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Abstract

In cancer family studies, individuals are often at risk ofliiple cancers. Estimating the risk of
successive and competing cancer events can help disentatiyd familial risk and thus provide
relevant clinical insights. The goal of our study is to invgate the impact of competing cancer
events on the risk estimation of successive cancers in dyfamiting. We propose a statistical
framework based on a progressive multistate model wher@eting events are taken into account.
We also deal with the complex ascertainment of the famili#s. illustrate the interest of our ap-
proach through an analysis of Lynch Syndrome families ifiedtby the Colon Cancer Family
Registries, a NIH-funded initiative. These families harba mutation in the mismatched repair
genes, whose members are at high risk of developing multi@teers: colorectal, endometrial,
ovarian, stomach etc. We estimated both relative and atesadks of developing a first and second
colorectal cancer with or without considering competirs§f @vents. Our results showed that cancer
risks can be overestimated if competing risks are ignored.

Key Words. Progressive multistate model, family data, successivatdiraes, competing risks,
ascertainment-corrected likelihood.

1. Introduction

In cancer family studies, family members are at high risk efedoping successive and
competing cancer events. For example, Lynch syndrome @.8) inherited condition that
predisposes family members to elevated risks of coloreatater and other related cancers
such as endometrial, ovarian, stomach, brain, skin etcedialfy, mutations in mismatched
repair genes such as MLH1, MSH2, or MSH6 are known to incréasesk of developing
various LS-related cancers within families and within indials. The purpose of this work
is to estimate the risks (absolute and relative) of devalpgequential cancers associated
with mutated genes in LS families while taking into accouotnpeting cancer events or
not.

2. Methods

Progressive multistate models are a useful approach foeliragl successive events expe-
rienced by an individual. Recently, Choi et al. (2014) depel a three-state progressive
model for estimating successive cancer risks in familyissudA Markov model was pro-
posed for modelling the risk of second cancers conditiomnghe time to first cancer,
which was used as a time-dependent covariate. Howevemnihikel assumed no compet-
ing events which could bias the cancer risk estimation (Kettkl., 2008).

In this paper, we incorporate competing cancer events he@togressive multistate
model to provide accurate cancer-specific risk estimatescaed with mutated genes in
LS families. We first develop a joint model for successivenesdased on copulas (Nelsen,
2006) and then incorporate competing risks (Beyersmanh,&(4.2) into this model. A
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retrospective likelihood approach (Carayol and BorRéilié, 2004; Kraft and Thomas,
2000) is employed to deal with the non-random ascertainmiethie families.
2.1 A copulamode for successive event times

Suppose that the sequential event times arise from theniokpthree-state progressive
model. We lett; andts denote the times spent in the ‘Healthy’ and ‘Event 1’ states,

A(t) A2(t)
Healthy f————® Eventl P Event2

Figure 1. Three-state progressive model

respectively, where, represents the time to Event 1 andrepresents the time to Event 2
after Event 1—the gap time between the two events.
The proportional hazards models are assumed;fgr= 1, 2,

/\j(tj|Xj) = /\Oj(tj)exp{ﬁ]—'er}v

where\;(t;),j = 1,2, are the baseline hazard functionst gtand X ; are the vectors of
the risk factors associated with. DenotingA;(t;), 7 = 1,2, as the cumulative baseline
hazard functions fot;, the marginal survival functions far are given by

Si(t;1X;) = o Mos (5 1X5) exp{B] X;}

To model the dependence between the two event times, weaddgvjoint survivor
function fort¢; andt, using survivor copula’ to link the two marginal survivor functions,

S(t1,t2) = C{S1(t1), Sa2(t2)}.

As an important class of coupling functions, Archimedeaputa (Nelsen, 2006) is
considered, which takes the form

C(z,y) = o {o(x) + d(y)},

where¢ is a copula generating function froff, 1] to [0, co] such that is a convex de-
creasing function withs(1) = 0. In particular,¢(t) = t? — 1 corresponds to the Clayton
copulaC(u,v) = (u=? +v=% —1)71/9 9 > 0.

