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Abstract 

Biosurveillance systems require robust anomaly detection methods. For detection-method 

performance comparisons, we injected multi-day lognormal distributed signals into 

gastrointestinal (GI) syndrome-related time series of aggregated daily counts from the 

Centers for Disease Control and Prevention’s BioSense syndromic surveillance system. 

CDC is part of the U.S. Department of Health and Human Services. We included a 

sample of facilities with data reported every day and with median daily syndromic counts 

≥ 3 over the entire study period from Jan. 2010 through May 2011. We compared alerting 

algorithms on the basis of a Poisson regression model (including covariates for day of 

week, total visits, and seasonality) with two adaptations of the cumulative sum (CuSUM) 

chart and three adaptations of the Shewhart chart (with variations on whether/how to 

adjust for total visits). We assessed sensitivity and timeliness of these methods for 

detection of injected multi-day signal events. Sensitivity was defined as the ratio of 

number of events detected before the event peak to the total number of injected signals. 

Alerting timeliness was calculated as the number of days from the start of injection to the 
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first algorithm alert not later than the peak day of the injected signal. At a daily 

background alert rate of 1%, the sensitivities and timeliness measured as delay (in days) 

before signal detection ranged from 26%˗66% and 2.6˗3.3 days, respectively. We also 

examined sensitivity and timeliness with and without stratification by weekday versus 

weekend/ holiday. For time series with mean daily counts ≥ 10, the Poisson regression-

based method achieved higher sensitivity and slightly shorter mean detection delays than 

the chart-based methods for detection of multi-day signals in GI-related visit series. 

Key Words: aberration detection, algorithm, Poisson regression, biosurveillance 

 

1. Introduction 

 

The Centers for Disease Control and Prevention (CDC) established the BioSense 

program with the intent of providing real-time biosurveillance for early aberration 

detection [1]. The Early Aberration Reporting System (EARS) is used by CDC and 

worldwide by numerous organizations’ surveillance systems for finding statistical 

anomalies that may signal disease outbreaks. Currently, hundreds of hospitals and public 

health departments across the United States provide data to BioSense for routine 

monitoring and anomalies alerting that might signal disease outbreaks. 

 

Due to their simplicity, EARS C2 methods are widely used at CDC and worldwide [6]. 

However, these basic methods do not adjust for common systematic data behaviors, and 

the resulting biases make them suboptimal for many syndromic time series  [2]. Sources 

of biases that are both known (e.g., weekly patterns and holidays) and unknown or 

difficult-to-model (e. g., reporting delay/error and weather effects) complicate time series 

monitoring. Thus, adjustment for total visits at baseline and weekday/weekend 

stratification have been used to enhance performance of the EARS C2 algorithms [2]. 
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Total visit counts and (or) day-of-week have been used for adjustment in regression 

models [3-5] to reduce these biases. However, previous studies were based on either city- 

or county-level data [4, 5] or simulated background data [3]. Some studies [2, 5] 

examined detection performance using single-day signals injection that may not represent 

real epidemic situations.  

 

In this study, we used authentic daily syndrome counts of gastrointestinal (GI) time series 

at facility level as baseline data and added realistic data effects as target signals of disease 

outbreaks. We compared the detection performance of alerting algorithms on the basis of 

regression models and adaptive control-chart methods according to the use of total visits 

and management of day-of-week effects. We compared the sensitivity and timeliness of 

alerting to recommend methods for monitoring these data types. 

 

2. Methods 

 

2.1 Baseline data 

 

The study data were from the CDC BioSense syndromic surveillance system. For 

background data, we used time series of daily syndrome counts at the facility level from 

the Department of Veterans Affairs (VA).  Records were classified on the basis of ICD-9 

codes from the Electronic International Classification of Diseases, 9th Revision codes 

using established Biosense syndrome groupings [1].  Study data were restricted to 

facilities that  reported every day from Jan. 2010 through May 2011 and with median 

daily gastrointestinal (GI)[1] syndrome visit counts ≥3 over the entire study period. Many 

VA facilities had low outpatient visits on holidays. Therefore, the 14 federal holidays in 

the report period were recoded as weekend days. 
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We used a “sliding” baseline of 56 days to reflect the recent data behavior, with a 2-day 

buffer so that each test date was two days after the end of the baseline. The purpose of the 

2-day buffer was to avoid contamination of the baseline data with a potential early phase 

of an outbreak [5]. The first baseline period began on 1/1/2010, and successive test dates 

went from 2/28/2010 through 5/31/2011.  

