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Abstract
The Pearson and likelihood ratio statistics are commonly used to test goodness of fit for mod-

els applied to data from a multinomial distribution. When data are from a table formed by the
cross-classification of a large number of variables, the common statistics may have low power and
inaccurate Type I error level due to sparseness in the cells of the table. For the cross-classification
of a large number of ordinal manifest variables, it has been proposed to assess model fit by using
the GFfit statistic as a diagnostic to examine the fit on two-way subtables, and the asymptotic distri-
bution of the GFfit statistic has been previously obtained. In this paper, a new version of the GFfit
statistic is proposed by decomposing the Pearson statistic from the full table into orthogonal com-
ponents defined on lower-order marginal distributions and then defining the GFfit statistic as a sum
of a subset of these components. The new version of the GFfit statistic also extends the diagnostic
to higher-order tables so that the GFfit statistics sum to the Pearson statistic. Simulation results and
an application of the new GFfit statistic as a diagnostic for a latent variable model are presented.

Key Words: multivariate discrete distribution, overlapping cells, orthogonal components, compos-
ite null hypothesis

1. Introduction

A test of fit for a multinomial model commonly challenges the null hypothesis Ho : πππ =
πππ(βββ), where πππ is a vector of multinomial probabilities, and πππ(βββ) is a vector of the multino-
mial probabilities as a function of parameters in the vector βββ . When the model parameters
βββ are unknown and estimated, the null hypothesis Ho : πππ = πππ(βββ) is often tested with the
Pearson-Fisher statistic:

X2
PF = n

∑
s

z2s ,

where
zs = (πs(β̂ββ))

− 1
2
(
p̂s − πs(β̂ββ)

)
.

and where

p̂s =
ns
n

is element s of p̂, the vector of multinomial proportions,

ns = element s of n, the vector of observed frequencies,

n = total sample size =

T∑
s=1

ns,

β̂ββ = parameter estimator vector,

πs(βββ) = the expected proportion for cell s

πs(β̂ββ) = estimated expected proportion for cell s .
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The goodness-of-fit test based on Pearson’s chi-squared statistic is sometimes consid-
ered to be an omnibus test that gives little guidance to the source of poor fit when the
null hypothesis is rejected. It has also been recognized that the omnibus test can often be
outperformed by focused or directional tests of lower order.

When data are from a table formed by the cross-classification of a large number of
variables, the Pearson’s chi-square and the likelihood ratio statistic may have low power
and inaccurate Type I error level due to sparseness. Several statistics have been proposed
that marginal distributions of the joint variables rather than the joint distribution. These
statistics have mostly been applied to item response models or factor analysis of categorical
variables and have very good performance for Type I error rate and power when the data
table is formed from a moderate number of variables. The motivation for these focused tests
has been that the statistics formed on lower-order marginals usually overcome the delete-
rious effects of sparseness, and the tests may often have higher power under commonly
encountered circumstances.

The GFfit statistic was proposed by Joreskog and Moustaki (2001) as a diagnostic to aid
in finding the source of model lack of fit. In this paper, a new version of the GFfit statistic is
proposed by decomposing the Pearson statistic from the full table into orthogonal compo-
nents defined on lower-order marginal distributions and then defining the GFfit statistic as
a sum of a subset of these components. The new version of the GFfit statistic also extends
the diagnostic to higher-order tables so that the GFfit statistics sum to the Pearson statistic.
Simulation results and an application of the new GFfit statistic as a diagnostic for a latent
variable model are presented.

2. Marginal Proportions

A traditional method such as Pearson’s statistic uses the joint frequencies to calculate good-
ness of fit for a model that has been fit to a cross-classified table. This section presents
a transformation from joint proportions or frequencies to marginal proportions. Marginal
proportions are used to develop test statistics presented in Section 3.

2.1 First- and Second-Order Marginals

The relationship between joint proportions and first- and second-order marginals can be
shown by using zeros and 1’s to code the levels of categorical response random variables,
Yi, i = 1, 2, . . . , q, where Yi has c ≥ 2 response categories. If c = 2, then a q-dimensional
vector of zeros and 1’s, sometimes called a response pattern, will indicate a specific cell
from the contingency table formed by the cross-classification of q response variables. For
dichotomous response variables, a response pattern is a sequence of zeros and 1’s with
length q. Then a T = cq-dimensional set of response patterns can be generated by varying
the levels of the qth variable most rapidly, the qth − 1 variable next, etc. Define VVV as the T
by q matrix with response patterns as rows.
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For q = 3 and c = 2,

VVV =



0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1


.

