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Abstract 

Phase I dose-finding trials using a new drug are conducted to study the safety, explore the 

pharmacokinetics and pharmacodynamics and to identify the maximum tolerated dose 

(MTD) of the new drug. MTD is defined as a specific percentile of the dose-toxicity 

curve. Due to ethical considerations the trials use adaptive designs, increasing the dose in 

patients based on patient results at all doses. 

The traditional 3 + 3 design is often used but is inefficient. Fan, Lu and Wang (2012, 

Statistics in Medicine) propose a simple and flexible Bayesian decision-theoretic design. 

Their method uses a working model with conjugate priors which produce analytic 

posterior distributions for monotonic dose-toxicity curves. Moreover, a utility function 

can be selected to reflect the interest of the trial. In this poster we present simulation 

results comparing their method with the traditional 3 + 3 method. The possible problem 

due to prior misspecification is also investigated. 
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Introduction 

Phase I studies are typically the first exposure of a new drug or therapy in humans. Often 

therapies known to be effective for one indication are tried in a different indication. The 

main purpose of a Phase I trial is to study the safety, pharmacokinetics, and 

pharmacodynamics of the new drug. In addition, a primary objective of a Phase I study in 

drug-therapeutic clinical trials is to estimate the maximum tolerated dose (MTD) of the 

new drug. The definition of MTD is the dose at which r-% of the patients suffer dose-

limiting toxicity (DLT). Often this percentile is the 33
rd

 percentile. 

In some studies the “patients” undergoing Phase I trials are healthy volunteers, frequently 

from the pharma/biotech company developing the drug. In oncology trials the patients 

can be cancer patients who have undergone every possible currently marketed therapy to 

no avail. In all cases, especially when the new therapy has known uncomfortable side-

effects (nausea, muscle weakness, pain, alopecia) the approach to estimation of the MTD 

should use as few patients as possible. 

Kelley and Venook (2013) point out that in some patient populations there is a high rate 

of background adverse events necessitating Phase I trials in the patient population. This is 

especially true if there are no known reliable surrogate endpoints. It is therefore critical to 

have an efficient phase I design for combined agents to study the toxicity profile of 
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combined agents even if they are well established agents.  Bayesian methods are practical 

for well-established agents as we have "prior information" of the toxicity profiles of 

agents. 

 

Methods 

Traditional 3+3 Design 

The traditional 3 + 3 design is frequently used for Phase I trials to determine the MTD 

(when defined as the 33
rd

 percentile). This study often has 5 – 6 doses predetermined for 

experimentation and treatment is assigned to cohorts of three patients. The first cohort is 

assigned to the lowest dose and if no toxicities occur, then another three patients are 

assigned to the next highest dose. If a dose has one patient (of the three, denoted by 1/3) 

experience a toxicity response, then that same dose is given to the next cohort. If a dose 

has two or three patients experience toxicity (denoted by 2+/3) then this dose exceeds the 

MTD and the dose is lowered. If less than two cohorts have experienced this lower dose, 

then the next cohort is assigned to the lower dose. The MTD is defined as the highest 

dose with at most one-third of the patients experiencing toxicity out of six patients (two 

cohorts).   

(See Berry, Carlin, Lee, Muller (2011).)  

Using an algorithm adapted from that of Berry, Carlin, Lee, Muller (2011), a R program 

was written to simulate the use of 3+3 design using six increasing doses. Below are three 

grids showing the use of the design. 

Example 1: Nine patients with two toxic events 

Cohort 

Dose (increasing from left to right) 

1 2 3 4 5 6 

1 0/3 (increase)           

2   1/3 (stay)         

3   1/3 (MTD)         
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Example 2: Fifteen patients with four toxic events 

Cohort 

Dose (increasing from left to right) 

1 2 3 4 5 6 

1 0/3 (increase)           

2   1/3 (stay)         

3   0/3 (increase)         

4     1/3 (stay)       

5     2/3 (decrease)       

    2 cohorts already - 

MTD 

        

 

Example 3: Fifteen patients with two toxic events 

Cohort 

Dose (increasing from left to right) 

1 2 3 4 5 6 

1 0/3 (increase)           

2   0/3 (increase)         

3     0/3 (increase)       

4       2/3 (decrease)     

5     0/3 (MTD)       

 

A Simple Bayesian Design 

Fan, Lu and Wang (2013) propose a simple Bayesian design for Phase I trials. They use a 

Beta prior, a newly proposed isotonic regression working model, a simple gain function, 

and update the working data set with each cohort’s outcome. The Beta prior (parameters 

a and b) is updated to a Beta posterior. Each dose, xi, has probability pi = ai / (ai +bi) of 

toxic event on average. Stopping rules based current information can be incorporated. 

