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Abstract  
 
Clinical trial safety data are routinely analysed to help the drug developer gain knowledge on the safety 
profile of an investigational drug, and detect potential safety signals in the pre-marketing stage. Typical 
safety endpoints such as adverse events (AE) are usually summarized in incidence tables, tested on two-
by-two contingency tables, or analysed through drug-AE model that are based on aggregated data. 
However, although regularly collected in clinical trial data, the information about within-subject 
correlations is often ignored when AEs are analysed in such aggregated fashions. Association rule is an 
important statistical learning technique that has been commonly used for mining commercial databases. 
We propose to extend the application of association rule mining to analyse clinical trial safety data. Our 
result shows association rule mining could provide interesting findings on associations among safety 
endpoints as well as their association with investigational drug or other patient characteristics in both one-
to-one and many-to-one mappings. It also offers a new way of grouping adverse events that is alternative 
to traditional approaches such as MedDRA (medical dictionary for regulatory activities) hierarchical 
coding or SMQ (standard MedDRA queries) search strategies. 
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1. Introduction 
 
Safety data is typically collected in a standard way from all clinical trials to aid the drug developer 
establish a robust safety profile of each investigational drug, detect potential safety signals early on, and 
devise corresponding plans for risk mitigation and risk management. A comprehensive assessment of 
safety data is critical for protecting patient’s safety as well as supporting a benefit:risk assessment in 
regulatory approvals. Adverse event (AE), as the most typical safety endpoint, is usually summarized in 
incidence tables, tested on two-by-two contingency tables, or analysed through drug-AE model that are 
based on aggregated data. Because the classical hypothesis testing approach applied to efficacy endpoints 
is problematic when applied to safety data analysis due to endpoint multiplicity and data sparseness, many 
advanced statistical methods were developed in the last two decades. The mainstream method for clinical 
trial AE signal detection has been to focus on multiplicity adjustment, where each AE is tested separately, 
and the resulting raw p-value for every AE are put together to go through certain adjustment to control the 
overall error rate. Benjamini and Hochberg (1995) [1] proposed a multiplicity adjustment approach that 
controls false discovery rate (FDR), which is more suitable for AE signal detection as the traditional 
family-wise error rate controlling methods had lower power in general to flag potential signals. Several 
variations of the FDR controlling multiplicity adjustment methods were developed based on Benjamini 
and Hochberg’s work, including some multiplicity adjustment methods [2, 3] that designed to suit the 
hierarchical AE coding structure of MedDRA (medical dictionary for regulatory activities) [4]. In 
addition to multiplicity adjustment approaches, there are a few other approaches proposed for analysing 
AE data, such as methods based on Bayesian hierarchical mixture model [5, 6]. However, all these 
statistical methods are based on aggregated data. Within-subject correlation (i.e., associations among the 
safety endpoints at the subject-level) naturally resides in the safety data that has been routinely collected 
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from clinical trials. This information, however, gets ignored when data is further summarized into 
aggregated fashion, and therefore, it has never been utilized in common analytical methods that are 
developed for aggregate data.  
 
While extensive statistical methods have been developed in the framework of traditional hypothesis 
testing and parametric modelling, data mining, as an alternative approach of great potential for safety 
analyses, has only recently been explored by researchers. Southworth and O’Connell [7] pointed out that 
the evaluation of drug safety data from clinical trials should better be considered as an exercise in data 
mining rather than hypothesis testing. They proposed classification tree ensembles based methods to 
identify important AEs that are potentially caused by the investigational drug. However, tree based 
methods only focus on associations between drug and each AE individually. Associations among AEs, 
clustered AEs as associated with specific drug or patient characteristics have not been studied. 
 
Association rule (AR) mining is one of the most important statistical leaning techniques, which was first 
introduced by Agrawal et al. in early 1990s [8, 9], and has been studied extensively in the data mining 
literature.  It was initially used for Market Basket Analysis, where interest lies in finding the associations 
among items purchased by grocery store customers as recorded in transaction databases. As it became a 
popular and well researched method for discovering relations between variables in large databases, AR 
mining has also been applied to other areas such as telecommunication networks, web usage mining, 
intrusion detection, and inventory control. We propose to apply AR mining in clinical trial safety data to 
detect meaningful patterns and relationships among AEs, AEs associated with certain treatment groups, or 
certain patient subpopulations. The AR mining works on the subject-level data and best utilizes the 
within-subject correlation, and it also synthesize information across all the safety endpoints (such as all 
the AEs been analysed) instead of treating pairwise relations between each endpoint with drug as 
independent to all other endpoints. Therefore, it could provide unique insight into interesting patterns in 
clinical trial safety data. 
 

