasis in the “lack of
reproducibility” literature is diametrically opposite to the earlier work on lack of power, focusing on false discovery
rather than false nondiscovery.

Whether false nondiscovery or discovery is more important, of course, depends the relative costs of lost oppor-
tunities versus following up null effects. The relative frequency of false nondiscoveries and discoveries depends
on what percentage of studies have a non-null result. While some of the literature seems to argue that real effects
should be rare and this may well be the case for small pilot studies or secondary effects gleaned from larger stud-
ies, investigators planning large expensive studies carefully select their primary hypotheses after preliminary studies
with the explicit objective of improving the percentage of “real” effects under study. On the other hand, secondary
hypotheses are often tested on the same data and these analyses, undoubtedly driven by the data availability and
possibly post hoc observation of patterns in the data, likely examine a smaller percentage of “real” effects. As well,
driven by publication pressures, dramatic results from small pilot studies sometimes make their way to publication.

This article extends some of the ideas in Ioannidis (2005b) in explaining the probabilistic reasons for lack of re-
producibility (assuming honest experiments and reporting). While Ioannidis primarily focused on the reproducibility
of statistically significant results, this article discusses both significant and nonsignificant outcomes and their rela-
tionship to zero and non-zero effect sizes.

2. Reproducibility

Ioannidis (2005a) discussed two reproducibility issues in follow-up studies: a change from statistical significance
to non-significance (or vice versa) and a change of effect size (usually from larger to smaller). The papers selected
for analysis were “high impact” so not surprisingly only 4 of the base papers reported negative results (and these
were themselves follow-ups to studies which reported significant results). The focus in this article is the first issue:
reproducibility and correctness of statistical significance or nonsignificance. One-sided tests are assumed, because
a sign change of the effect is an even more severe lack of reproducibility than a change in significance level and no
reasonable researcher would consider two studies with the same 2-sided p-value but opposite effect directions to be
“reproduced”.

JSM 2014 - Section on Statistics in Epidemiology

4039



We start by considering 2 identical but independent studies. We define a study as positive reproducible if the
effect was statistically significant and remained significant in the follow-up study. We define a study as negative
reproducible if the effect was statistically nonsignificant and remained nonsignificant in the follow-up study.

Lets consider the standard case in which we reject at level α and have power β(α, δ) for some effect size δ. If
there is really no effect, then we have positive reproducibility with probability α2 and if the effect size is exactly
δ > 0 then we have positive reproducibility with probability β2(α, δ). Using the often used values of α = 0.05
and β(α, δ) = 0.8 we see that when the effect is actually 0, we will have positive reproducibility with probability
only 0.0025, which is reassuring - we are unlikely to make the same mistake twice. However, when the effect size
is actually δ positive reproducibility is only 0.64, which means that we will miss the effect in one or both studies
an alarming 36% of the time. Conversely, if there is really no effect, then we have negative reproducibility with
probability 0.9 and if the effect size is exactly δ then the negative reproducibility is 0.04.

One of the suggested “fixes” for the lack of reproducibility problem is to use more stringent p-values (e.g.
Hayden, 2013). However, in any given study, if a smaller level is used, the power of the test is also reduced. For
example, for a t-test, if the original test had β(0.05, 1.308) = 0.8 with α = 0.05 with sample size 8, then reducing
to α = 0.01 changes the power to β(0.01, 1.308) = 0.47. This means that our probability of positive reproducibility
with true effect size δ = 1.308 is now only 22% while negative reproducibility is now increased to 26% – there
is a non-negligible chance that this effect will not be declared statistically significant in either the original study or
the follow-up. On the other hand, if we increase the sample size to 14 (the minimum required to achieve power at
least .8 with α = 0.01) the actual power is 0.83. Then with δ = 1.308, the positive reproducibility is 69% and the
negative reproducibility is only 3%. If δ = 0, the positive reproducibility is .01% and the negative reproducibility is
98%. Increased stringency is an excellent idea, but only if it accompanied by an increase of sample size and hence
power.

Of course, the analysis above does not address observed reproducibility of the original study, because we do
not know the true effect size. To handle this situation, Ioannidis introduced the prior probability that there is a
non-zero effect, π0. In studies in which many hypotheses are tested, such as differential expression studies in
biological “omics” π0 has a frequentist interpretation as the percentage of features with non-null effects in the study
and is readily estimated from the distribution of p-values once the study has been completed. In other contexts
the Bayesian interpretation of π0 as the prior probability that the effect currently under study is null may be more
reasonable and can be placed in a frequentist context as the percentage of studies with similar prior evidence of a
non-zero effect for which the true effect size is actually zero.