 

With these restrictions of consistent and non-sparse reporting, the time series used for this 

study were from 59 facilities in 37 states. There were large variations in median count of 

outpatient visits among different facilities and of syndromes. We compared the sensitivity 

and timeliness of different surveillance detection methods applied to two scale categories 

of daily GI visit count time series, one category with median count levels below 10 and 

the second category with median levels ≥ 10.  

 

2.2 Control-chart-based algorithms 

 

Method 1: The count-based C2 was one of three control-chart-based algorithms tested.   

This method was equivalent to the C2 method developed for the Early Aberration 

Reporting System (EARS) [6] with a 56-day baseline. For each facility, the general form 

of the C2 test statistic is 

 

 

 

where nt  is the count for a syndrome on a test day (t), µ and SD are the arithmetic mean 

and the standard deviation of values in the sliding baseline. 
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Method 2: Count-based CuSUM has the same calculations of µ and SD as the Count-

based C2 algorithm. While the C2 Count’s decision rule relies on using one observation 

at a time, the CuSUM statistic incorporates information using past observations. The 

CuSUM statistics CSt is calculated recursively as 

 

CSt=max{0, CSt−1+ [(nt –(µ−k*SD))SD] } 

 

where k =0.5 is the magnitude of the shift to be detected in SD units above the mean, CSt 

is the current CuSUM calculation, and CSt−1  is the previous CuSUM calculation [3, 6]. 

 

Method 3: Proportion-based C2 is similar to Count-based C2 except that it uses 

proportion (Pi) to calculate the arithmetic mean (µ) and standard deviation (SD) of index 

day where Pi=100*ni/Ni, and ni is the GI syndrome count, Ni is the total number of visits 

on baseline day i. 

 

Method 4: The adjusted-baseline C2 is a rate-based version of the C2 algorithm [2]. In 

this approach, Et is the expected number of GI syndromic visits for test day (t) and is 

calculated as 

 

 

 

 

 

where Nt is the number of total visits for the test day. Note that Et will differ from µ in C2 

Proportion because it is adjusted by the total visits over the entire baseline period. This 

expected value is then used in the `adjusted' C2 test statistic 
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where SD′  is the adjusted standard deviation over baseline days estimated as  

 

 

 

 

 

where nj is the GI syndrome count and Nj is the total number of visits on baseline day j. 

 

Method 5: The Adjusted-baseline CuSUM uses the same adjustment of total visits in 

calculating expected value (Et) and standard deviation (SD’) as Method 4. However, it 

uses CuSUM statistic to incorporate information from past observations. Hence the 

Adjusted CuSUM statistic is 

 

CS’t=max {0, CS’t−1+ [(nt –( Et −k*SD’))/SD’] } 

 

For GI-related visit counts, the VA outpatient time series showed distinctly lower visit 

counts on weekends and holidays than on weekdays. We stratified the baseline days used 

into weekdays and weekend/holidays for the baseline mean and standard deviation 

calculations in the above methods. The 56-weekdays/weekends-stratified baseline days 

contained ~40 weekdays and ~16 weekend days. Each method was tested with and 

without this stratification. 

 

2.3 Regression models 
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Two regression models were adapted from the tested models in a previous study [5]. The 

models included indicator variables to capture day-of-week effect and indicator variables 

for each 14-day interval (Bi-week) to adjust for seasonality. Both of the models also 

controlled for total daily visits. 

