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Abstract
In cancer family studies, individuals are often at risk of multiple cancers. Estimating the risk of

successive and competing cancer events can help disentangling the familial risk and thus provide
relevant clinical insights. The goal of our study is to investigate the impact of competing cancer
events on the risk estimation of successive cancers in a family setting. We propose a statistical
framework based on a progressive multistate model where competing events are taken into account.
We also deal with the complex ascertainment of the families.We illustrate the interest of our ap-
proach through an analysis of Lynch Syndrome families identified by the Colon Cancer Family
Registries, a NIH-funded initiative. These families harbour a mutation in the mismatched repair
genes, whose members are at high risk of developing multiplecancers: colorectal, endometrial,
ovarian, stomach etc. We estimated both relative and absolute risks of developing a first and second
colorectal cancer with or without considering competing risk events. Our results showed that cancer
risks can be overestimated if competing risks are ignored.

Key Words: Progressive multistate model, family data, successive event times, competing risks,
ascertainment-corrected likelihood.

1. Introduction

In cancer family studies, family members are at high risk of developing successive and
competing cancer events. For example, Lynch syndrome (LS) is an inherited condition that
predisposes family members to elevated risks of colorectalcancer and other related cancers
such as endometrial, ovarian, stomach, brain, skin etc. Especially, mutations in mismatched
repair genes such as MLH1, MSH2, or MSH6 are known to increasethe risk of developing
various LS-related cancers within families and within individuals. The purpose of this work
is to estimate the risks (absolute and relative) of developing sequential cancers associated
with mutated genes in LS families while taking into account competing cancer events or
not.

2. Methods

Progressive multistate models are a useful approach for modelling successive events expe-
rienced by an individual. Recently, Choi et al. (2014) developed a three-state progressive
model for estimating successive cancer risks in family studies. A Markov model was pro-
posed for modelling the risk of second cancers conditioningon the time to first cancer,
which was used as a time-dependent covariate. However, thismodel assumed no compet-
ing events which could bias the cancer risk estimation (Katki et al., 2008).

In this paper, we incorporate competing cancer events into the progressive multistate
model to provide accurate cancer-specific risk estimates associated with mutated genes in
LS families. We first develop a joint model for successive events based on copulas (Nelsen,
2006) and then incorporate competing risks (Beyersmann et al., 2012) into this model. A
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retrospective likelihood approach (Carayol and Bonaı̈ti-Pellié, 2004; Kraft and Thomas,
2000) is employed to deal with the non-random ascertainmentof the families.

2.1 A copula model for successive event times

Suppose that the sequential event times arise from the following three-state progressive
model. We lett1 and t2 denote the times spent in the ‘Healthy’ and ‘Event 1’ states,
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Figure 1: Three-state progressive model

respectively, wheret1 represents the time to Event 1 andt2 represents the time to Event 2
after Event 1—the gap time between the two events.

The proportional hazards models are assumed fortj , j = 1, 2,

λj(tj |Xj) = λ0j(tj) exp{β⊤
j Xj},

whereλ0j(tj), j = 1, 2, are the baseline hazard functions attj, andXj are the vectors of
the risk factors associated withtj. DenotingΛ0j(tj), j = 1, 2, as the cumulative baseline
hazard functions fortj, the marginal survival functions fortj are given by

Sj(tj |Xj) = e−Λ0j(tj |Xj) exp{β⊤
j Xj}.

To model the dependence between the two event times, we derive the joint survivor
function fort1 andt2 using survivor copulaC to link the two marginal survivor functions,

S(t1, t2) = C{S1(t1), S2(t2)}.

As an important class of coupling functions, Archimedean copula (Nelsen, 2006) is
considered, which takes the form

C(x, y) = φ−1{φ(x) + φ(y)},

whereφ is a copula generating function from[0, 1] to [0,∞] such thatφ is a convex de-
creasing function withφ(1) = 0. In particular,φ(t) = tθ − 1 corresponds to the Clayton
copulaC(u, v) = (u−θ + v−θ − 1)−1/θ, θ > 0.

Thus, the bivariate survivor function given covariatesX1 and X2 can be expressed
using Clayton copula (Clayton, 1978):

S(t1, t2|X1,X2) = φ−1{φ(S1(t1|X1)) + φ(S2(t2|X2))}

= {S1(t1|X1)
−θ + S2(t2|X2)

−θ − 1}−1/θ

= {eθΛ01(t1|X1) + eθΛ02(t2|X2) − 1}−1/θ .