Let vis represent element i of response pattern s, s = 1, 2, . . . , T. Then, under the
model πππ = πππ(βββ), the first-order marginal proportion for variable Yi can be defined as

Pi(βββ) = Prob(Yi = 1|βββ) =
∑
s

visπs(βββ),

and the true first-order marginal proportion is given by

Pi = Prob(Yi = 1) =
∑
s

visπs .

The summation across the frequencies associated with the response patterns to obtain
the marginal proportions represents a linear transformation of the frequencies in the multi-
nomial vector πππ which can be implemented via multiplication by a certain matrix, denoted
here generically by the symbol H. The symbol H[t] denotes the transformation matrix that
would produce marginals of order t. The symbol H[t:u], t ≤ u ≤ q, denotes the trans-
formation matrix that would produce marginals from order t up to and including order u.
Furthermore, H[t] ≡H[t:t] , and H ≡H[t:u] .

Matrix H[1] can be defined from matrix VVV such that

H[1] = VVV ′ .

If c = 2, the second-order marginal proportion under the model for variables Yi and Yj
can be defined as

Pij(βββ) = Prob(Yi = 1, Yj = 1|βββ) =
∑
s

visvjsπs(βββ),

where j = 1, 2, . . . , q − 1; i = j + 1, . . . q, and the true second-order marginal proportion
is given by

Pij = Prob(Yi = 1, Yj = 1) =
∑
s

visvjsπs .

For second-order marginals, where ` = i − j +
∑

0<r<j(q − r), element `s of H[2] is
given by [

H[2]

]
`s

=

{
1 if vis = vjs = 1

0 otherwise.
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Alternatively, matrix H[2] can be defined by forming Hadamard products among the
columns of the matrix VVV :

H[2] =



(vvv1 ◦ vvv2)′
(vvv1 ◦ vvv3)′

...
(vvv1 ◦ vvvq)′
(vvv2 ◦ vvv3)′

...
(vvv2 ◦ vvvq)′

...
(vvvq−1 ◦ vvvq)′


,

where vvvf represents column f of matrix VVV , and vvvf ◦ vvvg represents the Hadamard product
of columns f and g.

Generally, VVV has q(c− 1) columns. For 3 variables with 3 categories H[1] = VVV ′, where

VVV 27 x 6 =



0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 1 0 1 0
...

...
...

...
...

...
1 0 0 0 0 0
1 0 0 0 1 0
1 0 0 0 0 1
...

...
...

...
...

...
0 1 0 1 0 0
0 1 0 1 1 0
0 1 0 1 0 1


If q = 3 and c = 3 categories, H[2] is an 18 by 27 matrix:

H[2] =



(vvv1 ◦ vvv3)′
(vvv1 ◦ vvv4)′

...
(vvv1 ◦ vvv5)′
(vvv1 ◦ vvv6)′

...
(vvv3 ◦ vvv5)′

...
(vvvi(c−1) ◦ vvv ′j(c−1)



2.2 Higher-Order Marginals

For higher-order marginal proportions, the columns of H are Hadamard products among
the columns of VVV . The third-order marginal proportions for variables Yi, Yj , and Yk can be
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obtained by employing the matrix H[3]. Then, for example,

H[1:3] =


H[1]

. . .
H[2]

. . .
H[3]

 .

A general matrix H[t:u] to obtain marginals of any order can be defined in a similar fashion
by using Hadamard products among the columns of VVV . H[1:q] gives a one-to-one mapping
from joint proportions to the set of (2q − 1) marginal proportions:

PPP = H[1:q]πππ ,

where

PPP = (P1, P2, P3, . . . Pq, P12, P13, . . . Pq−1,q, P1,1,2 . . . Pq−2,q−1,q . . . P1,2,3...q)
′

is the vector of marginal proportions (Bartholomew, 1987).

2.3 Residuals

Define the unstandardized residual rs = p̂s−πs(β̂ββ), and denote the vector of unstandardized
residuals as rrr with element rs .

A vector of simple residuals for marginals of any order may be defined such that

eee = H(p̂− πππ(β̂ββ)) = Hrrr,

and a vector, ξξξ , of differences between the marginals specified by the relevant model and
the true population marginals may be defined for marginals of any order such that

ξξξ = H(πππ − πππ(βββ)).

