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Abstract 
In this article we investigate the effects of temporal aggregation on a mean change of time 
series, through the two statistical tests—the likelihood ratio (LR) test and the cumulative 
sum (CUSUM) test to detect the mean change. We propose a modified LR test statistic 
when aggregate data are used for testing. Also we show that the CUSUM test statistic is 
free from the temporal aggregation effect. The Monte Carlo simulations verify the 
theoretical results. 
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1. Introduction 
 
A time series can be influenced by an interruptive event and so a structural break in mean 
may occur before and after the event. This discordance is said to be a mean change (or a 
mean shift) of the time series. It is known that we cannot directly use traditional statistical 
tests of independent samples, such as the t-test, for detecting a mean change because the 
observations are almost certainly dependent and no possibility for randomization exists 
(Box and Tiao, 1965). Therefore various alternative approaches have been proposed and 
developed in literature. When testing a mean change is of interest, the issue has been 
discussed within two frameworks of the likelihood ratio (LR) test (see Hinkley, 1970; 
Chang et al., 1988; Tsay, 1988; Chen and Tiao, 1990; Balke, 1993; Chen and Liu, 1993; 
Tsay et al., 2000; Sánchez and Peña, 2003; Galeano et al., 2006) and the cumulative sum 
(CUSUM) test (see Page, 1955; Hinkley, 1971; Brown et al., 1975; Krämer et al., 1988; 
Ploberger and Krämer, 1992; Bai, 1994; Chu et al., 1995; Lobato, 2001; Aue et al., 2008; 
Juhl and Xiao, 2009; Shao and Zhang, 2010). 
 
Another point of interest is temporal aggregation of a time series process. Although 
theoretically many different time units, like second, minute, hour, day, week, month, 
quarter, and year, can be used for observing and recording, the available time series from 
publications are often temporally aggregated. In literature, it is known that the aggregation 
has substantial effects on the statistical properties of the process. That is, an ARIMA model 
structure transforms due to the temporal aggregation and consequent changes of model 
parameters (Amemiya and Wu, 1972; Brewer, 1973; Abraham, 1982; Weiss, 1984; Stram 
and Wei, 1986). The model converges to an IMA limiting model as the aggregation order 
goes to infinity (Tiao, 1972; Wei, 1978a). As the order of aggregation is higher, the 
information loss in parameter estimation becomes more serious (Tiao and Wei, 1976; Wei, 
1978b). Lütkepohl (1984, 1986) analyzes the temporal aggregation for VARMA models 
and investigates its impact on the efficiency of the multivariate forecasts. Temporal 
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aggregation affects the linearity test (Granger and Lee, 1999; Teles and Wei, 2000), the 
normality test (Teles and Wei, 2002), and the unit-root test (Teles et al., 2008). Their 
studies show the aggregation strengthens the linearity, induce the normality, and reduce 
the unit-root characteristic, respectively. Hotta et al. (2004) investigate the aggregation 
effects of some discordance due to additive and innovative outliers on forecasting values. 
 
In this paper, we study the temporal aggregation effects on testing a mean change. To 
include both parametric and nonparametric tests in our study and their comparisons, we 
concentrate on the case of a single mean change. The paper is organized as follows. In 
Section 2, we review the two commonly used tests, i.e., the LR test and the CUSUM test. 
Section 3 presents aggregation effects on the model parameters and the error variance. In 
Section 4, we investigate effects on the LR test and the CUSUM test when temporally 
aggregated data are used. Section 5 shows some Monte Carlo simulation results on the 
effects of aggregation. Also, some concluding remarks are given in Section 6. 
 
 

2. Commonly Used Tests on a Time Series Mean Change 
 
The problem of interest is to identify a mean change in a time series. It can be reworded as 
testing the null hypothesis of a constant mean, i.e., 

0 1: nH       
against the alternative of a mean shift starting at a time point k, i.e., 

1 1: ,a k k nH           

for 1 k n   and k , where   denotes the set of integers and i  is an expected value 
of the series at time i (see Sen and Srivastava, 1975; James et al., 1987; Aue and Horváth, 
2013). 
 
