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Abstract

A multi-step approach to modeling hourly electricity load and estimating the 24-hour 
daily profile of electricity use is proposed. The methodology is motivated by the time-
varying spline model introduced by Harvey and Koopman in 1993, but includes several 
important modifications. One is the multi-step approach to modeling daily load and then 
using the residuals to model the hourly data. The proposed method also use variables 
based on temperature to modify the model parameters, and in addition express these 
parameters as a time series, thus producing a model that is more dynamic and attuned to 
temperature related changes. Data from the Atlantic Electric Zone of the PJM market is 
used to illustrate the proposed method.

KeyWords: Electricity Load Forecasting time-varying splines, Daily Profile Load 
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1. Introduction

Electricity demand is driven by many factors, including economic conditions and 
weather. Furthermore, the electricity demand varies with time, with different hours of the 
day and different days of the week having an effect on the load. Thus, modeling 
electricity demand can be a challenging task, but reliable models that can be used to 
forecast demand is of practical importance to those in the energy and public and private 
utility sectors. Therefore this filed has generated the interest of many researchers. 

There is a long history of research work aimed at developing hourly electricity load 
models. For classical approaches the reader is referred to Bunn and Farmer (1985) which 
presents approaches that were used to forecast the short-term load. Another important 
reference is Alfares and Nazeeruddin (2002),which classified the various approaches into 
nine classes. The latter authors also commented that while the time series approach is 
widely used, hybrid approaches, which combine several techniques, have become more 
common. Taylor and McSharry (2007) conducted an empirical comparisonof some short-
term forecasting methods using teninterday electricity demand time seriesfrom ten 
European countries; for more information see Weron (2007). Two key publications in 
this area are by Harvey and Koopman (1993) who proposed time-varying splines to 
model intra-weekly load and  Cho et al. (2013) who proposed a hybrid approach using 
generalized additive model and curve linear regression to model weekly and daily 
electricity load. In this paper we adopt Koopman’s approach to model an empirical data 
set, but incorporate several important modifications.
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2. Data Description and the Analysis

The data used in this study consist of 
Jersey-Maryland (PJM); the data cover Atlantic Electric zone (AE) in southern New 
Jersey. This data includes hourly observations over 20 years (1993
data was obtained from Federal Reserve Bank of ST. Louis. Moreover, the weather data 
was obtained from National Oceanic Atmospheric Administration (NOAA).
shows the actual hourly load over 20 years.

Figure 1.

The time series of electricity demand 

components consisting of a long term trend

tW , a 24-hour demand function 

in the model below:

We predict each component separately as described below.

2.1 Predicting long-term trend

The first step was modeling the hourly average electricity demand per year by using 
classical regression analysis with selected economic used as independent variable
economic variables were selected based on stepwise regression. The final model explains 
98.5% of variation in the annual load with mean RMSE 9.7. Moreover, we did not see 
any serious multicollinearity among the independent variables.

Data Description and the Analysis

used in this study consist of load data was obtained from the Pennsylvania
Maryland (PJM); the data cover Atlantic Electric zone (AE) in southern New 

Jersey. This data includes hourly observations over 20 years (1993-2012). The economic 
obtained from Federal Reserve Bank of ST. Louis. Moreover, the weather data 

was obtained from National Oceanic Atmospheric Administration (NOAA).
shows the actual hourly load over 20 years.

Figure 1.The actual hourly load over 20 years.

The time series of electricity demand tY was considered a composite of structural 

components consisting of a long term trend t , a seasonal component tS , a weekly cycle

hour demand function ( )f t , and an irregular stochastic component u

( )t t t t tY S W f t u    

We predict each component separately as described below.
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The first step was modeling the hourly average electricity demand per year by using 
classical regression analysis with selected economic used as independent variable
economic variables were selected based on stepwise regression. The final model explains 
98.5% of variation in the annual load with mean RMSE 9.7. Moreover, we did not see 
any serious multicollinearity among the independent variables.
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The first step was modeling the hourly average electricity demand per year by using 
classical regression analysis with selected economic used as independent variables. The 
economic variables were selected based on stepwise regression. The final model explains 
98.5% of variation in the annual load with mean RMSE 9.7. Moreover, we did not see 
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The regression model for the annu

yY = 270.95 – 8.15 RV 

where, yY is the hourly average load for year 

Jersey (NJ), ED is the Durable Manufacturing Earnings
Employment in NJ, HV  is the 
Production Index of the US
observed and values predicted using the above model are given in Figure 2.