3. Testing Fit on Marginal Distributions

3.1 Linear Combinations of Joint Frequencies

A traditional composite null hypothesis for a test of fit on a multinomial model is Ho : πππ =
πππ(βββ). Linear combinations of πππ may be tested under the null hypothesis Ho : Hπππ =
Hπππ(βββ), or equivalently Ho : ξξξ [t:u] = 000. H may specify linear combinations that form
marginal proportions as defined in the previous section. For q variables each with c cate-
gories, if H has rank R = cq− g− 1, where g is the number of unknown model parameters
to be estimated, then Ho : Hπππ = Hπππ(βββ) is equivalent to Ho : πππ = πππ(βββ), given some addi-
tional conditions. If H has rank less than R, then Ho : Hπππ = Hπππ(βββ) specifies a test that
is sometimes known as limited-information, but focused test would be a better description.
When rank(H) < R, null hypotheses Ho : Hπππ = Hπππ(βββ) may represent components of the
null hypothesis Ho : πππ = πππ(βββ), with corresponding partition of degrees of freedom. If the
null hypothesis Ho : Hπππ = Hπππ(βββ) is a component of the null hypothesis Ho : πππ = πππ(βββ),
then “Reject Ho : Hπππ = Hπππ(βββ)” is a sufficient but not necessary condition for “Reject
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Ho : πππ = πππ(βββ)”; “Do not reject Ho : Hπππ = Hπππ(βββ)” is a necessary but not sufficient con-
dition for “Do not reject Ho : πππ = πππ(βββ)”. “Do not reject Ho : Hπππ = Hπππ(βββ)” is not a
sufficient condition because it is possible that lack of fit may be manifest only in a direc-
tion not represented in H[t:u] . For q variables each with c categories, there are T − g − 1
independent orthogonal components, which may be summed, for testing null hypotheses
Ho : Hπππ = Hπππ(βββ).

3.2 Test Statistic

Linear combinations of πππ may be tested under the null hypothesis Ho : Hπππ = Hπππ(βββ) by
using the quadratic form statistic

X2
[t : u] = eee′Σ̂ΣΣ

−1
eee eee

where Σ̂ΣΣeee = n−1ΩΩΩeee with ΩΩΩeee evaluated at the maximum likelihood estimates β̂ββ , and where

ΩΩΩeee = H(D(πππ)− ππππππ ′ −G(A′A)−1G′)H′

D(πππ) = diagonal matrix with (s, s) element equal to πs(βββ)

A = D(πππ)−1/2
∂πππ(βββ)

∂βββ
and G =

∂πππ(βββ)

∂βββ

H = H[1:2] produces X2
[1:2], and H = H[2] produces X2

[2]. The limiting distribution is chi-
square with degrees of freedom determined by the number linearly independent columns in
H. If c = 2, X2

[1:2] is the statistic from Reiser (1996), and X2
[2] is the statistic from Reiser

and Lin (1999). Also when c = 2, it is generally the case that df = q(q + 1)/2 for X2
[1:2],

and df = q(q − 1)/2 for X2
[2], although some models may involve certain theoretically

known linear dependencies among the marginals so that these expressions for degrees of
freedom would be adjusted accordingly. Cagnone and Mignani (2007) extended the statistic
to manifest variables with two or more categories. Furthermore, if H[1:q;−g] represents
H[1:q] with g columns deleted so that H[1:q;−g] has rank R = T − g − 1, then X2

PF =
X2

[1:q;−g], where X2
[1:q;−g] is defined with H = H[1:q;−g] (Reiser, 2008). X2

[t:u] is essentially
a version of the score statistic from Rayner and Best (1989).

4. Extended GFfitij Statistic Using Orthogonal Components

4.1 Orthogonal Components

Consider the T − g − 1 by cq matrix H∗ = FFF ′H[1:q;−g] . H∗ has full row rank. FFF is
the upper triangular matrix such that FFF ′ΩΩΩeeeFFF = III . FFF = (CCC ′)−1, where CCC is the Cholesky
factor of ΩΩΩeee . Premultiplication by (CCC ′)−1 orthonormalises the matrix H[1:q;−g] in the matrix
D(πππ)− ππππππ ′ −G(A′A)−1G′.