Some of the literature on reproducibility suggests that π0 should be very close to 100%. However, this depends
very much on the type of study. For preliminary “blue sky” “let’s see what’s out there” studies, this is probably a
reasonable assumption. However, most federally funded research there is evidence from preliminary studies that
guides the research and should lower π0. The situation is similar to testing for rare diseases in which we know that
screening to enrich the percentage of true positives that are tested can be highly effective in reducing the high false
positive rate. It is not clear just how high we can expect π0 to be, but in medical trials of new drugs or devices, it
seems reasonable to assume at most equipoise - i.e. π0 ≤ 50%. On the other, when secondary analysis are performed
on the data, especially those proposed due to “findings” from the same study or due to lack of interesting results
from the primary hypothesis, we can expect π0 to be much higher. This is recognised implicitly in classical multiple
testing for analysis of variance where methods such as Scheffé’s (1969) procedure “adjust” the p-value for the effects
of looking at all possible comparisons of treatments.

In any case, π0 only tells us the expected percentage of null effects, it does not give us the distribution of effect
sizes when the effect is not zero. A fully Bayesian analysis would propose a distribution of effect sizes, which
would then lead to a distribution of power for the test (and this would be very suitable for use with “omics” data as
well). However, despite the use of the π0, the intent of this paper is the analysis of frequentist tests. Therefore, we
will consider the case when there is some value δ and the effect size is either 0 with probability π0 or δ > 0 with
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probability 1− π0.
Thus the probability of positive reproducibility Ppos when the identical experiment is done twice is

Ppos = π0α
2 + (1− π0)β2(α, δ) (1)

and the negative reproducibility Pneg is

Pneg = π0(1− α)2 + (1− π0)
(
1− β2(α, δ)

)
. (2)

Of course, it is quite unusual for an experiment to be repeated when the initial result was negative. Hence
we might interested instead in the probability of a second rejection following a second identical but independent
experiment given that the null hypothesis was rejected in the first experiment. Letting Ri denote the event that we
reject the null on the ith experiment, H0 be the event that the null is true, and HA be the event that the null is false.
Since δ is fixed, this is this is:

Prob (R2|R1) = π0α2+(1−π0)∗β2(α,δ)
π0α+(1−π0)∗β(α,δ) (3)

Returning to our previous example in which we know that the effect size is either 0 or a fixed δ giving β(.05, δ) =
0.8 and π0 = 95%, then Ppos = 3.4% while Pneg = 86%, while the probability of a second significant experiment
given that the first one was significant is only 39%. This is because over half of the significant tests in the first exper-
iment are false positives. However, if due to preliminary results, π0 = 50% (equipoise) then positive reproducibility
increases to 32% but negative reproducibility is reduced to 47%, while the probability of a second significant test
after the first one was significant is 76%.

Enrichment of the truly non-zero effects clearly improves reproducibility, particularly positive reproducibility.
Of course a major motivation for preliminary studies is to reduce the waste of effort in chasing zero effects. Other
motivations include estimating effect sizes and variability of the responses to design experiments with sufficient
power.

For the same effect size, reducing the significance threshold to P ≤ 0.01 reduces the power to β(0.01, δ) = 0.47,
which with π0 = 95% yields Ppos = 1.3% while Pneg = 94%, while the probability of a second significant
experiment given that the first one was significant is reduced to 33.8%. Now only about a quarter of the tests
significant in the first experiment are false positives, and both our ability to reject the true positives in the second
experiment and to reproduce the discovery is much reduced.

3. Correctness

Of course reproducibility is not the gold standard of good research – it is correctness. Question we should be asking
are how likely it is that a significant result actually has effect size δ > 0 and how likely it is that a nonsignificant result
has δ = 0? This is the classic “true positive” and “true negative” problem that is usually introduced in elementary
probability classes using Bayes’ rule to invert probabilities. Letting Fi be the event that we fail to reject the null
hypothesis for the ith experiment, it is readily seen that:

Prob (δ > 0|R1) =
(1− π0)β(α, δ)

π0α+ (1− π0)β(α, δ)
(4)

while

Prob (δ = 0|F1) =
π0(1− α)

π0(1− α) + (1− π0) (1− β(α, δ))
. (5)
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Ioannidis (2005b) calls Prob (δ > 0|R1) the positive predictive value (PPV) of the experiment. (Note that his
β is our 1 − β(α, δ).) By analogy, we call Prob(δ = 0|F1) the negative predictive value (NPV). When π0 = 0.95,
α = 0.05 and β(α, δ) = 0.8, PPV = 0.457 and PNV = 0.989. However, if π0 = 0.5 then PPV = .941 and
PNV = 0.826. Clearly the conclusions of significance testing are much more likely to be correct when based on
well-supported alternative hypotheses.

