
 A Bayesian Adaptive Design for Cancer Phase I Trials Using a 
Flexible Range of Doses 

 
 
 
 
 

Galen Cook-Wiens, Mourad Tighiouart, and André Rogatko 
 

 
Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center 
8700 Beverly Blvd, Los Angeles, CA 9004 

 
 
Abstract 
We present a Bayesian adaptive design for dose finding in cancer phase I clinical trials. 
The goal is to estimate the maximum tolerated dose (MTD) after possible modification of 
the dose range during the trial. Parametric models are used to describe the relationship 
between the dose and the probability of dose limiting toxicity (DLT). We investigate 
model reparameterization in terms of the probabilities of DLT at the minimum and 
maximum available doses at the start of the trial. Trial design proceeds using escalation 
with overdose control (EWOC), where at each stage of the trial, we seek the dose of the 
agent such that the posterior probability of exceeding the MTD of this agent is bounded 
by a feasibility bound. At any time during the trial, we test whether the MTD is below or 
above the minimum and maximum doses, respectively. If during the trial, there is 
evidence that the MTD is outside the range of doses, we extend the range of doses and 
complete the trial with the planned sample size. At the end of the trial, a Bayes estimate 
of the MTD is proposed. We evaluate design operating characteristics in terms of safety 
of the trial design and efficiency of the MTD estimate. The methodology is further 
compared to the original EWOC design. 
 
Key Words: Cancer phase I trials; Maximum tolerated dose; Escalation with overdose 
control; Dose limiting toxicity; Continuous dose; Flexible dose range. 
 
 

1. Introduction 
 
Cancer phase I clinical trials are small sequential studies designed to investigate the 
safety and tolerability of investigational new agents or combination of existing cytotoxic 
and/or biologic agents. These trials enroll late stage patients who have exhausted all 
standard therapy [1]. The primary objective of these trials is to estimate a dose level that 
is associated with a predetermined level of dose limiting toxicity (DLT). Such a dose is 
referred to as the maximum tolerated dose (MTD) or phase II dose. A review of single 
agent dose-finding designs can be found in [2-4].  
 
Existing statistical designs such as the continual reassessment method (CRM) [5-11] and 
escalation with overdose control (EWOC) [12-21] consist of searching for the MTD 
among a pre-determined set of discrete doses or within a bounded interval of doses 
specified by the clinicians. If the true MTD happens to be below the minimum dose 
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available in the trial Xmin, then such designs lead to stopping the trial using some type of 
statistical or deterministic stopping rules. As a result, enrollment to the trial is either 
suspended and the clinical protocol is amended to expand the dose range or the trial is 
closed to enrollment. On the other hand, if the true MTD is above the maximum dose 
available in the trial Xmax, these statistical designs and other algorithmic designs such as 
the standard ‘3+3’ and its modifications [22-24] or acceleration titration design [22, 25] 
will usually proceed and enroll the planned number of patients in the trial and 
recommend the last dose as the phase II dose.  
 
In this manuscript, we extend EWOC design by expanding the support of the prior 
density of the MTD to the interval (0, ∞). Clinicians specify a range of available doses in 
the interval [Xmin, Xmax] based on their prior belief or preliminary data about the safety of 
the dose Xmin and the location of the true MTD in [Xmin, Xmax]. We next ask clinicians to 
specify a range of doses they are willing to expand below Xmin if there is statistical 
evidence that Xmin is too toxic. We further ask them to pre-specify a range of doses to be 
expanded beyond Xmax if there is statistical evidence that the probability of DLT at Xmax is 
way below the target probability of DLT. This approach will allow us to search for the 
MTD beyond [Xmin, Xmax] without suspending accrual, stopping the trial, or 
recommending a suboptimal dose as the phase II dose. Moreover, design operating 
characteristics are carried out at the design stage of the trial and will take into account 
any dose range expansion below Xmin or above Xmax.  
 
