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Abstract 
We propose and analyze a new chart for the multivariate process control of Poisson 

variables: the Linear Combination of Poissons (LCP) chart. The implementation 

parameters (coefficients of the linear combination and control limit) of this chart can be 

obtained running (in Windows) user-friendly software developed by the authors. The 

program employs genetic algorithms to minimize the out-of-control ARL for a given 

shift, under the constraint of a desired in-control ARL. The new chart shows very good 

performance when compared with its competitors. An EWMA version of it has also been 

developed. 

Keywords: multivariate Poisson distribution, statistical process control, SPC, 

optimization, optimal design, EWMA, genetic algorithms, performance, ARL 

 

Introduction 

There is a vast body of literature on multivariate statistical process control (MSPC) by 

variables; on the other hand, works on MSPC by attributes are scarce. We may cite Patel 

(1973), Lu et al. (1998), Skinner et al. (2003), Chiu and Kuo (2008), Ho and Costa 

(2009), Laungrungrong et al. (2011), Dourodyan and Amiri (2013), Aparisi et al. (2014). 

Although this list is not intended to be exhaustive, it is representative, and gives an idea 

of the number of papers on the subject, which is some orders of magnitude smaller than 

the number of papers on MSPC by variables. 

We are interested in the monitoring of multivariate Poisson processes. Specifically, we 

consider processes that can be well represented by the model proposed by Holgate 

(1964). He considered that each one of the p (observable) Poisson variables Xi (i = 1, 2, 

..., p) is the sum of two non-observable and independent Poisson variables: a common 

component Y0 and an individual component Yi (i = 1, 2, ..., p). In addition, all Yi variables 

are independent of each other. As a result, the covariance between any pair of observable 

variables Xi and Xj is the variance of Y0. 

In formal notation, denoting by �� the mean of Yi (and by �� the mean of Y0), we have: 
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i = 1, 2, ..., p,     i ≠ j (4) 

This is not the only possible way in which the elements of a Poisson vector can be 

correlated. For instance, negative correlations cannot be represented within the 

framework of this model. It is, however, the model that has been assumed in virtually any 

published work on the monitoring of a multivariate Poisson process, and can adequately 

represent several real situations. The consideration of other models (and the development 

of appropriate monitoring methods for them) remains an open issue for research. 

Based on Holgate’s model, Chiu and Kuo (2008) proposed to chart the sum of the values 

of the different Xi variables, in what they called the MP chart. They also compared the 

performance of this chart with the Multiple Scheme (a set of c charts, one for each 

variable). Ho and Costa (2009) considered other two charts, applied to the case of two 

Poisson variables following Holgate’s model: the DX chart, on the difference between 

them, and the MX chart, on the maximum of their values in the sample. They compared 

the performances of these two charts, the MP chart and the Multiple Scheme. Aparisi et 

al. (2013) presented a program (running in Windows
®
, user-friendly and available upon 

request) that optimizes (using Genetic Algorithms) and compares the performances of 

these four schemes, and is intended to assist the user in the choice of the best monitoring 

scheme for his/her particular problem. Laungrungrong et al. (2011) proposed and 

evaluated a version of the MEWMA chart of Lowry et al. (1992) based on Holgate’s 

multivariate Poisson model rather than on the normal distribution. They found that 

although the out-of-control performance of the two schemes is similar, the in-control 

performance of the new version is superior. More recently, the same authors developed a 

one-sided version of this scheme (Laungrungrong et al., 2014). 

We do not detail the works in other references given (Patel, 1973; Lu et al., 1998; 

Skinner et al., 2003; Dourodyan and Amiri, 2013) because they considered different 

types of variables/processes, e.g. binomial variables, independent Poisson variables or a 

mix of discrete and continuous variables. 

This paper briefly presents an alternative statistic for multivariate Poisson monitoring we 

recently proposed, namely the linear combination of the Poisson variables (LCP), as well 

as two monitoring schemes based on it: a Shewhart-type chart (Epprecht et al., 2013) and 

an EWMA chart (García-Bustos et al., 2014), and summarizes the findings of the 

performance analyses carried out. The idea for the statistic came from the observation 

that the sum of variables in the MP chart and the difference between the variables in the 

DF chart are particular cases of linear combinations; the linear combination, being more 

general (and also applicable to more than two variables, in contrast with the DF chart), 

should be more flexible and exhibit better performance, which the performance analysis 

indeed confirmed. 