X2
PF = X2

[1:q;−g] = n−1rrr′(Ĥ∗)′Ĥ∗rrr

where Ĥ∗ = H∗(β̂ββ).

Define
γ̂γγ = n−

1
2 F̂FF
′
Hrrr = n−

1
2 Ĥ∗rrr
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where F̂FF is the matrix FFF evaluated at βββ = β̂ββ . Then

X2
PF = γ̂γγ ′ γ̂γγ =

j=T−g−1∑
j=1

γ̂2j

Ĥ∗rrr has asymptotic covariance matrix FFF ′ΩΩΩeeeFFF = IIIT−g−1 The elements γ̂2j are asymptoti-
cally independent χ2

1 random variables (Reiser, 2008).
Using sequential sum of squares, redefine:

zs =
√
n(πs(β̂ββ))

− 1
2
(
p̂s − πs(β̂ββ)

)
.

Perform the regression of zzz on the columns of HHH ′:

zzz = Hθθθ

Then,
θ̂θθ = (HŴWWH′)−1HŴWW uuu

where uuu =
√
nrrr, ŴWW = D̂DD

− 1
2 Σ̂ΣΣΣ̂ΣΣD̂DD

− 1
2 = D̂DD

− 1
2 Σ̂ΣΣD̂DD

− 1
2 , and DDD = diag(πππ(βββ)). ΣΣΣ = ΣΣΣ(βββ) =

(III − πππ
1
2 (πππ

1
2 )′ − AAA(AAA′AAA)−1AAA′) is idempotent.

Let M̂MM = Σ̂ΣΣD̂DD
− 1

2H′. Then
θ̂θθ = (M̂MM

′
M̂MM )−1M̂MM

′
zzz

γ̂γγ2j , j = 1, T are the sequential SS from this regression. γγγ = CCC ′θθθ are the orthogonal
coefficients. Sequential SS from Goodnight’s Sweep operator are very accurate numerically
(Goodnight, 1978; SAS PROC REG).

4.2 Extended GFfit Statistic

Joreskog and Moustaki (2001) proposed the following GFfit statistic:

GFfit(ij) = nΣab
(p̂

(ij)
ab − π̂

(ij)
ab )2

π̂
(ij)
ab

where i = 1, . . . , q − 1; j = i+ 1, . . . , q; a = 1, . . . , c; b = 1, . . . , c .
Define

H
(ij)
[2] =


hhh′m+1

hhh′m+2
...

hhh′m+(k−1)2


[2]

where m = (i − 1)(c − 1)2 + (j − 2)(c − 1)2. Then GFfit(ij) is a special case of X2
[t:u]

(Cagnone and Mignani, 2007):

GFfit(ij) = eee′Σ̂ΣΣ
−1
eee eee

Σ̂ΣΣeee = n−1ΩΩΩeee with ΩΩΩeee evaluated at the MLE β̂ββ . Now

ΩΩΩeee = H
(ij)
[2] (D(πππ)− ππππππ ′ −G(A′A)−1G′)(H

(ij)
[2] )′
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H
(ij)
[2] is a partition of the general matrix H[1:q] The extension to higher-order statistics

is straightforward: Define

H
(ijk)
[3] =


hhh′m+1

hhh′m+2
...

hhh′m+(k−1)3


[3]

where m = (i− 1)(c− 1)3 + (j − 2)(c− 1)3 + (k − 3)(c− 1)3

GFfit(ijk) = eee′Σ̂ΣΣ
−1
eee eee

Σ̂ΣΣeee = n−1ΩΩΩeee with ΩΩΩeee evaluated at the MLE β̂ββ . Now

ΩΩΩeee = H
(ijk)
[3] (D(πππ)− ππππππ ′ −G(A′A)−1G′)(H

(ijk)
[3] )′

H
(ijk)
[3] is a partition of the general matrix H[1:q]

Now define an orthogonal components version of GFfit:

GFfit
(ij)
⊥ =

`=m+(c−1)2∑
`=m+1

γ̂2`

where m = q + (i− 1)(c− 1)2 + (j − 2)(c− 1)2.