2.1 A Likelihood Ratio Test 
 
Consider two time series processes: 

1. A stationary process (0){ , 1, , }tX t n  , which follows an ARMA(p,q) model of 
(0)( ) ( )p t q tB X B a  ,  (2.1) 

where ta  is a Gaussian white noise of mean zero and variance 2
a , 

1( ) (1 )p
p pB B B       and 1( ) (1 )q

q qB B B      are polynomials of 

B , and B  is the backshift operator such that (0) (0)j
t t jB X X  , j . Here, all the 

roots of ( )p B  and ( )q B  are assumed to be outside of the unit circle and share 

no common roots. 
2. A discordant process { , 1, , }tX t n   with a mean change starting at a time point 

k, which can be modeled as 

(0) 2 (0)(1 ) ( ) ( )
(1 )

k
t t k t t t

w
X X w B B I k X I k

B
      


 ,  (2.2) 

where kw  is a shift-magnitude and ( )tI k  is an indicator function of 

1 if 
( )

0 otherwise.t

t k
I k
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Define the contaminated residual te  as ( )t te B X  for 1, ,t n  . From (2.1) and (2.2), 
we have 

( )
( ) ( )

(1 )t t t k t

B
e B X a w I k

B

  


,  (2.3) 

where the polynomial 2
1 2( ) (1 ) ( ) / ( )p qB B B B B         . Equation (2.3) can be 

rewritten as a linear form of 

t k t te w y a  ,  (2.4) 
where 

1

0 for 
( )

( ) 1 for 
(1 )

1 for .

t t

t k

jj

t k
B

y I k t k
B

t k











  
 

  
  (2.5) 

Then the shift-magnitude kw  is estimated by the OLS estimator, 

 
 

1 1

22

1 1

1
ˆ

1 1

n t kn
k t jt k jt tt k

k n n t k
tt k jt k j

e ee y
w

y







  


   

 
 

 

 
  

  (2.6) 

and the standard deviation of the OLS estimator ˆkw  is 

 
ˆ

22

1 1
1 1

k

a a
w n n t k

tt k jt k j
y

 





   

 

   
.  (2.7) 

 
To test for the mean change at a known time point k, Chang et al. (1988) and Tsay (1988) 
propose a likelihood ratio (LR) test statistic, which they show to be 

ˆˆ
kk k ww  ,  (2.8) 

and it can be rewritten as 

 
 

1 1

2

1 1

1

1 1

n t k

k t jt k j

k
n t k

a jt k j

e e 


 



  



  

 


 

 

 
.  (2.9) 

We note that the LR statistic k  in (2.9) is dependent on the model parameters. 
 
Let us consider the general AR(p) model, which has been very widely used in practice. If 

the stationary series (0)
tX  follows an AR(p) process of (0)

1(1 )p
p t tB B X a      

where 2~ (0, )
iid

t aa N  , then the LR statistic k  to test for a mean change becomes 

 
 

1 1

2

1 1

1

1 1

n t k

k t jt k j

k
n t k

a jt k j

e e 


 



  



  

 


 

 

 
,  (2.10) 

where 1 2 0p p n k         if n k p  . As a special case, if the series (0)
tX  follows 

an AR(1) process of (1 ) t tB X a  , the LR test statistic becomes 
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1

2

(1 )

1 ( )(1 )

n

k tt k
k

a

e e

n k




 
 

 


  


,  (2.11) 

which is associated with the AR parameter  . 
 
When the time point k of the mean change is unknown, we use 2, ,supk n k   as the test 

statistic, i.e., 

2, ,
sup k s

k n
 





,  (2.12) 

where a time point {2, , }s n  . If the supremum exceeds a predetermined critical value 

0L  , then we reject the null hypothesis (For more discussions, see Chang et al., 1988; 
Tsay, 1988; Balke, 1993; Chen and Liu, 1993; Tsay et al., 2000; Galeano et al., 2006). 
 
