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Abstract

Neurocysticercosis (NCC), Taenia solium larval infection of the brain, is the commonest cause of
adult onset seizures in countries endemic for the parasitic infection. Subjects reporting to the De-
partment of Neurological Sciences at the Christian Medical College in Vellore, India were recruited
for participation in a study to determine inflammation relevant gene expression profiles specific
to NCC in peripheral blood monocytes. While technology to measure and describe gene regulation
has become quite sophisticated, statistical methods for analyzing such data have remained somewhat
pedestrian. Traditional microarray analysis often relies on unwarranted assumptions of normality
and a battery of several thousand t-tests to assist in identifying significantly up or down regulated
genes between groups. In this work we propose a semi-parametric Bayesian framework as a robust,
probability based alternative to the t-test approach in order to identify differentially regulated genes
from a microarray analysis. We compare the top genes identified by both methods in the NCC data
set.
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1. Introduction

Taenia solium larval infection of the brain (neurocysticercosis) (NCC) is the commonest
parasitic infection of the central nervous system in countries endemic for the parasite. Tae-
niasis patients who harbor the adult worm in their intestine, the result of eating undercooked
Taenia solium larval infected pork, shed thousands of microscopic eggs in their feces that
contaminate the environment in regions of the world where open field defecation is prac-
ticed. T. solium eggs from the environment coupled with poor hand washing and food
handling practices leads to spread and ingestion of the eggs among the population. In-
gested eggs are absorbed and carried by the blood to all organs of the body especially the
brain, eye, and muscle, where they develop into larva. In the brain these cysts (NCC) are
the most common cause of adult onset seizures in endemic countries.

Diagnosis of NCC is typically with a MRI or CT scan in combination with serology.
Radio-imaging is expensive and inaccessible to a majority of the developing world and
serology lacks sensitivity for infections of a few or single cyst, the predominant infection
seen in India. There is need to improve NCC diagnostics in relation to sensitivity and
cost. T. solium infection activates the immune system and inflammatory biomarkers in
blood specific to seizures due to NCC may be useful in this regard. Identification of genes
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in peripheral blood mongeyies }h%&{gn%f%%%%@ at%@gpggagmgetween NCC-associated

epilepsy and non NCC-associated epilepsy may provide insight into these inflammatory
biomarkers. This would be through micro-array analysis of monocyte messenger RNA
(MRNA).

The process of obtaining gene expression data is sophisticated, yet the statistical meth-
ods used to analyze such data remain somewhat pedestrian. At a basic level, micro-array
gene expression analysis is a multi-step process that begins with non-trivial handling of
the sample. This involves isolating peripheral blood monocytes from whole blood by cen-
trifugation followed by separation of monocytes using specific antibody labeled magnetic
micro beads. RNA is isolated from the cells and stored at —7(PC' until analysis.

The RNA samples are thawed and hybridized to chips containing 20,000-50,000 mi-
croscopic wells fitted with specific gene segments. The greater the gene number in the
MRNA being studied the greater the hybridization and accompanying fluorophore light
signals whose intensity is measured by state-of-the-art laser scanners. A host of normaliza-
tion routines are employed to standardize the measured intensity levels relative to known
“housekeeping” genes that are believed to have extremely specific levels of light emission
in all subjects. After all this, a data set containing 20,000-50,000 rows, one for each well
on the chip, and columns for each subject in the study is ready for analysis. The cost of
obtaining microarray data limits most studies of this kind to investigating these genes for a
few subjects in each group which results in high dimensional data sets.

Baldi and Long (2001) point out that often, the first step in the detection of differentially
expressed genes is to carry out Student’s t-test between groups for each of the 20,000-
50,000 genes. They point out that the assumptions of normality and equal variances are
often unwarranted with small sample sizes. It is also clear that outliers are problematic
here in that they not only exert a strong effect on the mean but they are also difficult to
detect. Combining this with multiple comparisons of tens of thousands of hypothesis tests
in a single microarray analysis calls into question the validity and interpretability of the
p-value. As an alternative to the p-value approach, we present a general semi-parametric
Bayesian framework for detecting differentially expressed genes in microarray analyses.

2. Semi-parametric Bayesian Model

In the spirit of Anderson and Dubnicka (2014) we let Sl(j) define the event that a subject
belongs to group  for [ = 1,...,sand j = 1,...,n;, let z(, ... 2® be a set of p
observations that arise in sequence from that subject, and let 24)|S; define the conditional
event of observing () given the subject belongs to group . Further suppose the initial
prior probability of belonging to group [ is given by P(ﬁj)) and conditional probabilities
corresponding to the conditional events, P(2{/)|S;), can be computed. Then the posterior
probability of belonging to group I having observed 2(9) can be computed as