 

Method 6: Linear regression model (Linear Reg) is the predicted value adjusted by using 

total visits as a linear covariate 

 

Et= β0 + β1 * Monday + …+β6 * Saturday+ β7* BiWeek2 + …+β9* BiWeek4 +β10*N | 

distribution=normal, link=identity 

where Sunday is the reference day, BiWeek refers to a 2-week interval, and the reference 

2-week interval is the first one, BiWeek1. 

 

Method 7: Poisson regression model (Poisson Reg) is the predicted value adjusted by 

using log form of total visits as offset. 

 

Et= β0 + β1* Monday + …+β6 * Saturday+ β7 * BiWeek2+ …+β9 *BiWeek4 | 

distribution=Poisson, link=log, offset=log (N) 

The regression models were run separately for each facility, with the expected value for 

each test day predicted from the regression model from the previous 56 days of data, with 

a 2-day buffer. The SD of the expected value was calculated using the equation  
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where the Ei is the model expected number of  GI syndrome count for a given day (i) in 

the 56-day baseline period. The detection statistic was computed by dividing the forecast 

residuals by this SD.    

 

As for the chart-based methods in Section 2.2, both regression models were tested with 

and without weekend/weekday stratification. To avoid division by small numbers and 

thus unreasonably high statistic values, we used a minimum standard deviation of 0.2 for 

proportion methods and 1.0 for all other methods. 

 

2.4 Outbreak signal simulation 

 

In order to evaluate the performance of different aberration detection methods on real 

background data, we simulated outbreak signals. We generated the set of incubation 

periods with a set of random lognormal draws and rounded each to the nearest day. The 

number of cases to add for each day was then the number of draws rounded to that day 

[11].  

 

2.5 Method evaluation 

 

We created evaluation datasets by injecting the simulated outbreak signals successively 

into the GI syndrome time series for each facility, with the outbreak signals starting on 

March 1, 2010. Because the durations of signals ranged from 3 to 10 days, injection could 

begin any day of the week. We applied the test methods to the evaluation datasets for 

each facility and calculated the sensitivity and timeliness for detecting injected signals 

using four steps: (1) running each method to estimate expected value, SD, and test 

statistics for each facility day; (2) calculating an alerting threshold as the 99
th
 percentile 
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value  for the test statistic; (3) calculating the test statistics for the test day using the time 

series with injects and recording as detections of the inject dates when the algorithm 

value exceeded the threshold; and (4) computing sensitivity and alerting timeliness on the 

basis of the recorded detections dates for each method. 

 

Sensitivity was defined as the ratio of number of signals detected before the event peak to 

the total number of injected signals. Alerting timeliness was calculated as the delay until 

detection, which is the number of days from the start of injection to the first algorithm 

alert not later than the peak day of the injected signal.  If there was no alert or an alert 

occurred after the peak day, the timeliness was set as 1 + the peak day on the basis of the 

lognormal distribution for the facility. For example, if the peak inject for a facility was on 

the third signal day, then a method alerting on the second day would be assigned a delay 

of 2, while a method alerting on the peak day (or not at all) was assigned a delay of 4.    

 

 

 

3. Results 

 

3.1 Descriptive data 

In the 59 study facilities, the mean of median daily total visits was 1,064 and mean of 

daily median GI count was 10.8 (Table 1). There were 18 and 41 facilities in median 

level of 3˗9 and ≥10 category, respectively.  

 

JSM 2014 - Government Statistics Section

3881



10 

 

Table1. Summary of facility-level data by median of GI daily count level    

Median of 

GI Count 

Level 

Number of 

Facilities 

Mean of Daily GI 

Count Medians 

Mean of Daily 

Total Visit 

Medians 

3˗9 18 6.8 790 

≥10 41 15.6 1531 

Total 59 10.8 1064 

 

The VA time series for daily GI syndrome counts showed a strong day-of-week effect. 