2.2 A Cumulative Sum Test 
 
Suppose that a series tX  for 1, ,t n   is contaminated by a mean change starting at a 
time point k, as described in Section 2.1. To test for the mean change at a known time point 
k, the CUSUM test statistic (Brown et al., 1975) is given by 

1
( )

N

k t n
T KX

c X X
n 

  ,  (2.13) 

where X  is the standard deviation of tX , which satisfies the long-run variance of 

2 2

1

1
lim ( ) lim ( )

n

X t t n
n n

t

E X nVar X
n

 
 



 
   

 
 ,  (2.14) 

( )t tE X  , and 
1

/
n

n tt
X X n


 . 

 
Similarly to the LR test procedure, when the time point k is unknown, we use 2, ,supk n kc   

as the test statistic, i.e., 

2, ,
sup k s

k n
c c





,  (2.15) 

where a time point {2, , }s n  . If the supremum exceeds a predetermined critical value 

0Q  , then we reject the null hypothesis of no mean shift (For more discussion, see Brown 
et al., 1975; Bai, 1994; Lobato, 2001; Shao and Zhang, 2010). 
 
 

3. Temporal Aggregation Effects on AR Models 
 
Because of its easy interpretations, an AR model has often been used to describe the process 
of a time series. In this section, we investigate the effects of aggregation on its model form, 
parameters, and error variance. 
 
Consider the m-period nonoverlapping (or simply, the mth order) aggregate series TZ  of 

the discordant series tX , which is defined as 

1

( 1) 1

(1 )
mT

m
T t mT

t m T

Z X B B X

  

      ,  (3.1) 
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where the aggregation order m is a positive integer for m n  and the aggregate time unit 
1, ,T N   for /N n m  (Tiao, 1972; Wei, 2006, p.508). Similarly, the mth order 

aggregate series (0)
TZ  of the stationary series (0)

tX  is given by (0) 1(1 )m
TZ B B    

(0)
mTX . 

 

It has been known that if the stationary series (0)
tX  follows an AR(p) process of 

(0)
1(1 )p

p t tB B X a      for 0p   and p , then the aggregate series (0)
TZ  is also 

stationary and follows an ARMA(P,Q) process of 
(0)

1 1(1 ) (1 )P Q
P T Q TZ A           ,  (3.2) 

where TA  is a Gaussian white noises of mean zero and variance 2
A  and   is the 

aggregate backshift operator defined as mB . The orders P and Q are determined by the 

roots of 1(1 )p
pB B    . For the details and proofs, we refers readers to Amemiya 

and Wu (1972), Brewer (1973), and Stram and Wei (1986). 
 

It follows that an AR(1) process of (0)(1 ) t tB X a   transforms upon the mth order 

temporal aggregation to an ARMA(1,1) process of (0)(1 ) (1 )T TZ A     for 1m  . 
For this aggregate transformation, Ahsanullah and Wei (1984) derive the autocovariance 
function of the aggregate series in terms of the AR(1) parameter   and the aggregation 
order m. Teles et al. (2008) also derive the exact aggregate model parameters when the 
nonaggregate series is an AR(1) process with 1  . However, the exact parameter 
expressions of the aggregate model for the general nonaggregate AR(p) process have never 
been developed. We now derive the results and summarize them in the following Theorem 
3.1. 
 

Theorem 3.1. Assume that the nonaggregate series (0)
tX  follows an AR(p) process. Then 

the mth order aggregate series (0)
TZ  is known to follow an ARMA(P,Q) process and the 

model parameters can be expressed as functions i  and j  with respect to the AR(p) 

parameters and the aggregation order m, i.e., 

1( , , , ),      1, ,i i p m i P        (3.3) 

and 

1( , , , ),      1, ,j j p m j Q      .  (3.4) 

Also the error variance 2
A  can be written as 2 2( )A a   with 

1/22 2 2
1 2 ( 1) ( 1)

2 2
1

1

1
P m p

Q

f f f
       
       




  (3.5a) 

or, equivalently, 
1/2

1 1 2 2 ( 1) ( 1) ( 1)

1 1 2 1

m m m Pm p P m p

Q Q

f f f f f f f
       



    
          




  (3.5b) 

where hf  is a function of 1, , p   and m, for 1, ,[( 1) ( 1)]h P m p    . 