2. Association Rule Mining for Clinical Trial Safety Data 
 

The basic concepts of association rule mining were established originally on transaction data [8]. In a 
given database, denote I = {i1, i2, …, im} as a set of m distinct attributes, or items. A set of items is also 
termed as an itemset. A transaction T is an itemset such that 𝑇 ⊆ 𝐼. An association rule, or a rule, is an 
implication in the form of  𝐴 ⟶ 𝐵, where 𝐴 ⊂ 𝐼, 𝐵 ⊂ 𝐼 are two itemsets, and 𝐴 ∩ 𝐵 = ∅. A and B are 
referred as antecedent and consequent, respectively, or the rule body and rule head. A transaction T 
contains the set of items A if 𝐴 ⊂ 𝑇. When ARs are mined in a transaction database, two basic measures 
are essential: support and confidence. The support measures the “prevalence” of 𝐴 ∪ 𝐵: 

Support(𝐴 ⟶ 𝐵) =
#{ 𝑇: (𝐴 ∪ 𝐵) ⊂ 𝑇 }

𝑁
 , 

where the numerator is the number of transactions that contain both itemsets A and B, and the 
denominator, N, is the total number of transactions in the database. Notation #{∙} represent “the number 
of”. The confidence measures the “predictability” of the rule: 

Confidence(𝐴⟶ 𝐵) =
Support(𝐴⟶ 𝐵)

Support(𝐴) =
#{ 𝑇: (𝐴 ∪ 𝐵) ⊂ 𝑇 }

#{ 𝑇: 𝐴 ⊂ 𝑇 }
 .  

Considering all possible combinations of itemsets, theoretically there are going to be almost infinitely 
many rules even in a database of small to moderate size. For example in the case of m =20, namely, there 
are only 20 distinct rules considered in the database and any transaction can only include a subset from 
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these 20 items in I, the possible rules in total will be well above 3 billion rules. Therefore, we usually set 
the acceptable thresholds on support and confidence, so that we can eliminate numerous unimportant 
rules and only identify the important ones. To achieve more focused statistical learning, the common 
practice is to only mine rules with single-item rule head, in which case we can leverage the knowledge 
about the attribute(s)/item(s) in rule body A to identify the corresponding associated attribute/item in the 
rule head B. Many fast algorithms, such as Apriori [9], Eclat [10], and FP-growth [11], have been 
developed to mine the rules of interest. These fast algorithms nowadays have been implemented in many 
statistical software packages. 

 

In addition to support and confidence, several other measures for an AR have been proposed, among 
which the lift is most commonly considered [12, 13]. The lift of a rule is defined as  

Lift(𝐴 ⟶ 𝐵) =
#{ 𝑇: (𝐴 ∪ 𝐵) ⊂ 𝑇 } × 𝑁

#{ 𝑇:𝐴 ⊂ 𝑇 } #{ 𝑇:𝐵 ⊂ 𝑇 }
 . 

It can be viewed as the ratio of the confidence and expected confidence of the rule, with the latter is 
defined as follows, and is the expected value that confidence would take if A and B were in fact 
independent. 

Expected Confidence(𝐴⟶ 𝐵) =
#{ 𝑇:𝐴 ⊂ 𝑇 } #{ 𝑇:𝐵 ⊂ 𝑇 }

#{ 𝑇:𝐴 ⊂ 𝑇 } 
= #{ 𝑇:𝐵 ⊂ 𝑇 }. 

The lift measures the extent to which A and B are not independent, and is often served as a reference to 
interpret the importance of the rule. It is hard to define a minimum acceptable lift value, but rules with lift 
value below 1 are deemed not important. For rule body A and rule head B, generally in the case that one is 
not always concurred with the other, lift gives extra weight to rules if either A or B has considerably low 
incidence. 

 
The idea of transaction data can be generalized as follows. In the rule 𝐴 ⟶ 𝐵, the itemsets A and B can be 
both regarded as certain events, and the rule describes how the event B is associated with the event A, i.e., 
how the occurrence of event A could imply the occurrence of event B. In the setting of clinical trial safety 
data, the rule 𝐴 ⟶ 𝐵 can be mined using different aspect of the data to answer many important questions 
including, but not limited to, the followings. 
 