The remainder of this paper presents the LCP statistic, describes the charts, the 

mathematical models for computing the ARLs, and two programs we developed for 
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optimizing the design of the charts. Then follows a synthetic presentation of the results of 

comparative performance analyses, and the general conclusions. For details, the reader is 

referred to our two papers mentioned in the preceding paragraph. 

 

The LCP chart 

The LCP chart (Epprecht et al., 2013) is a two-sided Shewhart-type control chart on 

which, at each sample, the statistic 

��� = ∑ ����
�
���      (2) 

is calculated and plotted. A point plotting outside the control limits is an alarm. 

The values of the coefficients �� and of the control limits UCL and LCL are design 

parameters, to be determined so as to give the desired in-control ARL and to minimize 

the out-of-control ARL for a specified shift. Also, for practical reasons (to limit the 

search region for the optimization algorithm) the values ��  are constrained to lie in the 

interval �−1,			1�, without loss of flexibility for the design since the control limits are 

determined accordingly. It is only a matter of scale. 

A number of comments are in order: (i) Even when the purpose is to detect changes of 

the Poisson rates in one direction (e.g. increases), the chart may need a pair of limits, if 

some of the ��’s are negative and others positive. (ii) In contrast with most charts for 

attributes (in which, due to the discrete nature of the charting statistic, the in-control ARL 

can only take discrete values and it is not generally possible to match a desired ARL0 

value), the chart can be designed to match any ARL0 required by an appropriate choice of 

the coefficients and control limits. This is an advantage of the proposed chart. (iii) There 

is no closed-form expression for determining the coefficients of the linear combination 

and control limits for the chart; these parameters have to be determined by a search 

algorithm that minimizes the ARL for a given shift in the means of the Y variables subject 

to a constraint in the in-control ARL. (iv) Even if the Y variables are not directly 

observable, estimates of their in-control means can be obtained as a function of estimates 

of the means and covariance of the X variables, using the relations expressed in Equations 

(2) and (3). 

 

The EWMA LCP chart 

The EWMA LCP chart (García-Bustos et al., 2014) uses as statistic an exponentially 

weighted moving average of the successive LCP values, in the usual way: 

�� !���" = #���" + 	1 − #
	�� !���"$�
											    for t = 1, 2, …   (6) 

where ���" is the value, in the t-th sample, of the LCP statistic given in (2), r is the 

smoothing constant, (0 < r ≤ 1) and the initial value EWMALCP0, is the in-control 

expected value of LCP, given by 

�� !��� = ∑ ���	��

�
���      (7) 

In practice, if the expected values E(Xi) are unknown, they may be directly estimated 

from historical in-control data by their averages ��%%%, �&%%%, ..., ��%%%%. 
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The chart has two control limits, UCL and LCL. These limits are not necessarily 

symmetric with respect to the expected value of LCP, given by (7), when the chart is 

optimized against a given shift. (This is also true of the LCP chart). 

 

ARL computation 

Under the assumption of serially independent data, the ARL of the LCP chart is the 

reciprocal of the signal probability. It is easier to calculate the probability of the 

complementary event, namely, that LCP lies between the control limits. This is the sum 

of the joint probabilities of all values of the tuple (or vector) [x1, x2, ..., xp] that yield a 

value of LCP between LCL and UCL. Note that since Xi =Y0 + Yi, LCP can be 

alternatively expressed as a linear combination of the Yi’s, with the advantage that 

because the Y’s are independent of each other, the joint probability of any particular [y0, 

y1, y2, ..., yp] point is simply the product of the univariate Poisson probabilities. The 

cumbersome analytical expression is omitted here (the interested reader is referred to 

Epprecht et al., 2013), but its calculation is algorithmically quite simple, and can be made 

by p+1 nested loops, one for each Yi variable (including Y0). The minimum and maximum 

values of each variable in its loop are not fixed, but are defined at each time as a function 

of the particular values assumed in that iteration by the variables in the loops external to 

it, so that LCP remain between LCL and UCL. 