Here, we stop if 1) the lowest dose is too toxic, 2) we reach the maximum number of 

patients. 

JSM 2014 - Biopharmaceutical Section

3815



The design has seven components and only one basic assumption, that probability of 

toxicity is monotonically increasing. An implied assumption for the working data is that 

if a patient experiences a toxicity at a low dose then he/she will experience a toxicity at 

all higher doses. Additionally, if a patient experiences no toxicity at a high dose then 

he/she will experience no toxicity at lower doses. Thus, the working data set can be 

updated with all the implied outcomes based on the observed outcomes of the current 

cohort.  

If there are K doses, then up to K posterior distributions are updated to new Beta 

distributions and the next cohort is assigned a dose based on the maximum expected gain 

over each of the K doses. 

Their design can implement a variety of gain functions and also weight the value of 

current patients and future patients. For this poster we use their One-Step-Look-Ahead 

algorithm which considers the next patient as the last patient in the trial (even though it 

may not be). The gain function is | pi  r |, where r is the target toxicity level for MTD 

(here 0.33). The next dose is the dose that maximizes the expected gain using the updated 

Beta distributions. Start with the lowest dose, increase doses until a toxicity occurs, then 

incorporate the working model. The first set of pi ‘s are based on prior information about 

the therapy. 

If we let T = 0 for no toxic event and T = 1 for a toxic event, then after treating a patient 

at dose xi , given patient’s toxicity ti , then the updated Beta distribution has parameters ( 

ai + ti , bi + 1  ti ). For cohorts with more than 1 patient, update the parameters using the 

total number of toxicities (and non-toxicities). For example, given a patient is treated 

with dose 3 and experiences a toxic event, then the working data is updated as shown in 

the table below. 

Example 4: Use of the Bayesian Design.  Given a patient is treated at dose 3 and 

experiences a toxicity. 

Dose  1 2 3 4 5 6 

Working 

Data 

No 

change 

No 

change 

+1 +1 

Implied 

by model 

+1 

Implied 

by model 

+1 

Implied 

by model 

Beta 

parameter, 

a 

a1 a1 a1 +1 a1 +1 a1 +1 a1 +1 

Beta 

parameter, 

b 

b1 b1 b1 b1 b1 b1 

The next dose would be assigned choosing dose i, that gives maximum E(|pi  r |) over 

the six updated Beta distributions. 
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Example 5: Use of the Bayesian Design.  Given a patient is treated at dose 3 and 

experiences no toxicity. 

Dose  1 2 3 4 5 6 

Working 

Data 

0 

Implied 

by model 

0 

Implied 

by model 

0 No 

change 

No 

change 

No 

change 

Beta 

parameter, 

a 

a1 a1 a1  a1  a1  a1  

Beta 

parameter, 

b 

b1+1 b1+1 b1+1 b1 b1 b1 

The next dose would be assigned choosing dose i, that gives maximum E(|pi  r |) over 

the six updated Beta distributions. 

Simulations 

Simulations (m = 10,000) were run for two different MTD targets, r = 0.20 and r = 0.30. 

The proposed Bayesian design is adaptable to different MTD targets, while the 3 + 3 

design was developed for a target around 0.33. The Bayesian design can incorporate 

several dose selection rules. Here we use one-step-look-ahead which regards each 

successive patient as the last patient and the gain function | p – r | (referred to as 

OSLA(1)). Cohort size for the 3+3 design is fixed at 3. The proposed Bayesian design 

can use different cohort sizes; here we use a cohort of 1 patient. Additionally, the 

proposed Bayesian design can incorporate stopping rules based on the working data set or 

stop at a pre-set maximum sample size nmax. Here we stop at 16 patients for OSLA(1).   