The three possible transitions for a subject are: (1) staying in Healthy (experiencing no
events), (2) experiencing Event 1 but no Event 2, and (3) experiencing both Event 1 and
Event 2. The likelihood contributions for the three cases are respectively expressed as the
marginal survival function fort1 and the first and second derivatives for the joint survivor
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function:

S1(t1|X1) = S(t1, 0|X1,X2)

−
∂

∂t1
S(t1, t2|X1,X2) = {S1(t1|X1)

−θ + S2(t2|X2)
−θ − 1}−(θ+1)/θS1(t1|X1)

−θλ1(t1)

∂2

∂t1∂t2
S(t1, t2|X1,X2) = (θ + 1){S1(t1|X1)

−θ + S2(t2|X2)
−θ − 1}−(2θ+1)/θ ×

S1(t1|X1)
−θλ1(t1|X1)S2(t2|X2)

−θλ2(t2|X2).

Using Weibull baseline hazard functions,λ0j(tj) = νjρjt
ρj

j , for j = 1, 2, and the cor-

responding marginal survivor functionsSj(tj|Xj) = exp{−νjt
ρj

j eβ⊤
j Xj}, the likelihood

function contribution for each individual with censoring indicatorsδ1 andδ2 for t1 andt2
is

L(θ) = (θ + 1)δ2{S1(t1|X1)
−θ + S2(t2|X2)

−θ − 1}−(δ1+δ2+δ1/θ) ×

S1(t1|X1)
−(δ1θ+δ1−1)λ1(t1|X1)

δ1S2(t2|X2)
−δ2θλ2(t2|X2)

δ2

= (θ + 1)δ2{eθν1t
ρ1

1
eβ⊤

1
X1

+ eθν2t
ρ2

2
eβ⊤

2
X2

− 1}−(δ1+δ2+δ1/θ) ×

e(δ1θ+δ1−1)ν1t
ρ1

1
eβ⊤

1
X1

(ν1ρ1t
ρ1

1 eβ⊤
1

X1)δ1eδ2θν2t
ρ2

2
eβ⊤

2
X2

(ν2ρ2t
ρ2

2 eβ⊤
2

X2)δ2 .

The corresponding log-likelihood function can be also expressed as

ℓ(θ) = δ2 log(θ + 1) − (δ1 + δ2 + δ1/θ) log{eθν1t
ρ1

1
eβ⊤

1
X1

+ eθν2t
ρ2

2
eβ⊤

2
X2

− 1} +

(δ1θ + δ1 − 1)ν1t
ρ1

1 eβ⊤
1

X1 + δ1 log(ν1ρ1) + δ1ρ1 log(t1) + δ1β
⊤
1 X1 +

δ2θν2t
ρ2

2 eβ⊤
2

X2 + δ2 log(ν2ρ2) + δ2ρ2 log(t2) + δ2β
⊤
2 X2,

where we Weibull baseline hazard functions,λ0j(tj) = νjρjt
ρj

j , for j = 1, 2, and the

2.2 Competing risks in the progressive multistate model

We consider the progressive multistate model in the presence of competing risks. Figure
2 illustrates a situation where competing events are present for both Event 1 and Event 2;
Event 3 is a competing event of Event 1 and Event 4 is a competing event of Event 2. We
denote the times to Event 1,. . ., Event 4 byt1, . . . , t4, respectively.
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Figure 2: Progressive multistate model with competing risks and their cause-specific haz-
ardsλk(t), k = 1, 2, 3, 4.

The cause-specific hazard functions fortk, k = 1, 2, 3, 4, are defined by

λk(tk|Xk) = λ0k(tk) exp{β⊤
k Xk},
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whereλ0k(tk) represents the baseline hazard function for transitionk = 1, 2, 3, 4; we
assume Weibull baseline hazard functionλ0k(tk) = νkρkt

ρk

k .
Further, we lettA be the time to first event,tB be the time to the second event after the

first event of interest;tA takes valuet1 or t3 that occurs first, i.e.,tA = min{t1, t3, age},
whereage represents age at examination as a censoring variable;tB defined as gap time
takes valuet2 or t4 that occurs first, i.e.,tB = min{t2, t4, age − t1}. We defineδA = 1 if
δ1 = 1 or δ3 = 1, 0 otherwise;δB = 1 if δ2 = 1 or δ4 = 1, 0 otherwise. LetKA represent
the type of the first event,KA ∈ {1, 3}, andKB the type of the second event,KB ∈ {2, 4}.