Then

X2
[2] =

i=q−1∑
i=1

j=q∑
j=i+1

GFfit
(ij)
⊥

More general,

X2
PF =

`=q(c−1)∑
`=1

γ̂2` +

`=(q2)(c−1)
2∑

`=q(c−1)+1

γ̂2` +

`=(q3)(c−1)
3∑

`=(q2)(c−1)2+1

γ̂2` + · · ·+ γ̂2T−g−1

Then

X2
PF =

∑
i

GFfit
(i)
⊥ +

∑
i

∑
j

GFfit
(ij)
⊥ +

∑
i

∑
j

∑
k

GFfit
(ijk)
⊥ +· · ·+GFfit(1,2,...,q)

because

X2
PF = γ̂γγ ′ γ̂γγ =

`=T−g−1∑
`=1

γ̂2`

The extended GFfit(ij)⊥ are independent chi-squared statistics on (c− 1)2 degrees of free-
dom due to the definition on orthogonal components. The original GFfit(ij) statistics
are not necessarily independent and do not necessarily sum to X2

[2]. Because the extended

GFfit
(ij)
⊥ are defined on orthogonal components, they are order dependent.
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5. Simulation

The statistics developed above can be applied to cross-classified tables from a variety of
models including categorical variable factor analysis, latent class analysis, and manifest
variable log-linear models. A simulation study to assess the performance of the GFfit(ij)⊥
was performed using the Generalized Linear Latent Variable Model (GLLVM).

5.1 GLLVM

GLLVM is a latent variable response model for categorical variables with 2 or more graded
categories and has features of a proportional odds model.

Let y = (y1, y2, · · · , yq)′ be the vector of q ordinal observed variables, each of them
having ci categories. Thus there are

∏q
i=1 ci cells, also called response patterns in the cross-

classified table. Response pattern s is indicated as ys = (y1 = a1, y2 = a2, · · · , yq = aq)
′,

where ai is the value of the ith observed variable (ai = 1, . . . , ci and i = 1, . . . , q). Let XXX =
(X1, X2, · · · , Xp)

′ be the vector of p continuous latent variables. Then the probability of
response pattern s is given by

πs(βββ) = π(YYY = ys | βββ) =

∫ ∞
−∞

π(YYY = ys | βββ, xxx)f(xxx)dxxx,

where f(xxx) is the density function of XXX . Simulations were conducted under the assumption
XXX ∼ Np(0,ΣΣΣXXX ).

The conditional probability of YYY given xxx is a multinomial probability function:

π(YYY = ys|xxx) =

q∏
i=1

πiai(xxx) =

q∏
i=1

(ηiai − η
i
ai−1

)

where ηiai = πi1(xxx) + πi2(xxx) + · · · + πiai(xxx) is the probability of a response in category ai
or lower on the variable i, and πiai(xxx) is the probability of a response in category ai on the
variable i. Logistic regression is used to model the interrelationship between ηiai and the
latent variables:

log
( ηir

1− ηir

)
= βi0(r)−

p∑
j=1

βijxj ,

r = 1, . . . , ci−1, where ci is the number of categories for variable i, βi0(r) and βij are the
parameters of the model. βi0(r) is an intercept and βij is the jth slope for variable i. The
intercepts should satisfy the condition βi0(1) ≤ βi0(2) ≤ · · · ≤ βi0(ci). The integrals are
approximated through the Gauss-Hermite quadrature method.

5.2 Simulation Design and Results

A simulation study was conducted using GLLVM to assess the accuracy of the Type I error
rates forX2

PF ,X2
[2]inv, andX2

[2]ss. X2
[2]inv isX2

[2] calculated directly using a generalized in-
verse, andX2

[2]ss isX2
[2] calculated by using orthogonal components obtained from sequen-

tial sum of squares.The simulation had several conditions, with q = 4, q = 5, and q = 6
variables, and c = 3 and c = 4 categories. Each condition used 500 pseudo samples of size
n = 500 each. Pseudo samples were generated from a model with one latent factor, and
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the GLLVM was fit with the specification of one latent factor. To generate the pseudo data,
intercept values were specified in the range of −3 to 3. Slope parameters were specified as
follows: For q = 4, βββ1 = (0.0, 0.1, 0.2, 0.6); for q = 5, βββ1 = (0.0, 0.3, 0.2, 0.1, 0.2);
and for q = 6, βββ1 = (0.0, 0.1, 0.2, 0.3, 0.4, 0.5)

Simulation results for Type I error are shown in Table 1. The table shows empirical Type
I error for nominal α = 0.05. The results demonstrate that the chi-square approximation
for the Pearson statistic is not valid when the cross-classified table becomes very sparse.
The empirical Type I error rate for X2

[2]inv was somewhat inflated due to the difficulty of
accurately computing an inverse matrix. X2

[2]ss gave more reliable results due to more
stable numeric calculations, although the Type I error rate was somewhat conservative for
q = 6 and c = 4. Some sparseness in the 4 by 4 two-way tables may have produced this
conservative result.