Thus, the bivariate survivor function given covariat¥s and X, can be expressed
using Clayton copula (Clayton, 1978):

S(t,ta| X1, X2) = ¢ H{o(S1(t1]X1)) + ¢(Sa(ta]X2))}
= {S1(t1]X1) 7" + Sa(ta] Xo) ™0 — 13710
{69A01(t1|X1) 4 eGAOQ(tQ‘XQ) _ 1}—1/9 )

The three possible transitions for a subject are: (1) stpyirHealthy (experiencing no
events), (2) experiencing Event 1 but no Event 2, and (3) iexpeing both Event 1 and
Event 2. The likelihood contributions for the three casesraspectively expressed as the
marginal survival function fot; and the first and second derivatives for the joint survivor
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function:
S1(t1]X1) = S(t1,0/X1, X2)

0 _ _ _ _
_8_t15(t1’t2|X1’X2) = {S1(t1]X1) 77 + Sa(t2] Xa2) ™ — 137OFV05 (111 X1) M (1)

2
atlatQS(tl’t2’X17X2) = (0+ D{S1(t1]X1) 77 + Sa(to| Xo) ™0 — 1} 7FD/0
Sl(t1|X1)_€>\1(t1|X1)52(t2|X2)_€/\2(t2|X2)‘

Using Weibull baseline hazard functions;(;) = v;p;t’, for j = 1,2, and the cor-

responding marginal survivor functiorts(¢;|X;) = eXp{—Vjtjp-jeﬁijj}, the likelihood
function contribution for each individual with censorimdicatorsd; andd, for ¢; andt,
is

LO) = (0+1)%2{Sy(t1]X1)77 + Sy(ta|Xo) ™0 — 1}~ (1F02481/0)
Sl(tl’Xl)_(519+51_1))\1(t1’Xl)él Sg(tQ‘XQ)_JQG)\Q(tQIXg)éQ

18] X1 P2 By Xo _
_ (9 + 1)52{691/1151 e’1 + e@ugtz e’2 o 1} (81+62+01/0) «

e<519+51_1)V1tT1851TX1 (w1 pr 1Pt X1 )01 gha0vaty? o’ %2 (vopath2els X202
The corresponding log-likelihood function can be also exped as
6] X By X
00) = bylog(f+1) — (51 + 83 + 6, /0) log{ef 11 et 7 4 a2 72 gy 4

(610 + 61 — L)v ! X 15 log(v1p1) + d1p1 log(t1) + 618 X1 +
520voth? 1 X2 4 5, log(vap2) + d2p2 log(ta) + 6285 Xa,

where we Weibull baseline hazard functions; (t;) = v;p;t}’, for j = 1,2, and the

2.2 Competingrisksin the progressive multistate model

We consider the progressive multistate model in the presehcompeting risks. Figure
2 illustrates a situation where competing events are ptédeeboth Event 1 and Event 2;
Event 3 is a competing event of Event 1 and Event 4 is a congpetiant of Event 2. We
denote the times to Event 1,., Event 4 byt,, . .., t4, respectively.

() A2(t)
Event 1

Healthy Event 2

Event 3 Event 4

Figure 2: Progressive multistate model with competing risks and tteuse-specific haz-
ards\g(t), k =1,2,3,4.

The cause-specific hazard functionsfprk = 1,2, 3, 4, are defined by

N (b, Xn) = Aow () exp{ B Xy},
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where Ao (tx) represents the baseline hazard function for transitioa 1,2,3,4; we
assume Weibull baseline hazard functian (i) = vipith”.

Further, we let 4 be the time to first eventg be the time to the second event after the
first event of interestt 4 takes value; or t3 that occurs first, i.e4 = min{ty,t3, age},
whereage represents age at examination as a censoring varigbldefined as gap time
takes value, or t4 that occurs first, i.etp = min{ty, t4, age — t1}. We defined4 = 1 if
61 =1ords =1, 0otherwisepp = 1if 6o = 1 0rds = 1, 0 otherwise. Lef 4 represent
the type of the firstevenf 4 € {1, 3}, andK i the type of the second evertz € {2,4}.

The survivor functions fot 4 andtp can be expressed as

Salta) = e

Spltp) = e~hamIM),

whereA(t;) are the cumulative hazard functions fer k = 1,2, 3, 4.
Then, the joint survivor function can be constructed usinyisor copulaC' to link the
two marginal survivor functions as

S(ta,ts) = C{Sa(ta),Ss(tB)} = ¢~ {#(Sa(ta)) + ¢(SB(ts))}.