The survivor functions fortA andtB can be expressed as

SA(tA) = e−Λ1(tA)−Λ3(tA)

SB(tB) = e−Λ2(tB)−Λ4(tB),

whereΛk(tk) are the cumulative hazard functions fortk, k = 1, 2, 3, 4.
Then, the joint survivor function can be constructed using survivor copulaC to link the

two marginal survivor functions as

S(tA, tB) = C{SA(tA), SB(tB)} = φ−1{φ(SA(tA)) + φ(SB(tB))}.

Using Clayton copula, we obtain the joint survivor functionand its first and second deriva-
tives:

S(tA, tB) = {SA(tA)−θ + SB(tB)−θ − 1}−1/θ

−
∂

∂tA
S(tA, tB) = {SA(tA)−θ + SB(tB)−θ − 1}−(θ+1)/θSA(tA)−θλ1(tA)

∂2

∂tA∂tB
S(tA, tB) = (θ + 1){SA(tA)−θ + SB(tB)−θ − 1}−(2θ+1)/θSA(tA)−θλ1(tA)SB(tB)−θλ2(tB).

Subjects can take one of the following five possible transitions and their contribution to
the likelihood are respectively:

Case 1:δA = 0 andδB = 0
L = SA(tA)

Case 2:δA = 1,KA = 1, andδB = 0

L = −
∂

∂t1
S(tA, tB)

Case 3:δA = 1,KA = 3

L = −
∂

∂t3
SA(t3) = SA(t3)h3(t3)

Case 4:δA = 1,KA = 1 andδB = 1,KB = 2

L =
∂2

∂t1∂t2
S(tA, tB).

Case 5:δA = 1,KA = 1 andδB = 1,KB = 4

L =
∂2

∂t1∂t4
S(tA, tB).
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Thus, combining these components together the likelihood function can be written as

L(θ) =

{

∂2

∂t1∂t2
S(t1, t2)

}δ1δ2 {

∂2

∂t1∂t4
S(t1, t4)

}δ1δ4

×

{

−
∂

∂t1
S(t1, tB)

}δ1(1−δB) {

−
∂

∂t3
SA(t3)

}δ3

SA(tA)(1−δA)(1−δB).

= (θ + 1)δB{SA(tA)−θ + SB(tB)−θ − 1}−{(θ+1)δ1/θ+δB} ×

SA(tA)−(θδ1+δ1−1)SB(tB)−θδBλ1(tA)δ1λ3(tA)δ3λ2(tB)δ2λ4(tB)δ4 . (1)

The corresponding log-likelihood function has the form

ℓ(θ) = δB log(θ + 1) − {(θ + 1)δ1/θ + δB}{SA(tA)−θ + SB(tB)−θ − 1}

−(θδ1 + δ1 − 1) log SA(tA)−θδB log SB(tB) +

δ1 log λ1(tA) + δ3 log λ3(tA) + δ2 log λ2(tB) + δ4 log λ4(tB)

= δB log(θ + 1) − {δ1 + δ1/θ + δB}{e
θΛ1(tA)+θΛ3(tA) + eθΛ2(tB)+θΛ4(tB) − 1} +

(θδ1 + δ1 − 1){Λ1(tA) + Λ3(tA)} + θδB{Λ2(tB) + Λ4(tB)} +

δ1 log λ1(tA) + δ3 log λ3(tA) + δ2 log λ2(tB) + δ4 log λ4(tB).

2.3 Ascertainment-corrected retrospective likelihood for family data

A general form of the ascertainment corrected likelihood for n families (Le Bihanet al.,
1995) can be expressed as

L =
n

∏

f=1

Lc
f =

n
∏

f=1

Nf

Af
,

whereLc
f is the ascertainment corrected likelihood function for family f , f = 1, . . . , n.

The numeratorNf is the likelihood contribution for the members of familyf and the de-
nominatorAf is the probability of familyf being ascertained into the study. We employ
the ascertainment corrected retrospective likelihood approach (Carayol and Bonaı̈ti-Pellié,
2004; Kraft and Thomas, 2000) to account for complex ascertainment criteria of families
into study.

The ascertainment corrected retrospective likelihood forfamily f is obtained by condi-
tioning on all the phenotypesYf in the family and ascertainment schemeAscf , which can
be expressed as the conditional distribution ofYf givenGf divided by the ascertainment
correction probability,

Lc
f = P (Gf |Yf , Ascf ) =

P (Ascf |Yf , Gf )P (Yf |Gf )

P (Yf , Ascf |Gf )
, (2)

whereP (Ascf |Yf , Gf ) is equal to 1 if a family satisfies the ascertainment scheme, and 0
otherwise.