Needless to say, independent replication of the experiment provides important information about correctness of
the result. Here we only consider the case in which the same result was achieved in all of the n experiments. Then,

Prob (δ > 0|R1 · · ·Rn) =
(1− π0)β(α, δ)n

π0αn + (1− π0)βn(α, δ)
(6)

and

Prob (δ = 0|F1 · · ·Fn) =
π0(1− α)n

π0(1− α)n + (1− π0) (1− βn(α, δ))
. (7)

Going back to our example, if π0 = .95 and we reject when P ≤ 0.05 and we replicate the experiment just
twice, the probability that there is actually an effect is 93% when we rejected twice, compared to only 46% for the
first experiment only. This comes at a small improvement as well to the true negatives, which are detected 98.8%
correctly from one experiment and 99.8% correctly from two. 99.6% of positives are correct for two experiments
compared to 94% for one experiment when π0 = .5. In this case 83% of negatives from one experiment are correct,
but 96% of results that were negative twice are correct.

4. Better Experiments

Better experiments improve the power of the tests. Improvements can be made by better design, which reduces
variability and bias, and by increase in sample size.

Figure 2 shows the positive replicability of a study for different sample sizes for π0 = 0.95 and 0.5 and for α =
0.05 and 0.01. Using a more stringent p-value scarcely changes positive replicability when π0 is large. Preliminary
studies which reduce π0 to 0.5 effectively improve positive replicability, especially for larger sample sizes and more
stringent tests.

Figure 3 shows the probability that the effect is truly non-zero following a test with P < α for π0 = 0.95 and
0.5 and for α = 0.05 and 0.01. The efficacy of increasing the sample size is very sharp for small low-power studies,
but asymptotes as the power approaches 100%.

Suppose instead of doing 2 independent experiments we double our sample size. Note that when doing 2 ex-
periments, we have to reject twice to declare statistical significance, so our power is β2(α, δ). On the other hand,
to have a false discovery, we need to reject twice when the null hypothesis is true, so that we expect false discov-
eries only α2 of the time rather than α. The power of a single test rejecting at P ≤ 0.0025 and sample size 16 is
β(.0025, 1.308) = .74 compared to the power of 0.82 = 0.64 from rejecting when both experiments with sample
size 8 have P < 0.05. In theory, at least, it is better to increase the sample size than to do independent replicates of
a small experiment.

In practice, when an independent replicate of an experiment is performed (by a different investigator in a dif-
ferent lab) there is almost always some type of ”block effect” which is the intra-class correlation of observations
within the replicate. What this means is that relative to observations from different replicates of the experiment,
the observations within a replicate are not independent. The observations have replicable (but unknown) latent fac-
tors due to instrumentation, laboratory protocols and the skills of the experimenter which induce biases that reduce
the observed estimate of variability. The smaller the intraclass correlation, the closer we are to the ideal situation
discussed in the first paragraph. The larger the intraclass correlation, smaller the effective sample size achieved by
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Figure 2: Positive replicability of a two-sample t-test for effect size 1.308 at different values of π0 and rejection
level α.
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Figure 3: Correctness of a two-sample t-test for effect size 1.308 at different values of π0 and rejection level α.
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increasing the sample size, and hence the more modest the gain in power. What this means in practice is that while
each investigator improves his/her probability of producing reproducible and correct effects by increasing sample
size, any estimate of reproducibility and correctness is almost certainly optimistic. Ioannidis (2005b) refers to this
as the study bias.

With fixed resources for performing experiments, the researcher seeking to do replicable research leading to
correct results is therefore faced with some hard choices. On one hand, the researcher may increase the sample size
to allow for high power even when rejecting at a very stringent p-value. On the other hand, the researcher can seek
collaboration with an independent lab which can attempt to replicate interesting findings. Finally, the researcher may
seek to verify the results using follow-up experiments which are expected to have different biases and which will
succeed only if the initial results are correct. Of these options, the first option leads to the most optimistic estimate
of reproducibility and correctness, while the last is the most risky.

5. Discussion

The recent focus on reproducible research has high-lighted some of the failings of the modern scientific process,
especially in some of the high-stakes, high variance research disciplines such as the life and medical sciences,
biology and psychology. A better understanding of the roles of sample size, independent replication, and preliminary
studies should help design studies that waste fewer resources while improving our ability to reach true conclusions.

The use of formal meta-analysis to combine information across studies that are independent but not identical
has proven valuable both in estimating effect sizes when multiple studies are available and in shedding light on the
biases induced by the search for significance (e.g. Francis, 2013).

Other initiatives include registering research hypotheses in advance, to make it clearer when published results
come from primary rather than secondary analyses, repositories for primary data (which are now standard in “omics”
studies funded by U.S. federal agencies) and publication of data analysis pipelines as supplemental documents to
papers.

While “reproducibility” of the research has become the catchword of the day, researchers and statisticians un-
derstand that correctness of the conclusions is the gold standard to which we aspire. Attention to good experimental
design, good statistical analysis, accurate records of all the analyses that were done and all the hypotheses that were
tested should help us towards this goal.
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