Using Clayton copula, we obtain the joint survivor functemd its first and second deriva-
tives:

S(ta,tp) = {Sa(ta)™® +Sp(tp)~0 —1}71/°

—iS(tA,tB) = {Sa(ta) P+ Sp(tp) 0 — 117008 (.4) N (t4)

BS(tA7tB) = (04 1){Sa(ta) + 9p(ts) ™" — 1} CTVO8,(ta) " N (ta)SB(t8) " Na(tB).

Subjects can take one of the following five possible tramsgtiand their contribution to
the likelihood are respectively:

Case 1l:64 = 0andég =0
L= SA(tA)

Case2:04=1,K4 =1,andég =0

0
L — _8_t1S(tA7tB)

Case3:04=1,K4=3
0

L= _8_753SA(t3) = SA(tg)hg(tg)

Casedioy,=1,Ky=1andép=1,Kp =2

2

L=——-5(ta,tp).

(9151(91525( Ay B)
Case504=1,K4=1landégp =1, K =14
82

= ——>95(a,tp).

6t16t45( ArtB)
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Thus, combining these components together the likelihaodtion can be written as

82 6162 62 6164
L(Q) = {mS(tl,tQ)} {ms(tl,tgl)} X

o 61(1-0p) B i3
_ (1-84)(1-6p)
{ atls(tl,tg)} { ot SA(tg)} SA(tA) .

= (0+ )5B{SA(tA)_9 + SB(tB) _ 1}—{(9+1)51/9+5B} y
Sa(ta) O+ =D) G (1) =098\, (1) Ay (£4) % Mo (t5)2 M\ (£5)%. (1)

The corresponding log-likelihood function has the form

(0) = dplog(0+1) —{(0+1)61/0 + 65} {Sa(ta) ™" + Sp(ts) ™" — 1}
—(951 + 61 — 1) log SA(tA)—95B log SB(tB)
011og A1(ta) + 03log A3(ta) + 02 log Ao (tp) + d4log Ay(tp)
= Oplog(0+1) — {01 4 61 /60 + o} {efr1lta)T0As(ta) | Oh2(tp)+0Ma(tn) _ 1} 4
(061 + 01 — D){A1(ta) + As(ta)} + 00p{A2(tp) + As(tp)} +
d1log A1 (ta) + d3log A3(ta) + d2log Aa(tp) + dalog Aa(tp).

2.3 Ascertainment-corrected retrospective likelihood for family data

A general form of the ascertainment corrected likelihoodrfdamilies (Le Bihanet al.,
1995) can be expressed as

:n n_f
LRaNLEY

wherech is the ascertainment corrected likelihood function forifgny, f = 1,...,n
The numeratotV; is the likelihood contribution for the members of famjfyand the de-
nominatorA; is the probability of familyf being ascertained into the study. We employ
the ascertainment corrected retrospective likelihoodagah (Carayol and Bonaiti-Pellié,
2004; Kraft and Thomas, 2000) to account for complex asioenent criteria of families
into study.

The ascertainment corrected retrospective likelihooddimily f is obtained by condi-
tioning on all the phenotypes; in the family and ascertainment schemec;, which can
be expressed as the conditional distributionypfgiven G, divided by the ascertainment
correction probability,

(ASCf|Yf, Gf)P(Yf|Gf)
P(Yy, Ascy|Gy)

$ = P(Gy|Yy, Ascy) = 2
whereP(Ascy|Yy,Gy) is equal to 1 if a family satisfies the ascertainment scheme 0Oa
otherwise.

The numeratoP (Y |G ) can be obtained by the likelihood function expressed in equa
tion (2). The denominator represents the ascertainmebgpility of observing the pheno-
types of the members through whom the family is ascertaintedthe study.

In this paper, we consider the families arise from a popuftabiased design that the
ascertainment of a family is only based on a single probafettafd with a first colorectal
cancer, randomly sampled from a diseased population. Tdrerehe ascertainment prob-
ability for family f can be calculated as the probability that the proband isteffieby the
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first event of interest prior to his/her age at examination,

afp
P(Yf,ASCf’Gf) = P(TA < afp,KA = 1’Gfp) = ‘/0 P(TA > u]Gfp))\l(u]Gfp)du
= P(Tn <app,T5 > agp|Gyrp) = {1 — Si(app|Grp)}Ss(agp|Grp),

whereay, is the age at examination of the probaxd, is the genotype of the proband,
andSy(tx|Gyp) are the survivor functions far,, k£ = 1, 3; this probability represents that
the proband’s first event of interest has occurred by &gebut the competing event has
not.