The numeratorP (Yf |Gf ) can be obtained by the likelihood function expressed in equa-
tion (2). The denominator represents the ascertainment probability of observing the pheno-
types of the members through whom the family is ascertained into the study.

In this paper, we consider the families arise from a population-based design that the
ascertainment of a family is only based on a single proband affected with a first colorectal
cancer, randomly sampled from a diseased population. Therefore, the ascertainment prob-
ability for family f can be calculated as the probability that the proband is affected by the
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first event of interest prior to his/her age at examination,

P (Yf , Ascf |Gf ) = P (TA < afp,KA = 1|Gfp) =

∫ afp

0
P (TA > u|Gfp)λ1(u|Gfp)du

= P (T1 < afp, T3 > afp|Gfp) = {1 − S1(afp|Gfp)}S3(afp|Gfp),

whereafp is the age at examination of the proband,Gfp is the genotype of the proband,
andSk(tk|Gfp) are the survivor functions fortk, k = 1, 3; this probability represents that
the proband’s first event of interest has occurred by ageafp but the competing event has
not.

2.4 Penetrance functions

We define two penetrance functions relating to the first and second events of interest to
describe absolute disease risks. The penetrance function for the first event of interest(k =
1) represents the probability that the subject survives all causes up to timet1, then develops
cancer of type 1 by timet1, which can be obtained as

P (TA < t1,KA = 1|X) =

∫ t1

0
SA(u|X)λk(u|X)du

=

∫ t1

0
e−Λ1(u|X)−Λ3(u|X)λ1(u|X)du

= {1 − S1(t1|X)}S3(t1|X),

whereX represents the covariates associated with the first event.
The penetrance function for the second cancer we define as theprobability of devel-

oping any second cancer int2 years after the first cancer of interest occurred att1 given
covariatesX, i.e.,

P (TB < t2|T1 = t1,X) = 1 −
− ∂

∂t1
S(t1, t2|X)

− ∂
∂t1

SA(t1|X)

= 1 −
{SA(t1|X)−θ + SB(t2|X)−θ − 1}−(θ+1)/θSA(t1|X)−θλ1(t1|X)

SA(t1|X)λ1(t1|X)

= 1 − {SA(t1|X)−θ + SB(t2|X)−θ − 1}−(θ+1)/θSA(t1|X1)
−(θ+1).

3. Application to Lynch Syndrome Families

A total of 97 population-based Lynch Syndrome families wereidentified through the Colon
Cancer Family Registries. These families harbour a mutation in one of the mismatched
repair genes such as MLH1 or MSH2. Members of those families are at high risk of devel-
oping multiple cancers over their lifetime. In this study, our goal is to estimate the risks of
a first colorectal cancer (CRC1) and a second colorectal cancer (CRC2) when endometrial
cancers (EC) are competing cancer events. Figure 3 displaysthe data with the number of
cancers observed. In the 97 LS families, there are 835 individuals; 157 of them developed
a first CRC and 9 experienced EC. Of 157 first CRCs, 22 had the second CRC and 8 had
EC.

Based on our proposed progressive multistate model with competing risks, we esti-
mated both relative and absolute risks of developing the first and second CRC for these
family members. Ascertainment correction was used becausethese families were sampled
via affected mutation carrier probands. Each transition assumes Weibull baseline hazard
and includes gender and mutation status as covariates.
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Figure 3: Successive cancers and competing cancer events observed in 97 population-
based Lynch syndrome families identified from the Colon Cancer Family Registries

Table 1: Relative risk estimates in terms of hazard ratios (HR) of developing the first and
second colorectal cancers (CRC) for mutation status and gender, with and without adjusting
for competing risks.