Table 1: Monte Carlo Simulation Type I Error

q 4 4 5 6
c 3 4 4 4

X2
PF 0.060 0.086 0.166 0.25

X2
[2]inv 0.098 0.050 0.052 0.078
X2

[2]ss 0.04 0.066 0.052 0.034

Table 2 shows the mean GFfit(ij) statistics for four variables when c = 3 and c = 4.
Under H0, the GFfit(ij) statistics are distributed as central chi-square on 4 degrees of
freedom when c = 3 and on 9 degrees of freedom when c = 4. None of the mean values
appear large relative to the degrees of freedom, as would be expected if the chi-square
approximation is valid.

Table 2: Mean of GFfit, 4 variables

c = 3 c = 4

GFfit
(ij)
⊥ Mean Mean

(4,3) 3.82 8.89
(4,2) 3.72 9.15
(4,1) 3.94 8.93
(3,2) 4.12 9.29
(3,4) 4.13 9.29
(2,1) 3.93 9.45

A simulation to examine power of the statistics was also conducted using GLLVM.
Pseudo data for 1000 samples each of size 500 were generated from a confirmatory two-
factor model with all parameters fixed and then fit with a model specifying one factor. Each
sample had four variables with three categories. Parameters for the data generating model
included intercepts, βββ0(1) = (−1.5, −0.6, 0.3, 1)′ and βββ0(2) = (−1.0, −0.3, 0.6, 1.5)′,
slopes for factor 1, βββ1 = (1.0, 1.0, 1.0, 1.0)′, and slopes for factor 2, βββ2 = (0.0, 0.1, 0.2, 0.6)′.
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The two latent variables were specified as uncorrelated, each with variance equal to 1.0. Es-
timation of the one-factor GLLVM converged for 970 of the 1000 samples, so simulation
results reported in Tables 3 and 4 are based on 970 samples.

Table 3 shows empirical power for X2
PF , X2

[2]inv, and X2
[2]ss. It is difficult to assess

the empirical power of X2
PF because it has an inflated Type I error rate in sparse tables,

as demonstrated above. X2
[2]inv appears to have the highest empirical power, but direct

calculation of X2
[2] using a matrix inverse is unreliable as demonstrated by the very high

standard deviation of the values calculated in the simulation. X2
[2]ss, on the other hand,

gives numerically stable results.

Table 3: Power Simulation Results

Mean SD Power
X2

PF 84.53 25.47 0.268
X2

[2]inv 72.98 100.28 0.800
X2

[2]ss 39.74 10.23 0.591

Table 4 shows means for theGFfit(ij)⊥ statistics calculated in the simulation. Under the
null hypothesis, these statistics are distributed chi-square on (3− 1)(3− 1) = 4 degrees of
freedom. These GFfit(ij)⊥ statistics show that primarily the association between variables
2 and 3 was not adequately explained by the one-factor model.

Table 4: GFfit from Power Simulation

GFfit
(ij)
⊥ Mean

(1,2) 4.11
(1,3) 5.95
(1,4) 6.68
(2,3) 14.93
(2,4) 4.04
(3,4) 4.03

6. Application

The extended GFfit statistic was used to evaluate the fit of a single factor model to responses
given to five questions about the psychiatric condition known as agoraphobia. Agoraphobia
is described as an anxiety disorder where a person suffers from a fear and avoidance of
situations that might cause panic, or a feeling of being trapped, helpless or embarrassed
(Wittchen, Gloster, Beesdo-Baum, Fava, and Craske; 2010). The questions asked about (1)
fear of tunnels or bridges, (2) fear of being in a crowd, (3) fear of transportation, (4) fear
of going out of the house alone, and (5) fear of being alone. The responses to the questions
were collected as part of the Epidemiological Catchment Area Study of 1980-1985 (U.S.
Dept. of Health and Human Services, 1985). The data used in this example consists of the
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responses from 3,305 adults sampled from the Baltimore catchment area. The responses
were coded into three ordered categories: (1) fear present at a clinical level, (2) fear present
but not at a clinical level, and (3) fear not present. The marginal proportion of any of the
fears in the sample is very low, at five percent or less, so the 35 cross-classified table is very
sparse with a large number of cells that have count equal to 0.