 

2. Model 
 
2.1 Dose-Toxicity Model 
Consider the problem of identifying a tolerable dose x > 0 of a cytotoxic agent. We 
consider the dose-toxicity model of the form 
 
 0 1Prob( 1| ) ( ),Y x F xβ β= = +  (2.1) 
 
where Y is the indicator of dose limiting toxicity (DLT), Y = 1 if a patient given dose x 
exhibits DLT within one cycle of therapy, and Y = 0 otherwise, and F is a known 
cumulative distribution function. Let Xmin and Xmax be the minimum and maximum doses 
available in the trial. 
We will assume that β1 > 0 so that the probability of DLT increases with dose. The MTD 
is defined as the dose γ > 0 such that 
 
 Prob( 1| ) .Y γ θ= =  (2.2) 
 

The value of the target probability θ is pre-specified by the clinicians and depends on the 
nature and clinical manageability of the DLT; it is set relatively high when the DLT is a 
transient, reversible or non-fatal condition, and low when it is life threatening. It follows 
from (2.1) and (2.2) that 
 

 
1

0

1

( ) .F θ βγ
β

− −
=  (2.3) 

Suppose that the dose levels are standardized to be in the interval [0, 1] so that Xmin 
corresponds to dose level 0 and Xmax to dose level 1. We reparameterize model (2.1) in 
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terms of ρ0, the probability of DLT at dose level 0, and ρ1, the probability of DLT at dose 
level 1. This reparameterization is convenient to clinicians since prior information on ρ0 
and ρ1 may be available from other trials. It can be shown that 
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The MTD in (2.3) becomes 
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Let Dn = {(xi,yi), i = 1, …, n} be the data after enrolling n patients in the trial. The 
likelihood function for the model parameters is 
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where 
 
 ( )1 1 1

0 1 0 1 0( , ; ) ( ) ( ) ( ) .i iG x F F F F xρ ρ ρ ρ ρ− − − = + −   (2.7) 
 
2.2 Prior and Posterior Distributions 
We assume that ρ1 ~ beta(a1, b1) and conditional on ρ1, ρ0 / ρ1 ~ beta(a2, b2). Under lack of 
prior information about these parameters, we take ai = bi, i = 1, 2. Using Bayes rule, the 
posterior distribution of the model parameters is 
 

 ( ) ( )10 1 0 1 0 1 1 0 1
1

( , | ) ( , ; ) 1 ( , ; ) ( ) ( | ).i i
n

y y
n i i

i
D G x G xπ ρ ρ ρ ρ ρ ρ π ρ π ρ ρ−

=

∝ −∏  (2.8) 

 
Features of this posterior distribution are estimated using WinBUGS[26] and JAGS.  
 
2.3 Trial Design 
The adaptive design uses the EWOC scheme where at each stage of the trial, the posterior 
probability of overdosing a future patient is bounded by a feasibility bound α. 
Furthermore, at each stage of the trial, we check whether or not the minimum dose Xmin is 
likely to be too toxic and the maximum dose Xmax is likely to be very safe. If either 
condition holds, the dose range is expanded accordingly. Let L be the largest amount of 
the drug the clinician is willing to expand from below in case Xmin is too toxic and U be 
the largest amount to be added to Xmax in case Xmax is very safe. 
 

1. The first patient (or cohort of m patients) receives dose x1 = Xmin. Let D1 = 
{(x1, Y1)}. 

JSM 2014 - Biopharmaceutical Section

3942



2. The second patient receives dose x2 corresponding to the α-th percentile of 
π(γ |D1), the posterior distribution of the MTD given the data. In general, the 
i-th patient receives dose  
xi = П-1(α | Di-1) I(Xmin < П-1(α | Di-1) < Xmax) + Xmin I(П

-1(α | Di-1) <  Xmin) +       
Xmax I(П

-1(α | Di-1) > Xmax).  
3. For i=1,…,n−1, if P(P(DLT | x = Xmin) > θ + δ1 | Di) > δ, expand the range of 

doses to [Xmin – L, Xmax] and patient i+1 receives the dose  
xi+1 = П-1(α | Di) I(Xmin – L < П-1(α | Di) < Xmax) + (Xmin – L) I(П-1(α | Di) <  
Xmin – L) + Xmax I(П

-1(α | Di) > Xmax). If P(P(DLT | x = Xmax) < θ – δ2 | Di) > δ, 
expand the range of doses to [Xmin , Xmax + U] and patient i+1 receives the   
dose  
xi+1 = П-1(α | Di) I(Xmin < П-1(α | Di) < Xmax+ U) + Xmin I(П

-1(α | Di) <  Xmin) + 
(Xmax+ U) I(П-1(α | Di) > Xmax+ U). 