2.4 Penetrance functions

We define two penetrance functions relating to the first amdrsd events of interest to
describe absolute disease risks. The penetrance functidghe first event of interegk =
1) represents the probability that the subject survives atbea up to time,, then develops
cancer of type 1 by timeé;, which can be obtained as

t1
P(Ta < t1, K4 =1]X) = / S () X) A (] X )
0

_ / " oM lO-As X))\ (4] X )
0

= {1 - Si(t1]X)}S3(t1|X),

whereX represents the covariates associated with the first event.

The penetrance function for the second cancer we define gaabability of devel-
oping any second cancer ig years after the first cancer of interest occurred, aiven
covariatesX, i.e.,

—5-S(t1, 2| X)

— =S5 a(t1]X)

{Sa(t1|X)™0 + Sp(ta] X) 70 — 1}7OFD/08, (11| X) =0 A1 (41| X)
) S XA (1)
= 1 {Sa(t1]X)0 + Sp(ta] X) ™0 — 1}=OFV/O5, (1, X))~ O+,

P(TB < t2|T1 = tl,X) =

=1

3. Application to Lynch Syndrome Families

A total of 97 population-based Lynch Syndrome families wdeatified through the Colon
Cancer Family Registries. These families harbour a mutdtioone of the mismatched
repair genes such as MLH1 or MSH2. Members of those familiesighigh risk of devel-
oping multiple cancers over their lifetime. In this studyy goal is to estimate the risks of
a first colorectal cancer (CRC1) and a second colorectalecd@iRC2) when endometrial
cancers (EC) are competing cancer events. Figure 3 disfllaydata with the number of
cancers observed. In the 97 LS families, there are 835 mails; 157 of them developed
a first CRC and 9 experienced EC. Of 157 first CRCs, 22 had ttende€CRC and 8 had
EC.

Based on our proposed progressive multistate model withpeting risks, we esti-
mated both relative and absolute risks of developing theding second CRC for these
family members. Ascertainment correction was used bedhese families were sampled
via affected mutation carrier probands. Each transiticsuaes Weibull baseline hazard
and includes gender and mutation status as covariates.
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Healthy 0 MY CRC 1 229 CRC2
(n=639) (n=157) (n=22)
A3(t) A(t)
EC EC
(n=9) (n=8)

Figure 3: Successive cancers and competing cancer events obsen@dgdopulation-
based Lynch syndrome families identified from the Colon @af@mily Registries

Table 1: Relative risk estimates in terms of hazard ratios (HR) aftt®ping the first and
second colorectal cancers (CRC) for mutation status andiegewith and without adjusting
for competing risks.

With Competing Risks

1st CRC 2nd CRC
HR (carriers vs. non-carriers) 1.58 (se=0.42) 2.08 (sehl.5
HR (males vs. females) 2.32 (se=0.42) 1.25 (se=0.52)

Without Competing Risks

1st CRC 2nd CRC
HR (carriers vs. non-carriers) 2.01 (se=0.53) 1.92 (se5)1.4
HR (males vs. females) 2.18 (se=0.58) 1.16 (se=0.54)

What follows are the results from estimating all the pararsein the model including
baseline hazards parameterss(p's), regression parameters’§), and copula association
paramete. To examine the impact of competing risks on disease risks\asons, we
fitted two models: one accounts for competing risk events thedother ignores them.
Table 1 summarizes hazard ratios (HR) for the first and se@®@s between males and
females and mutation carriers and non-carriers. Whendatampeting risks into account,
mutation carriers have 1.58 times higher hazards than ndeisafor the first CRC but
about twice higher hazards for the second CRC; however, wgmaming competing risks,
the genetic effect was slightly overestimated (HR=2.0£0%3) for the first cancer but
underestimated (HR=1.92, se=1.46) for the second cancee génder effect was also
larger for the first CRC (HR=2.32, se=0.42) than the secon€ @RR=1.25, se=0.52)
when accounting for competing risks; when ignoring commgetisks, the gender effects
were slightly underestimated for both cancers.