1) “Does the drug cause certain AE or cluster of AEs?” For example, after mining AR in patients 
who received either investigational drug Drug X or the control drug, there is a resulting rule 
{cardiac arrhythmia}{Drug X}, cardiac arrhythmia is then identified as a potential safety signal 
for Drug X. To explore this type of question, we can mine the ARs in the entire study population 
by treating the drug group for each subject as the rule head B and the AEs experienced by the 
subject as the rule body A. The identified ARs will summarize which AE(s) tend to occur in each 
drug group, where the interest often lies on the AE(s) that tend to occur in the patients exposed to 
the drug under investigation or drug of interest. This is particularly useful for the purpose of 
safety signal detection, where prior knowledge on whether the drug causes the AE(s) is not 
available.  
 

2) “Does the event of interest tend to co-occur with any other AEs in patients treated with the 
investigational drug?” For example, suppose ocular toxicity is a known adverse reaction for Drug 
X, we could run AR mining in the Drug X group and control group separately, and investigate the 
clustering behavior of ocular toxicity with other AEs. If {skin infection, rash, eczema}{ocular 
toxicity} is a resulting rule from AR mining in the Drug X group but there is no rule indication 
any AE associated with ocular toxicity in control group (or there is no case of ocular toxicity in 
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control at all), this could provide data supporting that ocular toxicity, skin infection, rash, and 
eczema, as a series of AEs, are likely to occur with exposure to Drug X. To explore this type of 
questions, we can mine the ARs in each subset of patients as divided by the drug group, and treat 
the adverse event of special interest as the rule head B and any subset of all other reported AEs as 
the rule body A. Using AR mining in this way could help with clustering of AEs and provide a 
new way to group the AEs as a series of potential risks for an investigational drug. Notice in the 
example here, ocular toxicity belongs to the SOC (system organ class) of eye disorders according 
to the MedDRA hierarchical coding, while skin infection, rash, and eczema all belong to another 
SOC – skin and subcutaneous tissue disorders. Therefore, this application of AR mining provide a 
new way of grouping AEs that is different from traditional approaches such as gouping AEs in 
preferred terms according to the system organ class per MedDRA hierarchical coding or SMQ 
(standardised MedDRA queries) [14] search strategies.  
 

3) “Are there any risk factor for certain event(s) that we were not aware of?” Once certain pattern is 
identified by AR mining in approach 1) or 2) as described above, clinical knowledge should first 
be applied to interpret the result. If a resulting AR cannot be explained by clinical and biological 
rationale (e.g., the identified AEs that are associated with the drug, or the identified AEs that are 
associated with an event of special interest in certain population), we may need to investigate 
other aspects of data to get a comprehensive profile, such as examining data from medical or 
surgical history, concomitant medication, genetic characteristic, etc. of the subset of patients who 
contributed to the resulting rule for some unexplainable pattern by direct clinical interpretation. If 
some underlying similarity that is unique in the patient subset can be found, then such similarity 
could constitute a composite risk factor. The knowledge of this risk factor could help identify 
subjects at increased risk and may allow further selection for personalized treatment. 
 

4) “Are there any demographic characteristics that are associated with certain AE reporting 
pattern?” For example, in a global oncology phase III clinical trial, unlike in all the other 
participating countries, in the county South Africa, drug of G-CSF (Granulocyte-colony 
stimulating factor) is not commonly given to chemotherapy-treated patients unless the patient 
really developed some noteworthy neutropenia. Then an AR {serious neutropenia}{South 
Africa} would bring reviewer’s attention on this specific regional-specific medical practice. Also, 
sometimes some specific nomenclature convention in one particular linguistic region or 
nationality may also be associated with a higher reporting rate of certain event. Such patterns 
could be detected by leveraging the AR mining as well. In this type of applications, AR mining 
could be performed in the full population or subpopulation of interest, and the rules to be detected 
are of the form {AE1, AE2, etc.} {characteristic Z}, where the status of a demographical 
characteristics is put as the rule head B and the AE(s) reported is put as the rule body A.  

In practice, the application of AR mining can be generalized to other safety endpoints such as laboratory 
outcomes and vital signs. In terms of the clinical trial database, in addition to data from one single clinical 
trial of adequate size (usually a phase III trial), data pooled from multiple clinical trials, such as integrated 
data supporting clinical summary of safety for regulatory submission, could also be used to perform the 
AR mining. 