4. Repeat steps 2 and 3 until n patients are enrolled to the trial. 
 
Here, П-1( ∙ | Di-1) denote the inverse cumulative distribution function of the posterior 
distribution of the MTD γ given the data Di-1. At the end of the trial, we estimate the 
MTD as the median of the posterior distribution π(γ |Dn). Step 2 of the algorithm states 
that the dose allocated to the i-th patient is П-1(α | Di-1) provided that this dose is within 
the range of doses available in the trial. Otherwise, the dose allocated to the i-th patent is 
either Xmin or Xmax depending on whether П-1(α | Di-1) is below the minimum dose or 
above the maximum dose available in the trial. Step 3 states that anytime during the trial, 
if there is evidence that either the minimum dose is likely to be to toxic or the maximum 
doses is likely to have a probability of DLT below the target θ, then the dose range is 
expanded either below Xmin or above Xmax and dose allocation proceeds as in step 2 with 
this expanded range of doses. 
 
δ1, δ2, and δ are design parameters and are selected to produce good design operating 
characteristics. L and U control the size of the dose range expansion and are pre-specified 
by the clinicians. The parameter α is the feasibility bound and controls the probability of 
overdosing patients. It is set at 0.1 at the onset of the trial, and then increases by 
increments of 0.05 to a maximum value of 0.5 after each patient is enrolled to the trial. In 
the simulation results we studied, the parameters associated with the expansion rules are 
δ1 = δ2 = 0 and δ = 0.8.  
 
The possibility of modifying the range of doses during the trial is very useful to clinicians 
and can help salvage a trial that shows a high rate of DLT around the minimum dose or a 
low rate of DLTs around the maximum dose. In such cases, the proposed design expands 
the range of doses without suspending enrollment to the trial or amending the clinical 
protocol since the design operating characteristics are performed at the design stage of 
the trial. 
 
 

3. Simulation Studies 
 
3.1 Simulation Set-up and Scenarios 
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We studied the performance of this design by simulating m = 1000 trials under three 
scenarios of the true MTD using the logistic function F(u) = (1 + e–u)–1 as the true and 
working model. In all cases, the target probability of DLT is θ = 0.33, planned trial 
sample size is n = 30 patients, and aj = bj = 1, j = 1, 2 which corresponds to vague priors 
for ρ0 and ρ1. For a hypothetical trial, we took Xmin = 100 mg/m2 and Xmax = 500 mg/m2, L 
= 100 mg/m2, U = 200 mg/m2 and the following scenarios for the true MTD, γ = 37 
mg/m2, 308 mg/m2, and 586 mg/m2. The doses are standardized to the interval [0, 1] and 
the true standardized MTDs are −0.15, 0.52, and 1.21. The corresponding true model 
parameters are (ρ0, ρ1) = (0.45, 0.95), (0.05, 0.8), and (0.01, 0.2). We compared the safety 
of a trial and efficiency of the estimated MTD between the following 3 designs, (1) Dose 
expansion (DE) design: this is the proposed design where an expansion rule is put in 
place and the range of doses is expanded if needed, (2) No dose expansion (NDE) design: 
this design uses the stopping rule but does not expand the range of doses, and (3) No 
stopping rule (NS): this design does not use a statistical stopping rule as in the original 
EWOC.  
 
Safety of each design is assessed by computing the average percent of DLTs  
 
 
 DLT ,1 1

1 / ( ) ( 1),m n
i ji j

ave m n I Y
= =

= ⋅ ⋅ =∑ ∑  (3.1) 
  
and the percent of trials that have a DLT rate exceeding θ + δ, for δ = 0.05, 0.1, 
 

 1 1
,

1 1

%trials w. high DLT rate .
m n

i j
i j

m I n Y θ δ− −

= =

   = ⋅ > +  
   

∑ ∑  (3.2) 

 
The threshold θ + 0.1 is usually considered to be an indication of an excessive DLT rate. 
Efficiency of the trial is evaluated by calculating the average bias 
 
 1

bias true1
ˆ( ),m

ii
ave m γ γ−

=
= ⋅ −∑  (3.3) 

 
where îγ  is the estimate of the MTD for the i-th trial and γtrue is the true MTD under a 
particular scenario, the root mean square error 
 