 

Results 

The tables below show the results of the simulations.  For Table 1, Table 2, and Table 3 

the targeted dose has a probability of toxicity of 0.20 (r = 0.20).  This is followed by 

graphs showing the results for those simulations.  Another simulation (below) shows the 

results for a targeted dose with a probability of toxicity of 0.30 (r = 0.30).   

Table 1: Target r = 0.20.  Probabilities of toxicities for doses 1 – 6. 

Scenario\Dose 1 2 3 4 5 6 

High Toxicity 0.15 0.20 0.38 0.52 0.70 0.80 

Medium Toxicity 0.01 0.02 0.09 0.20 0.40 0.58 

Low Toxicity 0.001 0.002 0.003 0.01 0.07 0.20 
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Table 2: Proportion of patients assigned to each dose using scenarios of Table 1 over 

10,000 simulations. Modes in bold. 

Scenario Design 

Dose Allocation 

1 2 3 4 5 6 

High 

Toxicity 

OSLA(1) 0.40 0.50 0.06 0.03 0.01 0.00 

3 + 3 0.061 0.32 0.42 0.17 0.026 0.001 

Medium 

Toxicity 

OSLA(1) 0.06 0.07 0.25 0.54 0.04 0.04 

3 + 3 0.01 0.02 0.11 0.30 0.41 0.15 

Low 

Toxicity 

OSLA(1) 0.06 0.06 0.06 0.06 0.19 0.56 

3 + 3 0.00001 0.0001 0.0014 0.028 0.25 0.72 

 

Table 3:  Dose identified as MTD using scenarios of Table 1 over 10,000 simulations. 

Modes in bold. 

Scenario Design 

MTD Determination 

1 2 3 4 5 6 

High 

Toxicity 

OSLA(1) 0.38 0.60 0.02 0 0 0 

3 + 3 0.20 0.49 0.27 0.047 0.0022 0 

Medium 

Toxicity 

OSLA(1) 0 0.01 0.25 0.74 0 0 

3 + 3 0.0018 0.033 0.22 0.46 0.24 0.045 

Low 

Toxicity 

OSLA(1) 0 0 0 0 0.19 0.81 

3 + 3* 0 0 0.0001 0.0029 0.023 0.14 

*MTD not determined by 3+3 design and low toxicity scenario for 83.4% of the 10,000 

simulations. 

 

Figure 1: Target r = 0.20, scenario of Table 1, number of patients used for 3+3 design 

(for OSLA(1) fixed number of 16 patients). 

   Ave = 14, s = 3.78     Ave = 19, s = 3.89     Ave = 20, s = 2.02 
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Figure 2: Target r = 0.20, scenario of Table 1, number of toxicities for 3+3 design. 

 
Ave = 4, s = 1.14  Ave = 4, s = 1.21  Ave = 2, s = 1.09 

 

Figure 3: Target r = 0.20, scenario of Table 1, number of toxicities for OSLA(1) design. 

 
Ave = 4, s = 1.59  Ave = 4, s = 1.45  Ave = 2, s = 1.27 

For Table 4, Table 5, and Table 6 the targeted dose has a probability of toxicity of 0.30 (r 

= 0.30).  And the graphs (Figures 4 – 6) for Tables 4 – 6 follow. 

Table 4: Target r = 0.30.  Probabilities of toxicities for doses 1 – 6. 

Scenario\Dose 1 2 3 4 5 6 

High Toxicity 0.30 0.53 0.77 0.87 0.95 0.98 

Medium Toxicity 0.05 0.10 0.20 0.30 0.50 0.70 

Low Toxicity 0.02 0.03 0.06 0.10 0.18 0.30 
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Table 5: Proportion of patients assigned to each dose using scenarios of Table 4 over 

10,000 simulations. Modes in bold. 

Scenario Design 

Dose Allocation 

1 2 3 4 5 6 

High 

Toxicity 

OSLA(1) 0.894 0.080 0.021 0.005 0 0 

3 + 3 0.540 0.40 0.06 0 0 0 

Medium 

Toxicity 

OSLA(1) 0.064 0.14 0.34 0.37 0.067 0.15 

3 + 3 0.051 0.13 0.26 0.30 0.22 0.039 

Low 

Toxicity 

OSLA(1) 0.063 0.062 0.063 0.15 0.28 0.38 

3 + 3 0.027 0.043 0.050 0.17 0.31 0.36 

 

Table 6:  Dose identified as MTD using scenarios of Table 4 over 10,000 simulations. 