Figure 2. The annually average of hourly load (

2.2 Predicting seasonal variation 

The trend estimates for each year were transposed onto a weekly series,
moving average was applied to this series. Th
weekly electricity demand data 
demand) by subtracting this re

time series (we shall denote it by 

modeled by using a subset ARMA model with added independent variables.
independent variables used are a holiday dummy 

holiday), minimum weekly temperature 

average weekly temperature, 

( 50)wH  the total number of hours below 

regression model for the annual data is:

8.15 RV – 0.0001 ED + 1.96 GOV – 47.37 HV + 5.82 IPRO

is the hourly average load for year y, RV is the Rental Vacancy Rate

Durable Manufacturing Earnings in NJ, GOV is the Government 
, HV  is the Home Vacancy Rate in NJ, and IPRO is the 

Production Index of the US; all independent variables measured for the year 
predicted using the above model are given in Figure 2.

The annually average of hourly load (bluesolid) and the predicted (red 

2.2 Predicting seasonal variation 

The trend estimates for each year were transposed onto a weekly series, and a 52
moving average was applied to this series. This smoothed trend was removed from 
weekly electricity demand data (averaged over the hours to reflect average per hour 

by subtracting this resulting smoothed weekly series.The de-trended weekly 

(we shall denote it by wW , where the subscript w denote the week) 

subset ARMA model with added independent variables.
independent variables used are a holiday dummy wh (equal to one if the week 

holiday), minimum weekly temperature wmT , [ 65]( 65) ( )w T wT I T  where 

average weekly temperature, 0[ 70 ]
( 70) ( )

w
w wT F

T I T


  , 0[ 80 ]
( 80) ( )

w
w wT F

T I T


 

the total number of hours below 050 F .

47.37 HV + 5.82 IPRO

Rental Vacancy Rate in New 

overnment 
and IPRO is the Industrial 

; all independent variables measured for the year y. The 

red dashed).

and a 52-week 
trend was removed from 

(averaged over the hours to reflect average per hour 
trended weekly 

denote the week) was 

subset ARMA model with added independent variables. The 
(equal to one if the week w had a 

where wT is the 

[ 80 ]
( 80) ( )w wT F

T I T , and 
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The estimated ARMA model for the de

wW = -113.64 + 0.71 L wW 


1wZ  – 0.76 52wZ  + 0.35 Z

+3.17 ( 80)wT  + 0.82 ( 50)wH

where the wZ terms define the moving average portion of the ARMA process.

observed and predicted values for two select weeks are displayed in Figure 3.

Figure 3. The weekly average of hourly load (

2.3 Predicting hourly load using cubic splines

After removing trend and seasonality from the hourly time series, a new de
de-seasonalized time series

denotes hour and h = h(t) the hour of the day so that 

profile ( )f h was modeled by using cubic splines with different spline estimates 

obtained for each season, weekdays, and weekends. 

values for all weekdays for a given season with hour of the day 
independent variable. The temperature 
were also fitted. Residuals of the spline model were then modeled using a factored 
ARMA model across the 20 year period
winter weekend, winter weekday, summer weekend, and summer weekday.
other seasons are available from the first author upon request.

The spline model for weekends during the winter is

ˆ ( )f h = 151.52 – 74.34h + 10.5 
14)2 – 95.88(h – 17) 2 – 0.88(
T– 0.08 T*h + 0.7 T*(h – 14)

ARMA model for the de-trended weekly data is:

1wW 
 – 0.16 13wW 

 + 0.07 51wW 
 + 0.8 52wW 

 – 0.58 W

53wZ  – 12.98 wh + 1.34 wmT – 1.57 ( 65)wT  +2.31 

( 50)wH  ,

terms define the moving average portion of the ARMA process.

observed and predicted values for two select weeks are displayed in Figure 3.