 ( )1/2
1 2

true1
ˆRMSE ( ) ,m

ii
m γ γ−

=
= ⋅ −∑  (3.4) 

 
the percent of trials with estimated MTD within (100×p)% of the dose range of 
the true MTD, 0 < p < 1, 
 
 ( )1

true max min true max min1
ˆ%recom 1 ( ) ( ) ,m

ii
m I p X X p X Xγ γ γ−

=
= ⋅ − − ≤ ≤ + −∑  (3.5) 

 
and the percent of trials with estimated MTD within (100×p)% of the value of the 
true MTD, 0 < p < 1, 
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true true true true1

ˆ%recom 2 .m
ii

m I p pγ γ γ γ γ−
=

= ⋅ − ≤ ≤ +∑  (3.6) 
 
The statistics in (3.5) and (3.6) can be interpreted as the percent of MTD recommendation 
within a neighborhood of the true MTD. They differ with respect to the structure of this 
neighborhood. In (3.5), the width of the tolerance interval is a fraction of the dose range 
and is constant regardless of the value of γtrue, see [18]. In (3.6), the width of the tolerance 
interval is a fraction of γtrue so that wider intervals are tolerated for high values of γtrue and 
tighter neighborhoods are imposed for values of γtrue near the minimum dose Xmin. Such a 
statistic was used for single agent dose finding trials in [27] and dose combination trials 
in [28]. 
 
3.2 Results 
 
Table 1 gives the probability of expanding the dose range under the three scenarios along 
with the median trial sample size and 90% confidence interval. When the true MTD is 
below the minimum dose Xmin, the probability of expanding the dose range from below is 
0.81 with a median sample size of 13. The probability of expanding the dose range from 
above is 0.96 when the true MTD is above the maximum dose Xmax and the corresponding 
median sample size is 6. 
 

Table 1. Probability of expanding dose range and CI for sample size n 
 True MTD 

−0.15 0.52 1.21 
P(expand) 0.81 0.048 0.96 
Median n 13 30 6 

90% CI for n [4, 30] [30,30] [6,26] 

 
3.2.1 Trial Safety 
 
Table 2 shows that when the true MTD is below the minimum dose available in the trial, 
the average percent of DLTs computed using (3.1) is lower using the proposed design 
(DE) relative to a design where no stopping rule is used (NS) or the design that stops the 
trial but does not expand the range of doses (NDE). When the true MTD is in the middle 
of the dose range, the average percent of DLTs is close to the target probability of DLT θ 
= 0.33 for all 3 designs. In the case where the true MTD is above Xmax, aveDLT using 
design DE is much closer to the target θ = 0.33 than the other two designs. The high DLT 
rate of 45.9% using DE is probably due to the fact that a much higher rate of DLT is 
observed prior to the dose range expansion from below. The same conclusion holds for 
the percent of trials with an excessive DLT rate. When the true MTD is either in the 
middle of the dose range or above Xmax, the percent of trials with DLT rate exceeding θ 
computed using (3.2) is very small. When the true MTD is below Xmin, this percent is 
lower using design DE relative to the other two designs, but is still high. Again, this is 
due to the fact that the median sample size before expanding the dose range is 13.  
 
3.2.2 Trial Efficiency 

 
Table 2 shows that the average bias of the estimate of the MTD computed using (3.3) is 
always lower when using the proposed design DE relative to the other two designs when 
the true MTD is outside the range of doses available in the trial. When the true MTD is in 
the middle of the dose range, the average bias is very small, similar to the NS design. 
Similar conclusions hold for the RMSE computed using (3.4). Similarly, the percent of 
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Table 2. Operating Characteristics comparing the three designs 
 True MTD 

−0.15 0.52 1.21 
Design DE NDE NS DE NDE NS DE NDE NS 

 
Sa

fe
ty

 
Average % 
DLTs 45.9 56.1 48.6 34.1 32.3 34.0 28.2 4.7 16.6 

% trials w. 
DLT rate  
> θ + 0.1 

79.0 92.7 84.8 4.7 3.6 4.7 0.1 0.0 0.0 

  