The GLLVM with one factor was fit to these data, and fit statistics were calculated, using
R software. Goodness-of-fit test results are shown in Table 5. The results indicate that the
model of one underlying factor does not fit well for the agoraphobia symptoms. The chi-
square approximation for the full Pearson statistic should not be considered valid because of
the high degree of sparseness in the data table. The stable statistic X2

[2]ss indicates that the

model should be rejected. GFfit(ij) statistics for the two-way associations are shown in

Table 5: Goodness-of-Fit Tests

Value DF p-value
X2

PF 382.97 227 < 0.0001
X2

[2]inv 180.46 40 < 0.0001

X2
[2]ss 185.48 40 < 0.0001

Table 6. Since each survey question had three response categories, the GFfit(ij) statistics
follow a chi-square distribution on (3 − 1)2 = 4 degrees of freedom. Relative to the
central chi-square distribution, several of the GFfit(ij) statistics are large, but GFfit(1,3)

and GFfit(2,3) are particularly large. Question 3 asks about fear of transportation, while
Question 1 asks about fear of tunnels or bridges and Question 2 asks about fear of being in
a crowd. Transportation often involves tunnels and bridges, and public transportation such
as a bus or a train involves crowds as well, so these symptoms overlap more than can be
accounted for by the model of a single latent factor.

Each of the GFfit(ij) statistics shown in Table 6 are the sum of four orthogonal com-
ponents of Pearson’s statistic. The GFfit(ij) statistics shown in Table 6 sum to 185.48,
which is equivalent to the value of the X2

[2] statistic. The X2
[2] statistic is then the sum of 40

orthogonal components. In a similar way, X2
[3] is a sum of 80 orthogonal components, or

10 GFfit(ijk) statistics. Table 7 shows partitioning of Pearson’s full statistic into blocks
of components associated with marginals of order 2 to 5. The full Pearson statistic has 227
degrees of freedom in this case, and the value taken on can be obtained by summing 227
orthogonal components. The first-order marginals usually provide little information on lack
of fit for this type of model, so components from marginals of order 2 to 5 are used to obtain
the value of the full Pearson statistic. Using 40 components fromX2

[2], 80 components from
X2

[3], 80 components from X2
[4], and 27 (out of 32 possible) components from X2

[5], it can
be seen that X2

[2] +X2
[3] +X2

[4] +X2
[5] = 382.29, which compares, with round-off error, to

X2
PF = 382.97. Other statistics, such as X2

[2:3] and GFfit(ijk) can be easily obtained from
the orthogonal components of X2

PF , but the third-order marginals may be too sparse for the
chi-square approximation to hold. Including third-order marginals may also dilute the test.
Further simulations would be required to evaluate their use.
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Table 6: GFfit(ij)⊥ Agoraphobia Symptom Items

GFfit
(ij)
⊥ Value

(1,2) 16.41
(1,3) 55.32
(1,4) 5.70
(1,5) 6.82
(2,3) 24.96
(2,4) 11.00
(2,5) 11.79
(3,4) 9.43
(3,5) 14.97
(4,5) 29.06

Table 7: Partitions of Pearson’s Statistic

Value DF
X2

[2] 185.48 40
X2

[3] 101.8 80
X2

[4] 68.24 80
X2

[5] 26.76 27

7. Conclusions

Pearson’s statistic can be decomposed into components that are defined as an extended
version of theGFfit statistic. TheGFfit(ij)⊥ statistics can be calculated reliably using sum
of squares from an orthogonal regression. A more global test statistic such as X2

[2] based on

second-order marginals can be obtained as as a sum ofGFfit(ij)⊥ statistics. When applied to
the GLLVM, the GFfit(ij)⊥ are useful as item diagnostics to detect the source of lack of fit.
The global test should be conducted first. A study with a large number of manifest variables
will produce a large number of GFfit(ij)⊥ statistics, and a multiple decision rule should
be used to identify unusually large values of GFfit(ij)⊥ . An application to agoraphobia
symptoms showed that fear of public transportation has overlap with fear of tunnels/bridges
and fear of crowds that cannot be explained by a model of a single underlying factor for the
five agoraphobia symptoms.
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