3. Case Study 
 
For purposes of illustrating the application of AR mining, results from the SOLVD study are briefly 
discussed here. SOLVD (studies of left ventricular dysfunction) [15, 16] was an extensive clinical study 
program including two large randomized clinical trials (treatment studies to evaluate the effects of 
enalapril on mortality, morbidity and quality of life of patients with left ventricular dysfunction) with 
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several sub-studies, and a large registry study (designed to describe the clinical course of an unselected 
group of patients). The data utilized for the purposes of this cases study is from one treatment study of 
SOLVD conducted in late 1980s to early 1990s. The objective of this treatment study is to determine if 
intervention with enalapril would reduce mortality and hospitalizations in patients with low ejection 
fraction. This is a multi-center, randomized, double-blind and controlled clinical trial including two 
treatment arms: 1285 subjects on enalapril arm, and 1284 subjects on placebo arm. 
 
The AR mining was applied to the data from this trial. The threshold for support is set as ≥0.1% in the AR 
mining here. As discussed in section 2, the threshold on support defines the desired prevalence of the 
event in the rule. In general, the threshold on support is set at a higher level if all AEs are collected 
uniformly in the same fashion. However in this study, only 10 AEs (“altered taste”, “angioneurotic 
edema”, “blurred vision”, “cough”, “dizziness/fainting”, “fatigue”, “forgetfulness”, “nausea”, “skin rash”, 
and “symptomatic hypotension”) were pre-specified and were collected in a systematic way at each clinic 
visit; all other AEs were only collected sporadically as “other” AEs, supplied with the free text of the 
event. As a result, out of the over 23000 AE records in the data, less than 5% were those AEs reported as 
“other” events that were not the 10 pre-specified AEs. To accommodate this specific characteristic of the 
AE data from this trial, we adjusted the support to ≥0.1% when applying the AR mining, in order for the 
“other” AEs to also get included in this analysis. 
 
All the AE reported terms in this dataset were first coded into preferred terms according to MedDRA 
version 17.0. To explore the potential drug related AEs as described in 1) of section 2, all rules are 
detected by setting the threshold as support >= 0.1% and confidence >= 60%. Among all the detected 
rules, orthopnoea is an AE that associated with the investigational drug enalapril. The rules with high 
confidence that involves the event orthopnoea are listed as follows. The support, confidence, and lift for 
each rule are listed. The numerator (number of subjects with the event on the left-hand side and they were 
also on enalapril) and denominator (number of subjects with the event on the left-hand side) of the 
confidence are also presented in the parenthesis following the value of confidence. 
 

 
 
From the resulting rules, it demonstrates that the AE orthopnoea is strongly associated with the treatment 
of enalapril. Out of the 7 subjects who had orthopnoea, all of them were on the enalapril arm and none of 
them were on the placebo arm. The lift is also higher than 1, indicating it is highly unlikely that the event 
orthopnoea is independent of treatment. Together with orthopnoea, the resulting rules about drug 
associated AEs above also includes some other AEs, such as fatigue, dizziness, syncope, etc. The driving 
factor for all these rules about drug associated AEs is the single event orthopnoea as the very first rule 
indicates ({orthopnoea}  {enalapril} with confidence of 100%) The other rules show that the orthopnea 

                  Rule Support(%) Confidence Lift 

{orthopnoea}  {enalapril} 0.3 100% (7/7) 1.95 

{orthopnoea, fatigue}  {enalapril} 0.3 100% (7/7) 1.95 

{orthopnoea , fatigue, dizziness, syncope}  {enalapril} 0.2 100% (5/5) 1.95 

{orthopnoea, fatigue, memory impairment}  {enalapril} 0.1 100% (3/3) 1.95 

{orthopnoea, fatigue, vision blurred, cough}  {enalapril} 0.1 100% (3/3) 1.95 

{orthopnoea, fatigue, dizziness, syncope, nausea}  
{enalapril} 

0.1 100% (3/3) 1.95 

{orthopnoea, fatigue, dizziness, syncope, cough}  {enalapril} 0.1 100% (3/3) 1.95 
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event is sometimes accompanied by some other AEs such as fatigue, but without orthopnea, those other 
AEs do not associate with enalapril since no association rule supporting was detected with the threshold 
support >= 0.1% and confidence >= 60%. For example, although {orthopnoea, fatigue}  {enalapril} is 
a strong rule with confidence being 100%, out of all the 1743 subjects with fatigue in the data, only 862 
were on enalapril, namely, the rule {fatigue}  {enalapril} only has confidence as 49%.  
 
