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ABSTRACT 

Bootstrap-based unit root tests are a viable alternative to asymptotic distribution-based 

tests and, in some cases, are preferable because of the serious size distortions the latter 

tests display under certain situations. While several bootstrap-based unit root tests exist 

for ARMA processes with homoscedastic errors, only one such test is available when the 

innovations are conditionally heteroskedastic. The utility of this test is limited because it 

is restricted to autoregressive processes of order one. We extend this test to 

autoregressive processes of higher orders and study the finite sample performance of the 

test using Monte-Carlo simulation.  Results show that the proposed tests have reasonable 

power and size properties. 
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1.   Introduction 

Bootstrap-based unit root tests provide a good alternative to asymptotic distribution-

based tests. The serious size distortions displayed by the asymptotic distribution-based 

tests is identified as one reason for adopting bootstrap-based tests. Several bootstrap-

based unit root tests exist for ARMA processes with homoscedastic errors, but only one 

such test, proposed by Gospodinov and Tao (2011), is available for processes with 

conditional heteroskedastic errors.  This test and its asymptotic properties were derived 

for autoregressive processes of order one, but the authors suggest that the results can be 

easily extended to processes of higher order. They do not, however, describe how such an 

extension may be carried out. For example, one may employ the type of model used in 

Augmented Dickey-Fuller (ADF) unit root test (Said and Dickey, 1984) or the version 

proposed by Phillips and Perron (1988). Moreover, the simulation results reported by the 

authors are limited to the first order autoregressive, AR(1), case. In this paper, we show 

in detail how the test proposed by Gospodinov and Tao (2011) can be extended to the 

general       case and obtain Monte-Carlo simulation results for higher order processes. 

 

The most commonly used unit root tests were developed by Dickey and Fuller (1979) and 

are referred to as Dickey-Fuller (DF) tests. They were developed for the first order 

autoregressive processes. Said and Dickey (1984) generalized the Dickey-Fuller tests to 

be applicable to ARMA models of unknown orders. Phillips (1987) as well as Phillips 

and Perron (1988), provided a correction to the Dickey-Fuller tests to account for the 

presence of higher order terms. Leybourne and Newbold (1999), however, found that the 

Phillips-Perron unit root tests have serious size distortion and low power issues in finite 

samples, especially when the model has a moving average component.  
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All of the above mentioned unit root tests were developed under the assumption of 

homoscedastic errors. Several researchers, such as Ling and Li (1998, 2003), Ling et al. 

(2003), and Seo (1999), however,  derived the asymptotic distributions of unit root tests 

for processes with       errors and demonstrated power gains by incorporating the       structure into the testing procedure. These are non-bootstrap unit root tests based 

on the asymptotic distribution of the test statistics. More recently, there has been some 

work on bootstrap-based unit root tests. Gospodinov (2008) derived bootstrap results 

when testing for nonlinearity in models with a unit root and       errors. Subsequently, 

Gospodinov and Tao (2011) proposed a bootstrap method for approximating the finite-

sample distributions of unit root tests with            errors. For the first-order 

autoregressive process with            errors, their published simulation results 

demonstrate the excellent size and power properties of the proposed bootstrap test. Up to 

now, however, no finite-sample results of bootstrap-based unit root tests relevant to 

autoregressive processes of higher orders with            errors have been published. 

This study aims to fill the important gap.  

 

2.   Model Formulation 

 

Our method extends the test presented by Gospodinov and Tao (2011) to higher order 

autoregressive processes and the finite sample performance of the proposed test is studied 

using Monte-Carlo simulation.   

 

Two formats of autoregressive models with order   are considered. Equation (1) is the 

classical format, and equation (3) follows the Augmented Dickey-Fuller model. The 

complete model formulation is: 

 

                       
                                                                (1) 

                            
                                             (2)                                                                          (3) 

                            √                                                                        (4)          

and                            
                                                                           (5) 

Expression (2) is the characteristic equation of the autoregressive model given in 

Equation (1), which is equivalent to  ∏             , where                are the 

roots of       polynomial. We assume |  |    |  |              We also 

let     ቀ    ቁ  with 
0 1 2 1( ,  ,  ..., )

p
      , and let            . The hypothesis test 

we perform is                         And the test statistic we use is  

          ̂  ( ∑             
   )    ̂         ̂

    ̂              
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with ̂  and ̂  representing the maximum likelihood estimates of   and   

respectively.  