Figure 1 shows distribution of 59-facility’s mean daily GI syndrome visit from Feb. 28 

through March 20, 2010. The mean daily GI syndrome visit counts was higher (>13) on 

weekdays and lower (<4) on weekends/holidays. On the other hand, the mean daily 

proportion (percentage of a syndrome counts over the total visits) was lower (<1.5) on 

weekdays and higher (>3.0) on weekends/holidays (Figure 1). During week days, the 

mean daily GI syndrome counts were higher on Monday and Tuesday than the other 

days. On weekends, the mean of percentage of syndrome counts over the total visits was 

higher on Sunday than Saturday (Figure 1). 
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3.2 Signal injection and detection  

We tested 3,714 injected signals of GI syndrome. The mean duration of outbreak signal 

was 6.7 days (range 3 to 10) with the mean peak day of 2.4 days (range 1 to 5). The mean 

peak day value of injected signals ranged from 3 to 23 cases.  

 

Figure 2 illustrates how a multiday signal was injected onto GI syndrome data from April 

3 to 30, 2010, in one facility. Duration of the injected signal is 6 days. It peaked on the 

third day and the peak GI count was 21 (Figure 2, upper right). The signal was added 

onto the background data (solid curve) beginning on April 25 and ending on April 30. 

With 48 background cases, the total cases (x symbols) on April 27 (peak day) became 69 

(=21+48) (Figure 2, lower). The figure shows the Poisson Reg model predicted value 
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(triangle symbols) based on the 56-day sliding baseline (with a 2-day buffer) with 

weekday/weekend-holiday stratification.  

 

 

3.3 Signal sensitivity  

Sensitivity was compared among the different alerting methods using a detection 

threshold derived for a background alert rate of 1 threshold crossing per 100 days for the 

two time series scale categories,  median <10 and median ≥10 (Table 2).  

 

Without weekday/weekend stratification, at the 3˗9 median level, the Adjusted-baseline 

C2 and Adjusted-baseline CuSUM methods outperform all other methods. At mean level 

≥10, the two regression models have higher sensitivities than all control-chart-based 

methods. Weekday/weekend stratification increases sensitivities more than 10% for all 

methods. Proportion-based C2 has the lowest sensitivities at both mean levels. At the 
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mean level 3˗9, the Adjusted-baseline C2, Adjusted-baseline CuSUM, and two regression 

models perform better than three other control-chart based methods. At mean level ≥10, 

the two regression models have higher sensitivities than all control-chart-based methods. 

Poisson Reg consistently performs better than Linear Reg.  

 

Table 2. Sensitivity to detect multi-day signal at 1% background alert rate 

Wkday/ 

Wkend 

Strat. 

Mean 

Level 

Count-

based 

C2  

Count-

based 

CuSUM 

Proporti

on-based 

C2 

Adjusted

-baseline 

C2 

Adjusted

-baseline 

CuSUM 

Linear 

Reg 

Poisson 

Reg 

No 

3˗9 26.1 27.7 34.3 43.4 43 36.9 37.1 

≥10 27.8 27.9 40.4 47.2 44.7 48.4 48.5 

Yes 

3˗9 56.6 54.7 44.7 60.3 59.4 59.4 61.0 

≥10 57.0 55.1 48.3 58.7 59.2 64.4 65.7 

 

3.4 Alerting timeliness 

Timeliness of alerting a signal was compared among the methods using a threshold 

derived for a background alert rate of 1 threshold crossing per 100 days. We summarized 

the mean number of days until alerting a signal stratifying by the median daily syndrome 

count level (i.e. 3˗9 and ≥10) (Table 3). A smaller alerting delay indicates better 

timeliness. Without weekday/weekend stratification, at the mean level of 3 to 9, 

Adjusted-baseline CuSUM method appears to have the best timeliness, though mean 

differences in Table 3 vary by less than a day. At the mean level ≥10, Adjusted-baseline 

CuSUM, Linear Reg, and Poisson Reg perform better than other methods. 

Weekday/weekend stratification shortened detection delays for all methods. Proportion-

based C2 has the longest delay at both median levels. At the median level of 3 to 9, it 
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appears that Adjusted-baseline CuSUM has the best timeliness. At median level ≥10, 

Poisson Reg performs better than all other methods. 