E
ff

ic
ie

nc
y Average 

MTD −0.057 0.017 0.012 0.518 0.542 0.521 1.212 0.999 0.996 

Average 
bias 0.099 0.174 0.169 −0.001 0.022 0.001 −0.004 −0.217 −0.220 

Root MSE 0.128 0.178 0.172 0.105 0.148 0.097 0.150 0.218 0.221 
  

%
 tr

ia
ls

 w
ith

 
M

T
D

 e
st

im
at

e 
in

 (γ − 0.10,  
γ + 0.10) 0.567 0.0 0.0 0.663 0.624 0.713 0.494 0.0 0.0 
(γ − 0.15,  
γ + 0.15) 0.729 0.0 0.0 0.848 0.799 0.886 0.672 0.0 0.0 
(γ − 0.15γ, 
γ + 0.15γ) 0.163 0.0 0.0 0.550 0.534 0.589 0.745 0.0 0.0 
(γ − 0.20γ, 
γ + 0.20γ) 0.21 0.0 0.0 0.685 0.643 0.731 0.878 0.99 0.96 

 
 
trials with estimated MTD in a neighborhood of the true MTD as measured by (3.5, 3.6) 
is almost always higher when using design DE relative to the other two designs when the 
true MTD is outside the range of doses. When the true MTD is in the middle of the dose 
range, design NS does better than design DE with an excess of 4 to 5% in the percent of 
trials with MTD estimate within a given neighborhood of the true MTD. Based on these 
results, we conclude that the method is useful in estimating the MTD efficiently and is an 
improvement over the original EWOC design in the case where the true MTD turns out to 
be outside the range of doses available in the trial. 
 
 

4. Discussion 
 
We described a dose finding design for cancer phase I clinical trials which uses a flexible 
dose range. In this design, clinicians propose a dose range [Xmin, Xmax] for searching for 
the MTD with the flexibility to expand this range to [Xmin − L, Xmax + U] if there is 
statistical evidence that the lowest dose is too toxic or the largest dose level is too safe. 
The approach is an extension of the method described in [12] and is more general than 
the extension described in [15]. When there is evidence that the lowest dose is too toxic 
or the highest dose has a low probability of DLT, the method has several advantages over 
previous approaches. For instance, there is no need to suspend accrual, amend the clinical 
protocol, or close the trial since the consequences of expanding the dose range are 
evaluated using the design operating characteristics at the design stage of the trial. 
 
We assessed the performance of the approach using three scenarios for the true MTD and 
by comparing the proposed design with a design that does not expand the range of doses 
and a design that does not use a statistical stopping rule as in the original EWOC. We 
showed that our method is safer and can estimate the MTD more efficiently. We plan to 
further study the operating characteristics by considering more scenarios, model 
misspecification, and compare the safety of the trial and efficiency of the estimate of the 
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MTD with the design that uses [Xmin − L, Xmax + U] as the initial dose range. We 
further plan to adapt this method to the CRM for both continuous and discrete set 
of doses. 

 
Acknowledgment 

 
This work is supported in part by the National Center for Research Resources, Grant 
UL1RR033176, and is now at the National Center for Advancing Translational Sciences, 
Grant UL1TR000124 (M.T and A.R), Grant 5P01CA098912-05 (M.T). The content is 
solely the responsibility of the authors and does not necessarily represent the official 
views of the NIH. 
 