The computation of the ARL of the EWMA LCP chart requires a Markov chain model, 

which is however similar to the ones used in the literature for several other EWMA 

charts, since the early work of Lucas and Saccucci (1990). The basic idea is to discretize 

the continuous interval of variation of the EWMA statistic between the control limits by 

dividing it in a large number of subintervals, each one corresponding to a transient state. 

Then the one-step transition probability from state j to state k (that is, the probability that 

the EWMA statistic in sample t falls in subinterval k given that the EWMA statistic in 

sample t–1 was in subinterval j) is the probability that the sample statistic that will be 

smoothed (in our case, the LCPt statistic) falls between a minimum and a maximum value 

that are determined by a trivial manipulation of the smoothing equation (in our case, Eq. 

(6)), under the simplifying assumption that the value of the EWMA statistic in sample t–1 

coincided with the midpoint of its respective subinterval j.  In the case of the EWMA 

LCP chart, the matrix equations are exactly the same as in these previous works. The 

only difference lies in the calculation of the transition probabilities: the probabilities that 

LCPt lie between a minimum and a maximum value determined from Equation (6) are 

calculated using the same algorithm used in the case of the (Shewhart-type) LCL chart to 

compute the probability that LCL falls in a given interval. 

 

Design and optimization 

There is no closed-form expression for the design of the LCP or the EWMA LCP chart 

either. Given a specified ARL0 value, there are multiple solutions (values of the 

coefficients of the linear combination, control limits and, in the case of the EWMA LCP 

chart, smoothing constant r) that result in the given ARL0. A good design has to be 

obtained by search. On the other hand, this has the advantage of enabling the 

optimization of the charts’ out-of-control performance. 

We developed user-friendly software running in Windows, which performs the search 

(using genetic algorithms) to solve the problem of minimizing the ARL for a given shift 

(specified by the user) in the vector of means of the Yi’s, subject to the constraint that the 
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in-control ARL should not be smaller than a given ARL0 value. As already mentioned, the 

LCP and EWMA LCP charts can precisely match the required ARL0 value, so the 

solution is on the contraint. A specific program was developed for each chart. In the case 

of the EWMA LCP chart, the ARL minimized is the steady-state ARL (the zero-state 

ARL is close to it, and given in the program output). The maximum number of 

observable variables (Xi’s) allowed is three.  

The data to be input by the user is then the ARL0, the in-control means of the Y variables 

and the shift vector. Note that, even if the Y variables cannot be directly observed, their 

means can be estimated from historical data using the relations in (2) and (3). 

Figure 1 shows the user interface of the program for optimizing the LCP chart. The 

interface of the program for optimizing the EWMA LCP chart is similar. Detailed 

descriptions and examples of use of the programs are given in Epprecht et al. (2013) and 

García-Bustos et al. (2014). 

 

Figure 1: Program for optimizing the LCP chart – user interface 

 

Performance analysis and comparison 

The results of performance and sensitivity analyses of the LCP and EWMA LCP charts 

are presented in detail in the papers cited (Epprecht et al., 2013; García-Bustos et al., 

2014). Numerical results for a comprehensive spectrum of cases could not be presented 

without the use of many tables, so for reasons of space and of keeping this exposition 

simple, we refer the reader interested in that to those papers; and here we only summarize 

the general results.  
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As predictable, the charts are not directionally invariant. In the case of the LCP chart, 

however, the optimal design depends only on the direction of the shift, and not on its 

magnitude. That is, if the LCP chart is optimized for a pair of shifts along the same 

direction but with different magnitudes, the results will be equivalent. By “equivalent” 

we mean that the coefficients and control limits of the two solutions will be proportional; 

in other words, they will differ only by the scale. This because the genetic algorithm may 

generate solutions in different scales. But for any given shift, the ARLs of the two charts 

will coincide. 