Modes in bold. 

Scenario Design 

MTD Determination 

1 2 3 4 5 6 

High 

Toxicity 

OSLA(1) 0.96 0.04 0 0 0 0 

3 + 3 0.89 0.11 0 0 0 0 

Medium 

Toxicity 

OSLA(1) 0 0.066 0.38 0.51 0.047 0 

3 + 3 0.060 0.20 0.34 0.32 0.071 0.0023 

Low 

Toxicity 

OSLA(1) 0 0 0.002 0.085 0.37 0.54 

3 + 3* 0.010 0.020 0.060 0.16 0.30 0.45 

*MTD not determined by dose 6 for 3+3 design and low toxicity scenario. 

Figure 4: Target r = 0.30, scenario of Table 4, number of patients used for 3+3 design 

(for OSLA(1) fixed number of 16 patients). 

 
Ave = 8, s = 3.37  Ave = 17, s = 4.89  Ave = 22, s = 2.80 
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Figure 5: Target r = 0.30, scenario of Table 4, number of toxicities for 3+3 design. 

 
Ave = 3, s = 1.05  Ave = 4, s = 1.23  Ave = 2, s = 1.18 

Figure 6: Target r = 0.30, scenario of Table 4, number of toxicities for OSLA(1) design. 

 
Ave = 6, s = 1.68  Ave = 4, s = 1.39  Ave = 3, s = 1.29 

 

Conclusions 

A simple Bayesian design provides a flexible model for determining maximum tolerated 

dose. The proposed Bayesian design is simple to implement and requires little 

computation time.  Updating the Beta distribution parameters takes one line of R code 

and provides an analytic posterior Beta distribution. In their article, Fan, Lu, and Wang 

(2012) compare their results with the continual reassessment method (CRM) and the 

continual reassessment method likelihood version (CRML). In this study we compared 

the results of the tradition 3+3 design with the Bayesian approach (OSLA(1)) using a 

fixed number of 16 patients. To summarize the results, we look at proportion of times the 

correct dose was selected under the two designs; the number of patients each design used; 

and the number of toxicities experienced under each design. 

In comparing whether the designs selected the correct dose for MTD, the modal choices 

are shown in Tables 3 and 6 (for the two different scenarios).  In all cases, the Bayesian 

design (OSLA(1)) had the modal frequencies for the correct dose.  Also, the OSLA(1) 
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design selected the correct dose with higher relative frequency than that of the 3+3 

design. In addition, in each scenario the 3+3 design shows higher proportion of 

simulations than OSLA(1) shows with a dose above the target being selected. For 

example, in Table 3, with medium toxicity the 3+3 design selected doses 5 and 6 nearly 

30% of the time, when dose 4 should be the MTD, while OSLA(1) shows 0% above dose 

4 being identified as the MTD. This is in part because the target is 0.20 (lower than what 

3+3 is designed for). But, the same is true when the target is 0.30 (Tables 4-6); in the 

low-toxicity scenario the 3+3 design designates the MTD at too high a dose 11% of the 

time, while OSLA(1) does only 4% of the time. For the medium-toxicity scenario, 3+3 

designates too high a dose about 7% of the time, while OSLA(1) does only about 5% of 

the time. 

Quite often the 3+3 design required many more than 16 patients. The proposed Bayesian 

design can incorporate stopping rules which may result in fewer patients being used than 

the number used under the 3+3 design.  Here, Figures 1 and 4 show that, with the 

exception of the high dose scenarios, the 3+3 design can frequently go over 16 patients. 

The proposed Bayesian design can be modified to accommodate any target probability 

for MTD (here we used 0.20 and 0.30). In contrast, the 3+3 design targets a fixed 

probability somewhere between 0.20 and 0.30, with no flexibility for other target 

probabilities.  

In conclusion, the proposed Bayesian design appears to be more efficient and more 

accurate than the traditional 3+3 design. In addition, the proposed Bayesian design 

provides more flexibility in selecting a target probability for rate of toxicity for Phase I 

study and incorporating stopping rules. 
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