 
References 
 
 
1. Roberts TG, Goulart BH, Squitieri L, Stallings SC, Halpern EF, Chabner BA, 
Gazelle GS, Finkelstein SN, Clark JW. Trends in the risks and benefits to patients with 
cancer participating in phase 1 clinical trials. Jama-Journal of the American Medical 
Association 2004; 292: 2130-2140. 
2. Ting N. Dose Finding in Drug Development. (First edn). Springer: (New York, 
2006. 
3. Chevret S. Statistical Methods for Dose-finding Experiments. Wiley: Chichester, 
2006. 
4. Le Tourneau C, Lee JJ, Siu LL. Dose Escalation Methods in Phase I Cancer 
Clinical Trials. Journal of the National Cancer Institute 2009; 101: 708-720. 
5. O'Quigley J, Pepe M, Fisher L. Continual reassessment method: A practical 
design for phase I clinical trials in cancer. Biometrics 1990; 46: 33-48. 
6. Faries D. Practical Modifications of the Continual Reassessment Method for 
Phase I Cancer Clinical Trials. Journal of Biopharmaceutical Statistics 1994; 4: 147:164. 
7. Moller S. An Extension of the Continual Reassessment Methods Using a 
Preliminary up-and-Down Design in a Dose Finding Study in Cancer Patients, in Order to 
Investigate a Greater Range of Doses. Statistics in Medicine 1995; 14: 911-922. 
8. Goodman SN, Zahurak ML, Piantadosi S. Some Practical Improvements in the 
Continual Reassessment Method for Phase-I Studies. Statistics in Medicine 1995; 14: 
1149-1161. 
9. O'Quigley J, Shen LZ. Continual reassessment method: a likelihood approach. 
Biometrics 1996; 52: 673-684. 
10. Piantadosi S, Fisher JD, Grossman S. Practical Implementation of a Modified 
Continual Reassessment Method for Dose-Finding Trials. Cancer Chemotherapy and 
Pharmacology 1998; 41: 429-436. 
11. Cheung YK, Chappell R. Sequential designs for phase I clinical trials with late-
onset toxicities. Biometrics 2000; 56: 1177-1182. 
12. Babb J, Rogatko A, Zacks S. Cancer Phase I clinical Trials:  efficient dose 
escalation with overdose control. Stat Med 1998; 17: 1103-1120. 
13. Zacks S, Rogatko A, Babb J. Optimal Bayesian-feasibile dose escalation for 
cancer phase I trials. Stat Prob Ltrs 1998; 38: 215-220. 
14. Babb JS, Rogatko A. Patient specific dosing in a cancer phase I clinical trial. Stat 
Med 2001; 20: 2079-2090. 

JSM 2014 - Biopharmaceutical Section

3947



15. Tighiouart M, Rogatko A, Babb JS. Flexible Bayesian methods for cancer phase 
I clinical trials. Dose escalation with overdose control. Stat Med 2005; 24: 2183-2196. 
16. Tighiouart M, Rogatko A. Dose Finding with Escalation with Overdose Control 
(EWOC) in Cancer Clinical Trials. Statistical Science 2010; 25: 217-226. 
17. Chen ZJ, Tighiouart M, Kowalski J. Dose escalation with overdose control using 
a quasi-continuous toxicity score in cancer Phase I clinical trials. Contemporary Clinical 
Trials 2012; 33: 949-958. 
18. Tighiouart M, Cook-Wiens G, Rogatko A. Escalation with Overdose Control 
Using Ordinal Toxicity Grades for Cancer Phase I Clinical Trials. Journal of Probability 
and Statistics 2012; 2012: 18. 
19. Tighiouart M, Cook-Wiens G, Rogatko A. Incorporating a Patient Dichotomous 
Characteristic in Cancer Phase I Clinical Trials Using Escalation with Overdose Control. 
Journal of Probability and Statistics 2012; 2012: 10. 
20. Tighiouart M, Rogatko A. Number of Patients per Cohort and Sample Size 
Considerations Using Dose Escalation with Overdose Control. Journal of Probability and 
Statistics 2012; 2012: 16. 
21. Tighiouart M, Liu Y, Rogatko A. Escalation with Overdose Control using Time 
to Toxicity for Cancer Phase I Clinical Trials. Plos One 2014; 9. 
22. Storer BE. Design and Analysis of Phase-I Clinical-Trials. Biometrics 1989; 45: 
925-937. 
23. Derman C. Nonparametric up and down experimentation. Annals of Statistics 
1957; 28: 795-798. 
24. Durham SD, Flournoy N, Rosenberger WF. A random walk rule for phase I 
clinical trials. Biometrics 1997; 53: 745-760. 
25. Simon R, Freidlin B, Rubinstein L, Arbuck SG, Collins J, Christian MC. 
Accelerated titration designs for phase I clinical trials in oncology. Journal of the 
National Cancer Institute 1997; 89: 1138-1147. 
26. Lunn DJ, Thomas A, Best N, Spiegelhalter D. WinBUGS - A Bayesian 
modelling framework: Concepts, structure, and extensibility. Statistics and Computing 
2000; 10: 325-337. 
27. Van Meter EM, Garrett-Mayer E, Bandyopadhyay D. Proportional odds model 
for dose-finding clinical trial designs with ordinal toxicity grading. Statistics in Medicine 
2011; 30: 2070-2080. 
28. Tighiouart M, Piantadosi S, Rogatko A. Dose finding with drug combinations in 
cancer phase I clinical trials using conditional escalation with overdose control. Stat Med 
2014; 33: 3815-3829. 
 
 

JSM 2014 - Biopharmaceutical Section

3948