In the case of the EWMA chart, however, the existence of the smoothing constant 

provides an additional flexibility, in that this constant and the control limits can be tuned 

together in order to optimize the performance for the magnitude of the relevant shift 

without compromising the in-control performance. So it the size of the shift for which the 

chart is optimized affects its design and performance. 

This difference between the LCP and the EWMA LCP charts is analogous to the one 

between univariate Shewhart and EWMA charts, in which case the only component of 

the shift is its size. Given a desired ARL0 (and sample size), the design of a Shewhart 

chart is fixed (the only parameter to be chosen are the control limits) and cannot be 

optimized in terms of ARL (unless the sample size and sampling interval are treated as 

decision variables); in contrast, EWMA charts can be optimized because there is an 

infinity of combinations of values of smoothing constant and control limits that yield the 

desired ARL0. Now, in the case of the LCP and EWMA LCP charts, the shift has a new 

element, its direction, which allows optimization of both charts with respect to it, but 

regarding the shift magnitude the situation is analogous to the one of univariate charts. 

Further analysis of the performance of the EWMA LCP chart has shown that (similar to 

univariate EWMA charts) its performance for large shifts is never poor. So if the size of 

the shift is not predictable, and protection is needed against different magnitudes of 

shifts, a good design strategy is to optimize it for the smallest relevant shift. 

Regarding the comparison of performance with the competing monitoring schemes, the 

program for designing the LCP chart also gives the designs and ARLs of the MP chart, 

MX chart and multiple univariate Poisson charts scheme, for comparison and choice of 

the best scheme for the particular shift the user is concerned with. In addition, a new 

window shows the ARL curves of the various schemes as a function of the shift in the 

mean of one of the variables when the shifts in the means of the remaining variables are 

kept fixed, and also a plot of the regions where each scheme is the best one, considering 

the shifts in the means of two of the variables when the shifts in the means of the 

remaining ones are fixed. Figure 2 shows this window with an example of output. 

The dimensionality of the problem renders difficult to give a comprehensive picture of 

the ARL surface of the charts. The results can however be summarized saying that, from 

a large number of different cases analyzed, the LCP chart outperformed its competitors 

(the MP chart, the MX chart and the multiple univariate Poisson charts) in the large 

majority of cases, and almost always quite significantly (giving in some cases ARL three 

times smaller); and that in the few cases where it was not the best scheme, the differences 

in ARL were small. 

As to the EWMA LCP chart, it provides a substantial gain in performance with respect to 

the LCP chart. The reduction in the out-of-control ARLs range from 15% to even more 

than 70%, depending on the case.  The few cases where the LCP chart outperforms the 
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EWMA LCP chart are cases of very large shifts, in which both charts have already quite 

small ARLs (a little larger than 1.0). In addition, the EWMA LCP chart performance is 

fairly robust regarding the shifts in the individual components of the mean vector of the 

Yi variables, although somewhat more sensitive to the value considered for the shift in the 

mean of Y0. In any case, though, it is much more efficient than the Shewhart-type LCP 

chart. 

 

Figure 2: Comparison output window of the program for optimizing the LCP chart 

 

Conclusions 

The LCP statistic has shown its superiority over the alternative statistics in monitoring 

multivariate Poisson processes. Namely, the LCP chart has shown better out-of-control 

ARL performance than the MP, MX and multiple univariate Poisson charts. The ARL 

values of the LCP chart are sometimes one third of the ones of its best competitor. The 

cases where the LCP chart has not shown the best performance were very rare and its 

ARL was quite close to the one of the best scheme. In addition, with the LCP statistic, it 

is possible to match quite precisely the in-control ARL specified by the user of the chart 

— something that is generally not possible with control charts by attributes.   

The EWMA version of the LCP chart has still better performance, with lower out-of-

control ARLs in virtually any case. Only for very large shifts it is outperformed its 

Shewhart-type version. Note however that for such shifts the ARLs of both charts are 

already quite small, and close to each other. So, the EWMA LCP chart (optimized for the 

smaller shift that is deemed relevant) becomes an interesting omnibus control schema for 

shifts of different magnitudes. 

The programs developed and made available by the authors make it easy to optimize the 

chart(s) for the desired shift, thus contributing to their practical applicability. 
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