The weekly average of hourly load (blue solid) and the predicted (red 

hourly load using cubic splines

After removing trend and seasonality from the hourly time series, a new de-trended and 
seasonalized time series was obtained. Note there in this notation 

the hour of the day so that  1,  2, ... , 24h . The daily load 

was modeled by using cubic splines with different spline estimates 

obtained for each season, weekdays, and weekends. That is, we pooled all the hourly

weekdays for a given season with hour of the day h as the primary 
The temperature (T) and its interactions with the spline coefficients

were also fitted. Residuals of the spline model were then modeled using a factored 
across the 20 year period. Given below are four of these models, namely 

winter weekend, winter weekday, summer weekend, and summer weekday. Results for 
sons are available from the first author upon request.

r weekends during the winter is:

+ 10.5 h2 – 0.24h3 + 2.88(h – 5) 2 – 20.17(h - 9) 2 –
0.88(h - 5)3 + 4.88(h - 9)3 + 6.39(h – 14)3 – 8.68(h – 17)

14)2 + 0.01 T*(h - 5)3 – 0.05 T*(h - 9)3+ 0.05 T*(h – 17)

53wW 
 – 0.38 

+2.31 ( 70)wT 

terms define the moving average portion of the ARMA process. The 

red dashed).

trended and 
Note there in this notation t 

. The daily load 

was modeled by using cubic splines with different spline estimates 

That is, we pooled all the hourly tL

as the primary 
spline coefficients

were also fitted. Residuals of the spline model were then modeled using a factored 
Given below are four of these models, namely 

Results for 

– 52.59(h –
17)3 – 6.17 
17)3.
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The spline model for weekdays during the winter is:

ˆ ( )f h = 140.26 – 80.32h + 15.12h2 – 0.74h3 + 67.32(h – 5) 2 – 68.69(h - 8) 2 – 62.63(h –
15) 2 – 153.72(h – 17) 2 – 15.81(h - 5)3 + 17.65(h - 8)3 + 26.37(h – 15)3 – 25.88(h – 17)3 –
6.43T + 1.31T*(h – 15) 2 + 0.01T*(h - 5)3  – 0.02T*(h - 8)3 – 0.32 T*(h – 15)3 + 0.34 T*(h
– 17)3.

The spline model for weekends during the summer is:

ˆ ( )f h = –1164.01.26 + 4.7h + 14.18h2 – 0.5h3 – 12.05(h – 4.5) 2 + 5.52(h - 9) 2 + 7.66(h –
16) 2 – 33.82(h – 19) 2 – 2.87(h – 4.5)3 + 8.26(h - 9)3 – 8.76(h – 16)3 – 12.05(h – 19)3 + 
14.79T– 1.7T*h – 1.62T*(h - 9) 2+ 1.21T*(h – 19) 2 + 0.11T*(h – 4.5)3 – 0.14 T*(h - 9)3.

The spline model for weekdays during the summer is:

ˆ ( )f h = –1304 + 131.24h + 12.35h2 – 3.68h3 + 98.06(h – 4.5) 2 + 82.6(h - 9) 2 + 2.94(h –
16) 2 – 31.51(h – 19) 2 – 9.01(h – 4.5)3 + 16.45(h - 9)3 – 5.86(h – 16)3 – 1.94(h – 19)3 + 
16.13T – 3.29T*h – 1.19T*(h - 9) 2 + 1.01T*(h – 19) 2  + 0.13T*(h – 4.5)3 – 0.2 T*(h - 9)3. 

Observe that the positions of the knots are different for each season and type of day. This 
is because the shape of the load profile is quite different for those season by day 
combinations. In addition, terms that are statistically insignificant were eliminated from 
the models. This approach is different from that proposed by Koopman (1993), who 
suggests fitting the same set of splines but allow the spline coefficients to vary 
stochastically as a set of individual time series. While that is a viable approach, we 
assumed that most of the stochasticity of spline coefficients is due to seasonal variations 
in electricity use patterns that are not attributable seasonal weather plus those that are due 
to weather variables (e.g. temperature). As such we propose our approach as a viable 

alternative. The hourly average of the observed tL values for a given season and type of 

day and the predicted values ˆ ( )f h are displayed in Figure 4. As seen from the figure, the 
estimated splines do a very good job in approximating the observed data. 

Once the splines are estimated, the predicted values can be subtracted from the tL values 

and the residuals estimated as a pure stationary time series. We have done this but these 
results are not reported here because the estimation of the splines were our main 
objective. If one is to predict the load use profile for a future week, however, the 
predicted values from the residual model as well as the spline predictions, together with 
the predicted values from the yearly and the weekly models can be combined to produce 
a composite prediction. 
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Figure 4. The average of hourly load (blue solid) and the spline predicted (red dashed),
     top left: weekends in the winter, top right: weekdays in the winter.
     bottom left: weekends in the summer, bottom right: weekdays in the summer.
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