With Competing Risks
1st CRC 2nd CRC

HR (carriers vs. non-carriers) 1.58 (se=0.42) 2.08 (se=1.54)
HR (males vs. females) 2.32 (se=0.42) 1.25 (se=0.52)

Without Competing Risks
1st CRC 2nd CRC

HR (carriers vs. non-carriers) 2.01 (se=0.53) 1.92 (se=1.46)
HR (males vs. females) 2.18 (se=0.58) 1.16 (se=0.54)

What follows are the results from estimating all the parameters in the model including
baseline hazards parameters (ν ′s, ρ′s), regression parameters (β′s), and copula association
parameterθ. To examine the impact of competing risks on disease risks estimations, we
fitted two models: one accounts for competing risk events andthe other ignores them.
Table 1 summarizes hazard ratios (HR) for the first and secondCRCs between males and
females and mutation carriers and non-carriers. When taking competing risks into account,
mutation carriers have 1.58 times higher hazards than noncarriers for the first CRC but
about twice higher hazards for the second CRC; however, whenignoring competing risks,
the genetic effect was slightly overestimated (HR=2.01, se=0.53) for the first cancer but
underestimated (HR=1.92, se=1.46) for the second cancer. The gender effect was also
larger for the first CRC (HR=2.32, se=0.42) than the second CRC (HR=1.25, se=0.52)
when accounting for competing risks; when ignoring competing risks, the gender effects
were slightly underestimated for both cancers.

For absolute disease risks associated with mutated genes for the first and second CRC,
we graphically display the penetrance functions for mutation carriers, separated by males
and females, also by with and without adjusting for competing risks. Figure 4 displays the
age-specific penetrance functions for the first CRC, broken down by males and females;
the solid lines are from the competing risks model and dottedlines from the model without
them. We notice that the risks were increased with age and males had higher risks than
females over all age values. When competing risks were ignored, the penetrances were
overestimated for both males and females.

The penetrance function for the second cancer, defined asP (TB < t2|T1 = t1,X) in
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Figure 4: Penetrance function for the first colorectal cancer (CRC)

§2.4, can be displayed in two ways: Figure 5 (a) presents the penetrance as a function oft2
(time since the first cancer) provided that the first CRC occurred at the age 30(t1 = 30)
and Figure 5 (b) presents 10-year penetranceP (TB < 10|T1 = t1,X) by varyingt1.

As shown in Figure 5 (a), when first CRC occurred at age 30, the risk of developing a
second CRC was estimated much higher when taking competing risks into account com-
pared to when ignoring them. We also observe that the risks ofdeveloping a second CRC
increase over time and males have slightly higher risks of second CRC than females. An-
other way of viewing the penetrance for the second cancer is as a risk at a fixed duration of
time of 10 years after the first CRC, which varies by age at firstCRC, i.e., the probability
of developing a second CRC in 10 years after the first CRC for different ages at onset for
the first CRC (Figure 5(b)). We observe that the risk of developing a second cancer within
a 10 years interval decreases as the first cancer occurs at older age. It is noteworthy that if
the first cancer occurred before age 40, males tend to have higher risk of getting a second
cancer in a 10 years interval compared to females. However, for the first cancer after age
40, females have higher risk of getting a second cancer in 10 years compared to males.

4. Discussion

We developed a general statistical framework for modellingsuccessive cancers in the pres-
ence of competing cancers associated with gene mutation in Lynch Syndrome families.
The proposed multistate-competing risk model provides cancer-specific transition intensi-
ties and probabilities (penetrance) that can be of clinicalinterest for characterizing cancer
risks in LS families and designing efficient preventive strategies. Our approach is not re-
stricted to the two cancers considered (CRC and EC) but can begeneralized to the other
cancers observed in LS families, provided that enough events are observed for accurate
estimation.

We also dealt with with missing genotypes. For those individuals with missing geno-
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Figure 5: Penetrance functions for the second colorectal cancer (CRC); Left panel is the
penetrance when the age at onset for the first cancer is fixed at30 years and right panel is
10-year penetrance depending on different ages at onset of the first CRC.

types, we calculated a weighted log-likelihood where the weights are given by the mutation
carrier probabilities conditional on observed genetic andphenotype information. The ge-
netic effect associated with a second cancer was not precisely estimated due to the missing
data and the small number of second cancers. In addition, we obtained a robust variance
estimator (White, 1982) to account for the within-family dependence and possible model
misspecification.

In terms of parameter estimation, the copula parameterθ was estimated at 6.27 (se=3.49)
when accounting for competing risks, which corresponds to alarge dependence between the
two successive cancers (Kendall’sτ = 0.75). In contrary, when the competing risks were
ignored, the copula parameter was estimated at (θ = 0.79 (se=2.54); Kendall’sτ = 0.28).
This suggests that the presence of competing events can confound the estimation of associ-
ation between successive cancer events and thus can be of importance when predicting the
risk of cancer recurrence in these LS families.

Finally, our analysis showed that ignoring competing events can have a substantial im-
pact on cancer risk estimation in LS families, in particularby overestimating the relative
and absolute risk of first CRC.
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