 
Proof. 2m   and m  (aggregation): 
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When multiplying (0)
1(1 )p

p t tB B X a      by 
1

1

1

(1 )(1 )

(1 )

m Pm m
P

Q
Q

B B B B      

  

 
 

, we obtain 

1
1

1

(1 )(1 )1 (0)
1 1

(1 )(1 )
m Pm m

P
p

p

B B B Bm Pm m
P t tB B

B B B B X a
 

     
  

           
 


  .  (3.6) 

Let 1 (0)
1(1 )(1 )m Pm m

t P tW B B B B X        . Since the highest degree of the 

MA polynomial in (3.6) is ( 1) ( 1)P m p   , tW  is expressed as the MA form of 
( 1) ( 1)

1 ( 1) ( 1)(1 )P m p
t P m p tW B B a    

      .  (3.7) 

From Equations (3.6) and (3.7), 
1

1

( 1) ( 1)
1 1 ( 1) ( 1)

(1 )(1 )

(1 )(1 ).

m Pm m
P

p P m p
p P m p

B B B B

B B B B   



  
  

     

      

 

 
  (3.8) 

By distributing and collecting like terms in (3.8), the parameters, i  for 1, ,i P   and 

h  for 1, ,( 1) ( 1)h P m p    , are sequentially associated with 1, , p   and m. 

Specifically, the ith parameter i  can be expressed as 1( , , , )i i p m     , which is a 

function of 1, , p  , and m; similarly, the hth parameter h  can be expressed as h 

1( , , , )h pf m   or simply hf . Now the MA form of (3.7) can be rewritten as 
( 1) ( 1)

1 ( 1) ( 1)(1 )P m p
t P m p tW f B f B a  

      .  (3.9) 

When t mT , 

1 1 2 2 ( 1) ( 1) ( 1) ( 1)mT mT mT mT P m p mT P m pW a f a f a f a             .  (3.10) 

Then the variance of mTW  is 
2 2 2

1 ( 1) ( 1)( ) (1 )mT a P m pVar W f f       ,  (3.11) 

and the covariance between mTW  and mT mW   is 
2

1 1 2 2 ( 1) ( 1) ( 1)( , ) ( )mT mT m a m m m Pm p P m pCov W W f f f f f f f            ,  (3.12) 

By the definition of (3.1) and the equation of (3.2), mTW  can be rewritten as 
1 (0)

1

(0)
1 1

(1 )(1 )

(1 ) (1 ) ,

m Pm m
mT P mT

P Q
P T Q T

W B B B B X

Z A

      

       

 

    
  (3.13) 

where mB , 11 P
mQ P P      , and x    indicates the largest integer not greater 

than a real number x. Using the MA form of (3.13), the variance of mTW  is 
2 2 2

1( ) (1 )mT A QVar W     ,  (3.14) 

and the covariance between mTW  and mT mW   is 
2

1 1 2 1( , ) ( )mT mT m A Q QCov W W         .  (3.15) 

Using the formulas of (3.11), (3.12), (3.14), and (3.15), we obtain the quotient of the 
variance and the covariance, i.e., 

2 2 2
1 ( 1) ( 1)

2
1 1 ( 1) ( 1) ( 1)

2 2 2
1

2
1 1 2 1

(1 )( )

( , ) ( )

(1 )
.