For absolute disease risks associated with mutated gengeeféirst and second CRC,
we graphically display the penetrance functions for matatiarriers, separated by males
and females, also by with and without adjusting for compgtieks. Figure 4 displays the
age-specific penetrance functions for the first CRC, brol@mndoy males and females;
the solid lines are from the competing risks model and ddited from the model without
them. We notice that the risks were increased with age andsteld higher risks than
females over all age values. When competing risks were éghadhe penetrances were
overestimated for both males and females.

The penetrance function for the second cancer, defindtlds < to|71 = t1,X) in
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Penetrance for First CRC

©
o 7| — Male, with competing event
—— Female, with competing event
- Male, without competing event
2 — - Female, without competing event
<
s

Penetrance
0.2 0.3
|

0.1

0.0
|

20 30 40 50 60 70 80

Age at the first CRC

Figure 4: Penetrance function for the first colorectal cancer (CRC)

2.4, can be displayed in two ways: Figure 5 (a) presents thetpce as a function of
(time since the first cancer) provided that the first CRC aetliat the age 3(¢; = 30)
and Figure 5 (b) presents 10-year penetraR€€p < 10|17 = t1, X) by varyingt;.

As shown in Figure 5 (a), when first CRC occurred at age 30,islkeof developing a
second CRC was estimated much higher when taking compesksg) into account com-
pared to when ignoring them. We also observe that the riskewdloping a second CRC
increase over time and males have slightly higher risks orsg¢ CRC than females. An-
other way of viewing the penetrance for the second cancerasrisk at a fixed duration of
time of 10 years after the first CRC, which varies by age atGRC, i.e., the probability
of developing a second CRC in 10 years after the first CRC fferdint ages at onset for
the first CRC (Figure 5(b)). We observe that the risk of dguelp a second cancer within
a 10 years interval decreases as the first cancer occurseatagd. It is noteworthy that if
the first cancer occurred before age 40, males tend to hakerhigk of getting a second
cancer in a 10 years interval compared to females. Howewethé first cancer after age
40, females have higher risk of getting a second cancer iredfsycompared to males.

4. Discussion

We developed a general statistical framework for modeblimgcessive cancers in the pres-
ence of competing cancers associated with gene mutatioyriohLSyndrome families.
The proposed multistate-competing risk model provideseaspecific transition intensi-
ties and probabilities (penetrance) that can be of clirid&rest for characterizing cancer
risks in LS families and designing efficient preventive t&gees. Our approach is not re-
stricted to the two cancers considered (CRC and EC) but cayeberalized to the other
cancers observed in LS families, provided that enough svarg observed for accurate
estimation.

We also dealt with with missing genotypes. For those indiald with missing geno-
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(a) Penetrance for 2nd CRC (b) 10 year Penetrance for 2nd CRC

0.4

—— Male, with competing event

—— Female, with competing event —— Male, with .COmpetingl event
- Male, without competing event —— Female, with competing event
- Female, without competing event ---- Male, without competing event

- Female, without competing event

0.3
|
0.3

Penetrance
10-year Penetrance
0.2

0.1
0.1

0.0
0.0

T T T T T T T T T T T
0 10 20 30 40 20 30 40 50 60 70

Time since first CRC (years) Age at the first CRC

Figure 5: Penetrance functions for the second colorectal canceCJCIReft panel is the
penetrance when the age at onset for the first cancer is fixg@lyars and right panel is
10-year penetrance depending on different ages at onde fif$t CRC.

types, we calculated a weighted log-likelihood where thgghis are given by the mutation
carrier probabilities conditional on observed genetic phenotype information. The ge-
netic effect associated with a second cancer was not phgeisitmated due to the missing
data and the small number of second cancers. In addition,biened a robust variance
estimator (White, 1982) to account for the within-familypgedence and possible model
misspecification.

In terms of parameter estimation, the copula paranfeters estimated at 6.27 (se=3.49)
when accounting for competing risks, which correspondddoge dependence between the
two successive cancers (Kendalt's= 0.75). In contrary, when the competing risks were
ignored, the copula parameter was estimated at@.79 (se=2.54); Kendall’'s = 0.28).
This suggests that the presence of competing events capurwhthe estimation of associ-
ation between successive cancer events and thus can bearfamge when predicting the
risk of cancer recurrence in these LS families.

Finally, our analysis showed that ignoring competing eveain have a substantial im-
pact on cancer risk estimation in LS families, in particdgroverestimating the relative
and absolute risk of first CRC.
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