 

3. Proposed Bootstrap Method 

 

For brevity, the main steps of performing a bootstrap-based unit root test on       
models with            errors are listed below for the case p=2. It is easy to see how 

this procedure can be extended to the               case. The steps of the procedure are 

as follows: 

 

i) Use the least-squares estimates of     ቀ    ቁ as initial values and maximum likelihood 

estimation (MLE) to obtain the estimates of both         , and record them as  ̂,   ̂, 

where  ̂  (  ̂ ̂ )       ̂  ( ̂   ̂   ̂)     Note that when  p=2, 
0 = 

1 . 

ii) Compute the test statistic,  

                 ̂  ( ∑             
   )    ̂         ̂

    ̂              

                                                                          
 

iii) Compute    ̂        ̂       ̂                            
iv) Compute  ̂   ̂   ̂  ̂    ̂  ̂             ̂     ̂    ∑   ̂        

                      ̂    ̂   ̂  ̂      ̂  ̂                      

v) Let  ̂   
 ̂ √ ̂   , and   ̃ be centered  ̂  ,                     

vi) Resample                            {   ̃}     . Note that {   ̃}     contain both the   ̃ and the values   ̃ multiplied by -1. This ensures the symmetry of the underlying 

distribution that will be resampled. 

vii)Compute         ̂    ̂         ̂      
                 ̂       ̂                      

viii) Compute               ̂        √       

                    That is, under           we have 

                                                           ̂               √       

                                            (   ̂ )      (  ̂ )      √                   
                                                                               . 

 

ix) Drop the first                 

    Fit      against        and       
 and estimate    and      using least squares. 

x) Use the least-squares estimates as initial values and obtain MLEs of     (     )                      , and denote these estimates as  ̂         ̂ 
 . 

xi) Compute the bootstrap test statistic, 
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             ̂   ( ∑                 
   )    ̂       ̂ 

    ̂         
                          (      )                                             ,                
 

xii) Repeat Step vi) ~ xi) B times, say          and calculate the lower     percentile 

of      ̂   ,         , then compare       
 with  ( ̂    If  ( ̂          , reject                 ; 

otherwise, do not reject               . 

xiii) Repeat Step i) ~ xii) M times, say          and calculate the significance level 

(empirical size) or the power of the test as:              ∑     .        

                             

4. Simulation Results 
 

To carry out the simulations, we use expression (1) together with (4) and (5) to generate 

the raw time series {  }     , and then throw away the first   values of the series. Fit 

model (3) to the remaining series of length   and calculate the least-squares estimates of   and other coefficients. The same goes for Step ix) under Proposed Bootstrap Method.  

 

MATLAB was used to perform Monte-Carlo simulations and bootstrap procedures. The 

simulation results on       models with            errors show that the proposed tests 

have reasonable power and size properties. 

 

The simulation results for       are given in Table 4.1 ~ Table 4.10. We did the same 

amount of simulations for both         and         cases and obtained reasonable 

results. Due to the page limit, the results for the case with       will not be included, 

but will be available upon request. 

 

For the simulation we considered       models with roots    {           }    {           }  The       combinations considered are (0,0), (0.5,0.4), (0.25,0.7), 

(0.399,0.6), (0.199,0.8), (0.7,0.25), (0.6,0.399), (0.8,0.199), (0.2,0.4) and (0.4,0.2). To 

save space, not all combinations are reported. Simulation results show that the size of the 

tests ranges from 0.04 to 0.058. The latter case occurs when the second root,     is close 

to the unity (Table 4.3). In fact, a size above 0.05 is obtained whenever     is close to 

one and          except in one case (Table 4.7) when the size equals 0.05.  

 

The power of the test increases with decreases in     and   . For example, in Table 4.2, 

one sees that the power is 0.915 when             but increases to 0.996 when         but        . The power is practically one when              or lower. A 

more interesting result can be observed by comparing the power when             

under the non-heteroskedastic case (Table 4.1) to the power under            . 

Under homoscedastic errors the power is 0.757, which climbs to 0.915 under 

heteroskedasticity. A similar phenomenon is also observed when comparing results in 

Table 4.4 to those in Table 4.9. Table 4.9 looks at the case where              (so         ) in contrast to Table 4.4 where                (so      

JSM 2014 - Business and Economic Statistics Section

3763



     ). Increasing      seems to increase the power, especially for the case with           . The power for this case given in Table 4.9 is 0.802 whereas the power reported 

for this case in Table 4.4 is 0.921. Overall, the proposed method seems to work well for 

all cases, maintaining its size and producing good power. 

