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Abstract
Robust regression aims to reduce the effect from outliers. One standard approach is to perform

weighted regression in which the weights are iteratively updated according to the new fitted line. In
this paper, we will present an iterative process to reduce the effect from outliers. It is an extension
of SUP clustering algorithm (Chen and Shiu, 2007). This process updates both the weights and the
data points through iterations. At each iteration, a line is fitted locally for each data point. The
data point is then moved to this line. Throughout this process, all data points except outliers will
gradually move to form a line. We will show results from simulation studies that our proposed
method outperforms the standard approach. The success of the proposed algorithm comes from its
two important properties: One is that the local estimation can reduce the effect from outliers so
that the method is more robust. The other is that moving data based on the current estimation can
improve the overall efficiency.
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1. Introduction

Chen and Shiu (2007) proposed a clustering algorithm which stands from the viewpoint of
elements to be clustered and simulates the process of how they perform self-clustering. At
the end of the process, elements converge to the same position are treated as belonging to
the same cluster. The exact algorithm is as follows:
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where ft is some function that measures the influence between two data points at
time t.

(III) Repeat (II) until every data point no longer moves.

ft is chosen to have a compact support, so that every data point is affected by it neighbors.
The strengths of this algorithm are processing the following types of data (Shiu and Chen,
2014): (i) data with noise, (ii) data with large number of clusters, and (iii) unbalanced data.
With these advantages, a robust algorithm, γ-SUP, based on minimizing γ-divergence has
a great success on the CRYO-EM images (Chen et al., 2014).

In this paper, we generalize the Self-Updating Process (SUP) from a clustering algo-
rithm to a robust regression algorithm.

∗Institute of Statistical Science, Academia Sinica, 128 Academia Road Sec.2, Nankang District, Taipei,
11529 Taiwan

JSM 2014 - Section on Statistical Computing

3977



2. Robust Regression

In SUP clustering algorithm, each data point can be viewed to have two roles: one is the
data point itself, and the other is the cluster center. The process starts with each data point
being a single-point cluster. Then some clusters merge through the process. Remind that
the updating rule is:

(II) At time t+ 1, every point is updated to
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It can be rewritten as two steps

(IIa) At time t + 1, a cluster center is calculated based on the data points in its neighbor-
hood:
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(IIb) The i-th point is moved to its corresponding cluster center.

(a) Original data
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(b) Weight of points in neighbor-
hood
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(c) A weighted regression line
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(d) A point moves to its corre-
sponding weighted regression line.
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Figure 1: Illustration of how the weighted regression line is fitted and how the data point
is updated.

Now we can easily replace “cluster center” with a specific model. Here we use a line
as an example to perform a robust linear regression. The algorithm can be formatted as
follow:
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(I) x
(0)
1 , . . . , x

(0)
N ∈ Rp are data points to be regressed.

(II) At time t + 1, for each point, a local weighted regression line is fitted based on the
data points in its neighborhood.

(III) Each point is moved to its corresponding weighted regression line.

(IV) Repeat (II) and (III) until every data point no longer moves.

How the process executes in the step (II) and (III) is illustrated in Figure 1.
Assume that the weight function is a decreasing function with respect to the distance

between two data points. If the weight is 0 for distance larger than a specific amount,
the data points may converge into several straight lines in the end. This is similar to the
clustering case that there may be several clusters if ft has a compact support. While it
is not preferred for the clustering case to have a single cluster in the end (Chen, 2014), it
is meaningful to have a single overall regression line. The phenomenon is stated in the
following conjecture. It should be true, but we have not been able to prove it.

Conjecture 1. If the weight function is a positive and decreasing function with respect to
the distance between any two data points, all data points will converge to a straight line by
SUP.

3. Simulation
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Figure 2: How data points move through iterations by SUP

Example 1:
300 points are sampled from the model Y = X + ϵ, where X ∼ U [−10, 10] and ϵ ∼

N(0, 1). Another 300 points which are treated as outliers are sampled from U [−10, 10]×
[10, 10]. One set of sample points is shown in Figure 2.

Figure 2 also illustrates how data points move in first five iterations by SUP. In this
simulation, each data points is updated by the weighted regression line based on the points
within distance 2. The weight function is exp(−d/T ) where d is the Euclidean distance and
T = 100. In this setup, the weight is close to uniform for all the points within distance 2.
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Figure 3: Comparison of regression, robust regression, and SUP

We can see that data points are updated so that they look more like lines locally. The final
converged result is presented in Figure 3.

Table 1: Statistics of estimation of slope from 10000 experiments

Regression Robust Regression SUP 1 SUP 2
mean 0.4997 0.8172 0.9634 0.9515
std 0.0345 0.1173 0.0465 0.0869

We compare our results with ordinary linear regression by least square and the robust
regression by Huber (1981). The true slope is 1 from our simulation setting. We simulate
10,000 times and present the mean and the standard deviation by each method in Table
1. SUP2 represents the slope of the final converged line, and SUP1 represents the slope
of the regression line on the original data of which converge to the final converged line.
We can see that both SUP1 and SUP2 outperforms the standard linear regression and the
robust regression by Huber. SUP1 is a little better than SUP2, which coincides with our
past experience that the sample mean of those converged points is more accurate that the
converged location when using SUP to estimate the center.

Example 2:
In this example, we consider the mixture model of five lines. 100 data points are sam-

pled from each line added with i.i.d. noise N(0, 1) in y-direction. Figure 4 (a) presents
where the lines are and Figure 4 (b) displays the data sampled. With the same weight func-
tion and parameter values, the data is iteratively updated by SUP. The process is stopped at
18-th iteration, and the result is presented in Figure 4 (c). We also put everything together
for comparison in Figure 4 (d).

From Figure 4 (d), the converged lines are very close to the true underlying lines. This
example shows that we can apply SUP on the mixture model. Without knowing the class
labels of data points, SUP can do the regression on each class separately and simultane-
ously.
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Figure 4: Data in (b) is sampled from the model in (a) with additive Gaussian noise. (c) is
the result by SUP. (d) compares the model, the data, and the result

4. Discussion and Conclusion

In this paper, we extended the SUP clustering algorithm to a robust regression algorithm.
From our simulation studies, the proposed method outperforms the traditional robust re-
gression.

In fact, the extension can be applied to more general models, such as quadratic curve,
hyperplane. The basic principles are local estimation and moving the data points to the
estimated model. Local estimation can reduce the effect from outliers, and the iterative
estimation based on the updated data can improve the overall efficiency.

Because of local estimation, SUP can handle the model fitting separately and simulta-
neously when there are multi models. Therefore, it can be used as a multi-feature extractor.
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