( )

a P m pmT

mT mT m a m m Pm p P m p

A Q

A Q Q

f fVar W

Cov W W f f f f f







  

      



  


  

  


     







  (3.16) 

Consider a compound function 
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2 2
1 ( 1) ( 1)

1
1 1 ( 1) ( 1) ( 1)

1
( , , , ) P m p

p
m m Pm p P m p

f f
g m

f f f f f
    

     

   
      





  (3.17) 

or simply g. Then the quotient (3.16) has an equation form 
2 2
1 1 1 2 1(1 ) ( ) 0Q Q Qg                (3.18) 

with respect to j  ( 1, , )j Q  . In Equation (3.18), the real solutions for j  are 

associated with g. Thus the solutions can be expressed as a function of 1, , p   and m, 

i.e., 1( , , , )j j p m     . Also we derive the error variance of 

2 2 2
1 2 ( 1) ( 1)2 2

2 2
1

1

1
P m p

A a
Q

f f f
        

       




   

or, equivalently, 

1 1 2 2 ( 1) ( 1) ( 1)2 2

1 1 2 1

m m m Pm p P m p
A a

Q Q

f f f f f f f
        



    
         




   

which follows from Equations (3.11), (3.12), (3.14), and (3.15). 
□ 

 
Because of the need for the later analysis, we now derive the exact parameter expressions 
for the aggregate model when the nonaggregate model is AR(1). The results are 
summarized in Lemma 3.1. 
 

Lemma 3.1. Suppose that the series (0)
tX  follows an AR(1) process. Then the mth order 

aggregate series (0)
TZ  follows an ARMA(1,1) process and the model parameters are 

expressed as 
m    (3.19) 

and 
2( / 2) ( / 4) 1        (3.20) 

where 

   
  

2 211 1 1

1 1 1 1 1

1 1 1 1

1 1 1 1

m j m m ji i i

j i j i i

m j m ji i i

j i i i

  


  

  
    

   
   

 




    
   

.  (3.21) 

Also the error variance 2
A  is written as 2 2( )A a   where 

2 2
1

1 1 1
2

1 1 1 1 1

1

(1 )

j jm m m
i i i

j i j i i

   


  

    

    
                
       (3.22a) 

or, equivalently, 

1
1 1 1

1 1 1 1

1 j jm m
i i i

j i i i

   


  

   

   
            

    .  (3.22b) 

□ 
 
We note that Theorem 2.1 of Teles et al. (2008) is a special case of our Lemma 3.1 with 

1  . 
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In Lemma 3.1, we remark that the aggregate model of (0)
TZ  is stationary and invertible if 

the nonaggregate model of (0)
tX  is stationary. This follows because 0 1m     for 

1m   and m , and the MA parameter   is chosen to be 
2

2

2 4

2 4

1 for 0 1

1 for 1 0

 

 





      
     

  (3.23) 

and so 1  . 

 
 

4. Effects On the Test Statistics When an Aggregate Series is Used 
 
4.1 Aggregation Effects on the LR Statistic 
 
Let K be the shift point of the aggregate discordant series TZ  for 1 K N   and K  . 
Then, in the same manner as (2.9), the LR statistic to test for a mean change is 

 
 

1 1

2

1 1

1

1 1

N T K

K T hT K h

K
N T K

A hT K h




  



  

  
 

  

 

 

 
,  (4.1) 

where ( )T TZ    and 1

1

12
1 2 1

( ) 1
P

P
Q

Q

  

  
      


  

 
   . 

 
When the time point K is unknown, we use 2, ,supK N K   as the test statistic, i.e., 

2, ,
sup K S

K N
  


,  (4.2) 

where a time point {2, , }S N  . 
 
Here we note that K of (4.1) is associated with the AR parameter  ’s and the MA 

parameter  ’s. In Theorem 4.1, we clarify the association and propose the modified LR 
statistic when aggregate data are used. 
 

Theorem 4.1. Assume that the nonaggregate stationary series (0)
tX  follows an AR(p) 

process. Then the LR statistic to test a mean change for the aggregate series TZ  is given 

by 2, ,supK N K  , where 

 
 

1 1

2

1 1

1

1 1

N T K

K T iT K i

K
N T K

A iT K i

G

F



  



  

   
 

   

 

 

 
,  (4.3) 

Here F and G are functions for their variables of 1, , P  , 1, , Q  , and 1, ,K N   . 

We note that 1 2 0P P N K          if N K P  . 