L P(SYNP(x=D)|8
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where P(z(=7)|S)) is the estimated probability of observing 2{/) obtained from a kernel
density estimate of the subjects in group / without the #" subject. More specifically we
let f,(x)|S;) be a kernel density estimate of a continuous probability density function
f(29)]S;) and we let
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where =\ 7) = & sugh that, fwféﬁ%ﬁ?&}@%ﬁ%&i@uﬁ d/2,.dn this manner observa-
tions that lie near the median of the kernel density for a group are given a higher probability
of occurrence than those falling further away from the center of the kernel density. Using
this leave-one-out approach, equation (1) computes a posterior probability of group affilia-
tion for each subject. If equal priors are used and the genes under consideration are indeed
differentially expressed between groups, then the above algorithm results in an increase in
the posterior probabilities of the correct group. Large changes indicate a large degree of
separation in the gene expression levels between the two groups whereas small changes
indicate little distinction between groups. Aggregating the posterior probabilities for sub-
jects from common groups allows us to compute the posterior probability of differential
expression (PPDE) using

Sy PSP |2 s))
ny

)

We use the mean to aggregate the posteriors in equation (2) but one could have just as
easily chosen the median instead. The optimal choice, mean or median, for the PPDE is a
subject of continuing research by the authors.

3. Example

3.1 Simulated Data

As an initial comparison of this model’s performance against the p-value approach, mi-
croarray data, expressed as fold values, were generated for 8 subjects (4 treatment and
4 control) for 50,000 genes under two scenarios. To keep things manageable, 10 genes
were selected to be differentially expressed between the control and treatment group from
N (u,0?) with mean fold change values of ;. ranging from 0.5 to 5 in increments of 0.5.

For scenario 1 we specify all gene fold change values to have normal distributions and
equal variance. This setting plays well to the strengths of Student’s t-test and provides an
indication of how well the proposed semi-parametric model performs when the typical un-
derlying assumptions are met. Specifically, genes 1-10 from the treatment group were gen-
erated from N (5,1), N(4.5,1), N(4,1), N(3.5,1), N(3.1),N(2.5,1), N(2,1), N(1.5,1),
N(1,1), and N(0.5,1), respectively. The remaning genes for the treatment group, and all
genes from the control group, were assigned fold change values from N (0, 1).

In scenario 2, all the fold change values were as specified in scenario 1 except one
subject was randomly chosen to represent a mild outlier. Specifically, that subject’s original
fold value was replaced by Q1 — 2.0(/QR) where Q1 is the first quartile and QR is the
inter-quartile range of the original observations. This represents an outlier in the treatment
group that is more in line with the control group which should challenge both the traditional
p-value approach as well as the proposed method.

3.1.1 Smulation Results

Table 1 shows the scenario 1 results of comparing the control and treatment groups us-
ing the proposed semi-parametric Bayesian (Bayes) method and the traditional p-value
approach. We see the p-value approach finds the 10 differentially expressed genes and or-
ders them correctly from largest to smallest differential expression. The p-value, which
is unadjusted for multiple comparisons, indicates that Gene 1 to 7 would be identified as
differentially expressed. However, any adjustment to the p-value for multiple comparisons
will likely reduce this list further. The proposed method finds 8 of the 10 differentially
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Table 1. T 20D iFretantinl BarsprésstidiGfeienScenario 1

P-value Bayes

Rank Gene p-value Gene PPDE
1 Genel 0.0004 Genel 1.0000
2 Gene2 0.0007 Gene 2 0.8750
3 Gene3 0.0013 Gene 3 0.8750
4 Gene4 0.0026 Gene4 0.8750
5 Gene5 0.0054 Gene 6 0.8380
6 Gene6 0.0123 Gene5 0.7686
7 Gene7 0.0300 Gene7 0.6679
8 Gene8 0.0781 Gene8 0.6124
9 Gene9 0.2070 Gene 15048 0.5197
10 Genel0 0.5060 Gene 23799 0.4848

Table 2: Top 10 Differentially Expressed Genes: Scenario 2

P-value Bayes
Rank Gene p-value Gene PPDE
1 Gene4 0.0025 Gene4 0.8750
2 Gene3 0.0033 Genel 0.8296
3 Gene2 0.0062 Gene 2 0.8137
4 Genel 0.0130 Gene3 0.6875
5 Gene5 0.0823 Gene7 0.6372
6 Gene7 0.1140 Gene 29518 0.6080
7 Gene6 0.1482 Gene 2984 0.6007

8 Gene 25323 0.2156 Gene 13197 0.5982
9 Gene 22823 0.2158 Gene 24925 0.5970
10 Gene 40988 0.2159 Gene 15816 0.5965

expressed genes in the top 10 identified using the PPDE ordered from largest to smallest. A
few interesting notes here are that Gene 1 was different enough between the two groups that
all subjects were correctly classified to their respective groups and an estimated probability
of differential expression of 1 was obtained. Genes 2-4 all have 0.875 probability of differ-
ential expression and Genes 5 and 6 have made a curious ordering switch. Also, there is a
clear distinction between the PPDE of Gene 8 and the next gene in the list (PPDE=0.6124
and 0.5197, respectively). The former represents about a 61% chance that Gene 8 is differ-
entially expressed between the groups whereas the latter represents only a 50% chance the
gene is differentially expressed between the groups. Because the fold change values of the
latter gene were created so as to come from a NV (0, 1) for both groups, this is not surprising.