Another treatment associated event also detected in this AR mining exercise is palpitations. The 
corresponding rules detected are listed below.  

                  Rule Support(%) Confidence Lift 

{palpitations}  {Enalapril} 0.8 60% (18/30) 1.2 

{palpitations, nausea}  {Enalapril} 0.4 90% (9/10) 1.8 

{palpitations, nausea, fatigue, dizziness, syncope}  {Enalapril} 0.4 89% (8/9) 1.7 

{palpitations, memory impairment}  {Enalapril} 0.4 80% (8/10) 1.6 

{palpitations, memory impairment, fatigue, dizziness, syncope}  
 {Enalapril} 

0.3 78% (7/9) 1.5 

{palpitations, nausea, memory impairment}  {Enalapril} 0.3 100% (7/7) 1.9 

{palpitations, nausea, memory impairment, fatigue, dizziness, 
syncope}  {Enalapril} 

0.3 100% (6/6) 1.9 

 
Unlike the event orthopnoea, palpitations by itself is associated with the treatment to some extent, but is 
associated with treatment more strongly through a cluster of a few other AEs. The confidence for the rule 
{palpitations}  {Enalapril} is 60%, while the confidence for {palpitations, nausea}  {Enalapril} is 
90%, and that for {palpitations, nausea, memory impairment}  {Enalapril} is 100%. In other words, 
only 60% subjects with palpitations are on enalapril, but for subjects with palpitations, if they also had 
nausea and memory impairment, they are 100% on enalapril.  
 
To further investigate the clustering behaviour of palpitations with other AEs, AR mining was later 
performed in each treatment group of the trial to detect rules of the form {AEs}  {palpitations}. In the 
enalapril group (18 subjects with palpitations), there are >20 rules of {AEs}  {palpitations} with 
confidence >= 40%. Two examples of detected rules  are listed below. This result indicates that the event 
palpitations tends to co-occur with certain other AEs in patients on enalapril.  

                  Rule Support(%) Confidence Lift 

{fatigue, memory impairment, nausea, vision 
blurred, dysgeusia, diarrhoea}  {palpitations} 

0.2 50% (2/4) 30.9 

{fatigue, memory impairment, nausea, vision 
blurred, diarrhoea}  {palpitations} 

0.2 40% (2/5) 24.7 

On the other hand, when AR mining is performed in the placebo group (12 subjects with palpitations), 
there is no rule of the form {AEs}  {palpitations} with the minimum confidence set as low as 3%. The 
event palpitations occurred more randomly in the placebo group, and no pattern is observed. Clearly there 
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is some difference in the clustering behaviour of palpitations with other AEs in the two treatment groups. 
The clustered events in the enalapril group, such as palpitations together with nausea and memory 
impairment, may be a manifestation of some underlying similarity among the subjects who had the cluster 
of the events. Careful clinical review is desired to interpret such interesting patterns. Other data domains 
such as demography and medical history, etc., should be investigated to aid the review. 

4. Discussion 
 
Association rule mining is a powerful tool to analyse clinical trial safety data, and could provide 
additional insight into the data and detect important patterns that cannot be identified by standard 
descriptive summary or traditional statistical methods based on aggregate data. As discussed in this paper, 
AR mining could be applied to clinical trial safety data with great flexibility to answer unique questions 
related to drug safety. Performing an AR mining analysis is relatively straightforward because the fast 
algorithms have now been implemented in many statistical software packages. However, the results of 
AR mining analysis depend directly on the thresholds assigned to the support and confidence. As we have 
seen, the choice of threshold may be influenced by several factors such as the actual patient population, 
type of database, and purpose of safety review. It is currently determined in a case by case fashion, and 
there is no general guidance on the choice of threshold for AR mining applied in clinical trial safety data. 
Various thresholds may be utilized to potentially find clinical meaningful associations. AR mining has 
great potential in its application to analyse clinical trial safety data, but similar to all other data mining 
methods, AR analysis should be applied to large datasets (such as one large scale phase III trial, or 
integrated safety data from multiple phase II/III trials) and it has limited value in small datasets. In 
addition, we need to be mindful that data mining serves as an initial step in safety evaluation, and a 
combination of statistical inference and medical judgment is required as part of the signal detection and 
evaluation process. 
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