Proof. When multiplying both sides of 1

1

12
1 2 1

1
P

P
Q

Q

  

  
    


  

 
   by the 

polynomial 1(1 )Q
Q     and collecting like terms, the parameters h  
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( 1,2, )h    are sequentially associated with i  ( 1, , )i P   and j  ( 1, , )j Q   where 

Q P . Then 
2 2

1 1 1 1

1 1 1 1
N T K N T K

h i
T K h T K i

F
 

     

   
          

   
    ,  (4.4) 

and 

1 1 1 1

1 1
N T K N T K

K T h K T i
T K h T K i

G
 

     

   
          

   
       ,  (4.5) 

where F and G are functions for their variables of 1, , P  , 1, , Q  , and 1, , .K N    

We note that 1 2 0P P N K          if N K P  . When plugging Equations (4.4) 
and (4.5) into Equation (4.1), we obtain the expression 

 
 

1 1

2

1 1

1

1 1

N T K

K T iT K i

K
N T K

A iT K i

G

F



  



  

   
 

   

 

 

 
. 

□ 

We note that K  of (4.3) is a function of the AR parameters 1, , p   of (0)
tX  and the 

error standard deviation 2
a  because of the expressions of i , j , and 2

A  in Theorem 

3.1. 
 
Comparing the two expressions of k  in (2.10) and K  in (4.3), K  includes three 

additional parameters—F, G, and  , where /A a    given in either (3.5a) or (3.5b). 

Therefore we may not expect that the null distribution of 2, ,supK N K   is identical to the 

null distribution of 2, ,supk n k   when 1m  . However, K  reduces to k  when 1m   

with 0F  , 0G  , and 1  . We demonstrate the location and scale changes of the null 
distribution through the Monte Carlo studies in Section 5. 
 
In Lemma 4.1, for the later illustration and analysis, we derive the LR test statistic for the 
aggregate model when the nonaggregate series follows an AR(1) model. 
 

Lemma 4.1. Assume that the nonaggregate stationary series (0)
tX  follows an AR(1) 

process. Then the LR statistic to test a mean change for the aggregate series TZ  is given 

by 2, ,supK N K  , where 

1

2

(1 )

1 ( )(1 )

N

K TT K
K

A

G

N K F
 

  
 

   

 
.  (4.6) 

Here 

1

1

21

1

2(1 ) (1 )( )

(1 )( ) ,

N
T K T K

T K

N
T K T K

T K

F   

 

  

 

       

      








  (4.7) 

and 
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1
1

2

(1 )( )
N

T K T K
K T

T K

G   


 

           .  (4.8) 

□ 
 
4.2 Aggregation Effects on the CUSUM Statistic 
 
In like manner as (2.13), using the aggregate series TZ  is 

1
( )

N

K T N
T KZ

C Z Z
N 

  ,  (4.9) 

where Z  is the standard deviation of TZ , which satisfies the long-run variance of 

2 2

1

1
lim ( ) lim ( )

N

Z T T N
N N

T

E Z N Var Z
N

 
 



 
    

 
 ,  (4.10) 

( )T TE Z  , and 
1

/
N

N TT
Z Z N


 . 

 
When the time point K is unknown, we use 2, ,supK N KC   as the test statistic, i.e., 

2, ,
sup K S

K N
C C





,  (4.11) 

where a time point {2, , }S N  . 
 
We note that KC  of (4.9) is free from model parameters when compared to K  of (4.3). It 
implies that there does not exist a modified CUSUM test statistic which is expressed in 
terms of aggregate model parameters. Now we investigate temporal aggregation effects on 

KC . 
 