Table 2 shows the scenario 2 results of comparing the control and treatment groups in
the presence of a mild outlier.

Using the p-value approach with the unadjusted p-values, Genes 1-4 would be identified
as differentially expressed. Here again, we see that list would likely be reduced were we
to apply an adjustment for multiple comparisons. Depending on the threshold used, the
proposed method identifies Genes 1-4 with high probabilities of differential expression.
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Bayes Approach P-value Approach

Gene PPDE Gene p-value

1 XLOCO003809 0.8516 XLOC003809 4.2E-05
2 C3orfs8 0.8469 ZNF791 6.1E-05
3 ASAP2 0.8257 LOC100652837 6.5E-05
4 C5orf44 0.8121 C5orfd4 1.2E-04
5 ZNF791 0.8091 ASAP2 1.4E-04
6 CCNL1 0.8056 C3orf58 1.6E-04
7 LOC100652837 0.8023 LOC100129960 1.8E-04
8 EIF2A 0.7874 Clb5orf62 2.0E-04
9 CNRIP1 0.7865 C5orfl5 2.2E-04
10 USP6 0.7848 FCGR2A 2.3E-04
11 C150rf62 0.7933 EIF2A 2.7E-04
12 ATXN7 0.7826 CCNL1 2.9E-04
13 LOC100129960 0.7796 USP6 3.0E-04
14 C5orfl5 0.7714 MAGI2 3.4E-04
15 KCNJ18 0.7691 CNRIP1 4.1E-04
16 FEZ2 0.7686 QouUJ41 4.7E-04
17 SLC35A5 0.7639 LOC90784 5.2E-04
18 LOC90784 0.7597 ATXN7 5.5E-04
19 SPAG11B 0.7584 DYNC1LI2 5.8E-04
20 SLC6A19 0.7584 SPAG11B 6.0E-04

3.2 NCC Study Data

In a study funded through a US-India (NIH-DBT) joint partnership, subjects reporting to
the Department of Neurological Sciences at the Christian Medical College in Vellore, India
were recruited for participation in a study to determine inflammation relevant gene expres-
sion profiles specific to NCC in peripheral blood monocytes. 12 NCC-associated epilepsy
subjects and 12 epilepsy controls had blood samples drawn and peripheral blood mono-
cyte MRNA extracted. Samples were transported on dry ice to Genotypic (Pvt Ltd) where
gene expression levels were measured using GXP microarrays by Agilent which contain
approximately 50000 wells per chip. The proposed method of differential expression was
carried out using equal prior probabilities and the top 20 genes identified were reported and
compared to those obtained using the p-value approach.

3.2.1 Reaults

Table 3 contain the top 20 differentially expressed genes between the NCC-associated
epilepsy and the epilepsy control groups. It is interesting to note the number of genes
identified in both lists. In fact, there are only 4 genes (15, 16 17 and 20)on the Bayesian list
not appearing on the p-value list and only 5 genes (10, 14, 16, 18, and 19) appearing on the
p-value list not appearing on the Bayesian list. The PPDE ranges from about 75% to 85%
for the genes in this list.
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In this paper we present a semi-parametric Bayesian frame work for detecting differentially
expressed genes that does not rely on the t-test assumption of normality. Aside from the
specification of the priors, the kernel, and the bandwidth, this approach is non parametric.
As such, it is expected to be somewhat more robust to outliers and departures from nor-
mality than the p-value approach. This is an area of continued investigation. Preliminary
results indicate that in settings investigated so far, the performance of the proposed method
is on par with the p-value approach.

As we continue to challenge the proposed method with various scenarios to discover its
strengths and weaknesses, the false discovery rate (FDR) will also be noted for comparison
to the p-value approach. This may not only prove useful for establishing a sound rule-of-
thumb threshold for concluding differential expression between groups but also elucidate
gains achieved by avoiding and explosive type | error rate due to multiple comparisons.

One distinct advantage of the proposed method is the direct interpretability of the PPDE
as the posterior probability of differential expression. The uncertainty of the decision to
declare differential expression between groups or not is readily provided and intuitively
understood, unlike the commonly misused and misinterpreted p-value.

This approach is admittedly computationally intensive. In the limited simulations we
have explored, computing the PPDE for a set of 50000 genes ranges between 20=50 min-
utes. By hand type calculations to obtain the PPDE would not be advantageous due to
iteratively computed kernel density estimates using the leave-one-out principle but a soft-
ware program (to be developed in R) could easily handle these routines for anyone with
access to a computer.

We have presented the proposed method in the context of microarray analysis com-
paring two groups but the methodology readily extends to two other important settings as
well. First, this method need not be limited to microarray data but applies more broadly
to two sample comparisons of continuous data. The computed posterior would simply be
the estimated probability the two groups are detectably different. Finally, these methods
easily extend to comparisons of more than two groups with some minor modifications to
the specified priors. How multiple groups affect the PPDE is also a matter of continued
investigation.
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