 

Table 3. Timeliness (Mean delay days) to detect multi-day signal                                                

at 1% background alert rate  

Wkday/ 

Wkend 

Strat. 

Mean 

Level 

Count-

based 

C2  

Count-

based 

CuSUM 

Proporti

on-based 

C2 

Adjusted

-baseline 

C2 

Adjusted

-baseline 

CuSUM 

Linear 

Reg 

Poisson 

Reg 

No 

3˗9 3.15 3.00 2.94 3.09 2.88 3.02 3.02 

≥10 3.29 3.03 3.04 3.24 2.99 3.00 3.00 

Yes 

3˗9 2.68 2.88 2.66 2.68 2.62 2.66 2.65 

≥10 2.78 2.95 2.79 2.78 2.72 2.69 2.66 

 

4. Discussion 

 

The purpose of this study was to identify the most robust and widely applicable 

aberration detection methods for an automated national biosurveillance system. By our 

study using daily facility-level VA visit counts of GI-related syndrome visits, we found 

that total-visit baseline adjustments can avoid alerting bias by removing data effects 

unrelated to outbreaks. Monitoring counts with adjusted baseline values gives superior 

detection performance to monitoring proportions. However, total-visit baseline 

adjustments do not remove all weekend effects. Weekday/weekend stratification 

improves performance for all methods. Poisson regression modeling yielded top 

performance for time series with daily median count ≥10. For sparser time series linear 
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regression (e.g., the median daily count of 3 to 9), adjusted baseline C2 and adjusted 

baseline CuSUM are both effective. 

 

We used real data from the BioSense national biosurveillance system as background data. 

Other studies [3, 6] based on simulated background data are typically too “clean” to 

represent authentic nonstationary data. The VA facilities whose data were included in our 

study were located in 37 U.S. states. Our analyses on facility-level data is of interest to 

many users, while others [4, 5] have used county- or  city-level data and may find better 

detection performance using other methods at those levels. Several studies used longer 

sliding baselines (e.g., 56 days or 2 years) for regression models [3-5] than for control-

chart-based methods; one might be tempted to attribute the regression-based methods’ 

superior performance to the additional baseline information. In our study we used the 

same sliding baseline length for all methods.  

 

The use of multi-day signals allowed us to compare the aberration detection methods for 

timeliness in addition to sensitivity. We randomly simulated signals for each facility on 

the basis of random draws from a lognormal distribution. This process allowed us to test 

the algorithms with signals of varying duration and amplitude. Using the chosen 

lognormal parameters, we set the total number of injected cases for each signal to obtain 

a theoretical peak-day injected count of twice the standard deviation of the background 

data to compare the method performance on target signals of modest size [4].  

 

Like other studies [2, 4, 5], we set the alert rates for each algorithm empirically, by 

applying the algorithms to each syndrome for each facility and found the threshold that 

would yield approximately 1 alert every 100 days. Some prior studies have tended to use 

rates between 3 to 5 alerts every 100 days, which may be too high for routine surveillance 
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and could desensitize users, leading to reduced likelihood of following up on alerts [4]. 

Our results showed that for the same background alert rate, thresholds differ based on 

data scale, data pattern, and methods applied. These findings suggest that thresholds 

should be adapted in practice for data-stream types and alerting methods.   

 

There were several limitations of this study. First, we included facilities with a median 

baseline daily syndrome count ≥ 3. Therefore, our results might not apply to data from 

facilities with sparse or occasional reporting. Second, all input time series were composed 

of daily VA hospital outpatient visit counts, so the time series reflect the coding and 

classification conventions at those facilities. Series characteristics that may affect 

algorithm performance may differ in data from other medical systems [4]. Third, the 

three commonly monitored syndrome groups used for the study data do not represent all 

practical classifications. Data derived for other syndromes may differ in seasonality and 

other systematic behaviors from the study series. Our results should not be considered 

representative of all monitored time series and practical signal types.  
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