Assume that /N n m  and /K k m     where x    indicates the smallest integer not less 

than a real number x. Then we have 

1 1

1 N n

N T t n
T t

m
Z Z X mX

N n 

      (4.12) 

and so 
/

/ ( 1) 1

1
( ) ( ) ( )

N n m mT n

T N t n t n m
T K T k m t m T t k

m m
Z Z X X X X

N n n       

   
        
    

      (4.13) 

where 

1

( 1) 1

0 if ( 1) 1

( ) if ( 1) .
km

t nt m K

k m K

X X m K k mK


  

        
  (4.14) 

 
Using the long-run variance properties of (2.14) and (4.10), Z  becomes 

lim ( ) lim ( )Z N n X
N n

N Var Z m nVar X m 
 

    .  (4.15) 

Therefore, Equation (4.9) becomes 

1
( )

n
m m

K t n k
t kX X X

C X X c
n n n  

 
     .  (4.16) 
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In Equation (4.16), we note that the aggregation effects on KC  are only from the extra term 

/ ( )m X n . However, in general, the effect from m  is too small to affect KC . Thus 

KC  in (4.9) is approximately equal to kc  in (2.13). It also implies that the null distribution 

of 2, ,supK N KC   is approximately equal to the null distribution of 2, ,supk n kc  . We 

illustrate the null distribution through the Monte Carlo studies in Section 5. 
 
 

5. Simulation Studies of the Aggregation Effects 
 
In this section, we obtain percentiles of the empirical null distributions of the LR test and 
the CUSUM test through the Monte Carlo simulations. 
 
To demonstrate the empirical properties, we consider the cases in which the nonaggregate 

stationary series (0)
tX  follows an AR(1) process of (0)(1 ) t tB X a   with 0.5,   0.3, 

0.5, 0.8, and 0.95, assuming 1a  . So the aggregate stationary series (0)
TZ  becomes an 

ARMA(1,1) model as shown in Lemma 3.1. Under the null hypothesis of no mean change, 
we generate 10,000 different series of size 1200n   for every  . Also we consider the mth 

order temporal aggregation of the simulated series for 3,m   6, and 12. 
 
For the LR test, all the model parameters and the error standard deviation are assumed to 
be known. We compute the original test statistic 2, ,supk n k   using k  in (2.11) for the 

nonaggregate and the modified statistic of 2, ,supK N K   using K  in (4.6) for the 

aggregate series, where /N n m . Through searching the supremum in every series, we 
obtain 10,000 suprema for the given   and m. Then we construct the distribution of the 
10,000 values as the empirical null distribution. 
 
The results are listed in Table 5.1 for all the combinations of   and m. We note that the 
corresponding values to higher percentiles, for example, 90%, 95%, or 99%, can be 
employed as the critical value L at significance level of 10%, 5%, or 1%, respectively. 
 
The distributions are also drawn in Figure 5.1. Through the plots, we notice the null 
distribution move its location and change its scale, depending on its choice of the 
aggregation order m and the model parameter  . In general, the null distribution moves to 

left as m increases and this leftward location shift gets intense as   increases. Also for 

given  , the height of parabola is lower and the width is wider as m increases. 
 
For the CUSUM test, the CUSUM test statistic is free from model parameters and there 
does not exist a modified CUSUM test statistic which reflects the aggregation model 
transformation shown in Theorem 4.1. So we can apply the CUSUM test statistic 

2, ,supk n kc    using kc  in (2.13) to the nonaggregate series and the aggregate series. First, 

we estimate the standard deviation of the series, X , using the self-normalized estimator 
which is a better estimator as discussed in Shao and Zhang (2010). Then, we find the 
CUSUM test statistic in the simulated series of 1m   and their aggregation of 1m  . We 
obtain 10,000 suprema under different conditions of   and m and draw their distribution 
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as the empirical null distribution of the CUSUM test statistic. The empirical distributions 
for all the choices of   and m are illustrated in Table 5.2 and Figure 5.2. 
 