Table 4.1: Monte-Carlo Simulation Results for the case T=200, α=0 and β=0 

Nominal level = 0.05     

Number of Monte-Carlo simulations M = 1,000         

Number of bootstraps within each simulation B = 1,000               

      Size Power 

1 0.2 0.04   

1 0.5 0.04   

1 0.9 0.044   

0.9 0.2   0.993 

0.9 0.5   0.988 

0.9 0.9   0.757 

0.5 0.5   1 

0.5 0.2   1 

 

 

Table 4.2: Monte-Carlo Simulation Results for the case T=200, α=0.5 and β=0.4 

Nominal level = 0.05     

Number of Monte-Carlo simulations M = 1,000         

Number of bootstraps within each simulation B = 1,000                   

      size power 

1 0.2 0.041   

1 0.5 0.04   

1 0.9 0.053   

0.9 0.2   0.996 

0.9 0.5   0.992 

0.9 0.9   0.915 

0.5 0.5   1 

0.5 0.2   1 
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Table 4.3: Monte-Carlo Simulation Results for the case T=200, α=0.25 and β=0.7 

Nominal level = 0.05     

Number of Monte-Carlo simulations M = 1,000         

Number of bootstraps within each simulation B = 1,000                    

      size power 

1 0.2 0.05   

1 0.5 0.054   

1 0.9 0.058   

0.9 0.2   0.99 

0.9 0.5   0.987 

0.9 0.9   0.853 

0.5 0.5   1 

0.5 0.2   1 

 

 

Table 4.4: Monte-Carlo Simulation Results for the case T=200, α=0.399 and β=0.6 

Nominal level = 0.05     

Number of Monte-Carlo simulations M = 1,000         

Number of bootstraps within each simulation B = 1,000                     

      size power 

1 0.2 0.045   

1 0.5 0.047   

1 0.9 0.055   

0.9 0.2   0.995 

0.9 0.5   0.992 

0.9 0.9   0.921 

0.5 0.5   1 

0.5 0.2   1 
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Table 4.5: Monte-Carlo Simulation Results for the case T=200, α=0.199 and β=0.8 

Nominal level = 0.05     

Number of Monte-Carlo simulations M = 1,000         

Number of bootstraps within each simulation B = 1,000                     

      size power 

1 0.2 0.045   

1 0.5 0.048   

1 0.9 0.055   

0.9 0.2   0.989 

0.9 0.5   0.983 

0.9 0.9   0.827 

0.5 0.5   1 

0.5 0.2   1 

 

 

Table 4.6: Monte-Carlo Simulation Results for the case T=200, α=0.7 and β=0.25 

Nominal level = 0.05     

Number of Monte-Carlo simulations M = 1,000         

Number of bootstraps within each simulation B = 1,000                    

      size power 

1 0.2 0.051   

1 0.5 0.044   

1 0.9 0.056   

0.9 0.2   0.997 

0.9 0.5   0.997 

0.9 0.9   0.955 

0.5 0.5   1 

0.5 0.2   1 
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Table 4.7: Monte-Carlo Simulation Results for the case T=200, α=0.6 and β=0.399 

Nominal level = 0.05     

Number of Monte-Carlo simulations M = 1,000         

Number of bootstraps within each simulation B = 1,000                     

      size power 

1 0.2 0.054   

1 0.5 0.045   

1 0.9 0.05   

0.9 0.2   0.999 

0.9 0.5   0.999 

0.9 0.9   0.955 

0.5 0.5   1 

0.5 0.2   0.999 

 

 

Table 4.8: Monte-Carlo Simulation Results for the case T=200, α=0.8 and β=0.199 

Nominal level = 0.05     

Number of Monte-Carlo simulations M = 1,000         

Number of bootstraps within each simulation B = 1,000                     

      size power 

1 0.2 0.045   

1 0.5 0.043   

1 0.9 0.05   

0.9 0.2   0.998 

0.9 0.5   0.999 

0.9 0.9   0.971 

0.5 0.5   1 

0.5 0.2   1 
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Table 4.9: Monte-Carlo Simulation Results for the case T=200, α=0.2 and β=0.4 

Nominal level = 0.05     

Number of Monte-Carlo simulations M = 1,000         

Number of bootstraps within each simulation B = 1,000                   

      size power 

1 0.2 0.044   

1 0.5 0.04   

1 0.9 0.04   

0.9 0.2   0.993 

0.9 0.5   0.989 

0.9 0.9   0.802 

0.5 0.5   1 

0.5 0.2   1 

 

 

Table 4.10: Monte-Carlo Simulation Results for the case T=200, α=0.4 and β=0.2 

Nominal level = 0.05     

Number of Monte-Carlo simulations M = 1,000         

Number of bootstraps within each simulation B = 1,000                   

      size power 

1 0.2 0.042   

1 0.5 0.043   

1 0.9 0.041   

0.9 0.2   0.994 

0.9 0.5   0.991 

0.9 0.9   0.86 

0.5 0.5   1 

0.5 0.2   1 
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5. Conclusion and Future Work 

 

An existing method for conducting bootstrap-based unit root tests in first order 

autoregressive models with GARCH errors was extended to the general autoregressive 

case. Simulation results indicate that the proposed method mitigates the size distortion 

issue significantly, and achieves high powers at different combinations of the 

autoregressive roots and GARCH coefficients. This method has been further extended to 

AR(p) models with EGARCH error structure and a simulation study is currently 

underway. A future task may be to extend the methodology to ARIMA processes with 

unknown order. 
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