 

 
 
 

 
 

Figure 5.1: Empirical null distributions for the LR test 
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Table 5.1: Percentiles of the empirical null distribution for the LR test 
 

  m N 25% 50% 75% 90% 95% 99%  

-0.50 1 1200 1.634 1.980 2.389 2.790 3.045 3.569  
 2 400 1.550 1.893 2.304 2.712 2.973 3.490  
 6 200 1.491 1.825 2.246 2.661 2.920 3.463  
 12 100 1.413 1.750 2.171 2.608 2.861 3.385  

0.30 1 1200 1.730 2.066 2.453 2.866 3.128 3.683  
 2 400 1.601 1.938 2.340 2.755 3.025 3.601  
 6 200 1.521 1.860 2.264 2.687 2.977 3.544  
 12 100 1.433 1.774 2.180 2.617 2.904 3.483  

0.50 1 1200 1.813 2.148 2.524 2.913 3.151 3.695  
 2 400 1.632 1.975 2.367 2.770 3.016 3.548  
 6 200 1.541 1.884 2.282 2.690 2.934 3.457  
 12 100 1.444 1.787 2.190 2.619 2.863 3.402  

0.80 1 1200 2.144 2.446 2.812 3.200 3.440 3.947  
 2 400 1.809 2.132 2.516 2.929 3.174 3.734  
 6 200 1.616 1.952 2.347 2.776 3.049 3.597  
 12 100 1.470 1.807 2.223 2.657 2.926 3.510  

0.95 1 1200 2.786 3.036 3.342 3.672 3.892 4.334  
 2 400 2.353 2.625 2.968 3.325 3.544 4.013  
 6 200 2.027 2.332 2.699 3.076 3.323 3.826  
 12 100 1.725 2.049 2.435 2.846 3.109 3.615  
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Figure 5.2: Empirical null distributions for the CUSUM test 
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Table 5.2: Percentiles of the empirical null distribution for the CUSUM test 
 

  m N 25% 50% 75% 90% 95% 99%  

-0.50 1 1200 2.323 3.141 4.387 5.774 6.673 8.716  
 2 400 2.314 3.137 4.372 5.718 6.641 8.601  
 6 200 2.340 3.164 4.369 5.720 6.590 8.504  
 12 100 2.362 3.198 4.351 5.655 6.524 8.411  

0.30 1 1200 2.149 2.928 4.183 5.656 6.620 8.831  
 2 400 2.243 3.049 4.277 5.717 6.688 8.816  
 6 200 2.317 3.130 4.343 5.735 6.695 8.787  
 12 100 2.378 3.186 4.371 5.747 6.612 8.752  

0.50 1 1200 2.096 2.883 4.158 5.629 6.608 8.809  
 2 400 2.189 3.012 4.268 5.699 6.676 8.828  
 6 200 2.272 3.111 4.336 5.761 6.723 8.812  
 12 100 2.348 3.183 4.348 5.727 6.674 8.715  

0.80 1 1200 2.061 2.844 4.104 5.574 6.618 8.824  
 2 400 2.119 2.931 4.192 5.643 6.683 8.895  
 6 200 2.198 3.026 4.288 5.697 6.723 8.968  
 12 100 2.300 3.135 4.364 5.734 6.730 8.860  

0.95 1 1200 2.052 2.931 4.338 5.941 7.166 9.785  
 2 400 2.080 2.963 4.363 5.957 7.174 9.778  
 6 200 2.118 3.012 4.411 5.987 7.186 9.840  
 12 100 2.194 3.100 4.477 6.019 7.223 9.850  
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increases to 12m  . In addition, the location changes are too small to be identified through 
plots in Figure 5.2. This result can be explained by m  in (4.16). As we discussed in 

Section 4.2, m  is too small to have effects on the changes. Thus the null distribution of 
the CUSUM test statistic almost keeps its location and scale even though m increases. 
 
 

6. Concluding Remarks 
 
In this paper, we analyze the temporal aggregation effects on a mean change of a time 
series. For the LR test, we propose a modified LR test statistic when aggregate data are 
used for testing. We show that the temporal aggregation leads the null distribution of the 
LR test statistic shifted to the left. In accordance with the distribution change, the test 
powers increase as the aggregation order m increases. Therefore we conclude that the 
temporal aggregation strengthens the LR test for a mean change in time series. However, 
to get this consistent result, our proposed modified LR test statistic needs to be used. For 
the CUSUM test, we show that it is free from the temporal aggregation effects. As a result, 
the CUSUM test may not get the benefit of the magnified mean change from temporal 
aggregation. 
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